linux/drivers/edac/skx_common.c

655 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
2019-03-21 15:13:39 -07:00
*
* Shared code by both skx_edac and i10nm_edac. Originally split out
* from the skx_edac driver.
*
* This file is linked into both skx_edac and i10nm_edac drivers. In
* order to avoid link errors, this file must be like a pure library
* without including symbols and defines which would otherwise conflict,
* when linked once into a module and into a built-in object, at the
* same time. For example, __this_module symbol references when that
* file is being linked into a built-in object.
*
* Copyright (c) 2018, Intel Corporation.
*/
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/adxl.h>
#include <acpi/nfit.h>
#include <asm/mce.h>
#include "edac_module.h"
#include "skx_common.h"
static const char * const component_names[] = {
[INDEX_SOCKET] = "ProcessorSocketId",
[INDEX_MEMCTRL] = "MemoryControllerId",
[INDEX_CHANNEL] = "ChannelId",
[INDEX_DIMM] = "DimmSlotId",
};
static int component_indices[ARRAY_SIZE(component_names)];
static int adxl_component_count;
static const char * const *adxl_component_names;
static u64 *adxl_values;
static char *adxl_msg;
static char skx_msg[MSG_SIZE];
static skx_decode_f skx_decode;
static u64 skx_tolm, skx_tohm;
static LIST_HEAD(dev_edac_list);
int __init skx_adxl_get(void)
{
const char * const *names;
int i, j;
names = adxl_get_component_names();
if (!names) {
skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
return -ENODEV;
}
for (i = 0; i < INDEX_MAX; i++) {
for (j = 0; names[j]; j++) {
if (!strcmp(component_names[i], names[j])) {
component_indices[i] = j;
break;
}
}
if (!names[j])
goto err;
}
adxl_component_names = names;
while (*names++)
adxl_component_count++;
adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
GFP_KERNEL);
if (!adxl_values) {
adxl_component_count = 0;
return -ENOMEM;
}
adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
if (!adxl_msg) {
adxl_component_count = 0;
kfree(adxl_values);
return -ENOMEM;
}
return 0;
err:
skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
component_names[i]);
for (j = 0; names[j]; j++)
skx_printk(KERN_CONT, "%s ", names[j]);
skx_printk(KERN_CONT, "\n");
return -ENODEV;
}
void __exit skx_adxl_put(void)
{
kfree(adxl_values);
kfree(adxl_msg);
}
static bool skx_adxl_decode(struct decoded_addr *res)
{
int i, len = 0;
if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
res->addr < BIT_ULL(32))) {
edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
return false;
}
if (adxl_decode(res->addr, adxl_values)) {
edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
return false;
}
res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]];
res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]];
for (i = 0; i < adxl_component_count; i++) {
if (adxl_values[i] == ~0x0ull)
continue;
len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
adxl_component_names[i], adxl_values[i]);
if (MSG_SIZE - len <= 0)
break;
}
return true;
}
void skx_set_decode(skx_decode_f decode)
{
skx_decode = decode;
}
int skx_get_src_id(struct skx_dev *d, u8 *id)
{
u32 reg;
if (pci_read_config_dword(d->util_all, 0xf0, &reg)) {
skx_printk(KERN_ERR, "Failed to read src id\n");
return -ENODEV;
}
*id = GET_BITFIELD(reg, 12, 14);
return 0;
}
int skx_get_node_id(struct skx_dev *d, u8 *id)
{
u32 reg;
if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
skx_printk(KERN_ERR, "Failed to read node id\n");
return -ENODEV;
}
*id = GET_BITFIELD(reg, 0, 2);
return 0;
}
static int get_width(u32 mtr)
{
switch (GET_BITFIELD(mtr, 8, 9)) {
case 0:
return DEV_X4;
case 1:
return DEV_X8;
case 2:
return DEV_X16;
}
return DEV_UNKNOWN;
}
/*
* We use the per-socket device @did to count how many sockets are present,
* and to detemine which PCI buses are associated with each socket. Allocate
* and build the full list of all the skx_dev structures that we need here.
*/
int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
struct list_head **list)
{
struct pci_dev *pdev, *prev;
struct skx_dev *d;
u32 reg;
int ndev = 0;
prev = NULL;
for (;;) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
if (!pdev)
break;
ndev++;
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
pci_dev_put(pdev);
return -ENOMEM;
}
if (pci_read_config_dword(pdev, off, &reg)) {
kfree(d);
pci_dev_put(pdev);
skx_printk(KERN_ERR, "Failed to read bus idx\n");
return -ENODEV;
}
d->bus[0] = GET_BITFIELD(reg, 0, 7);
d->bus[1] = GET_BITFIELD(reg, 8, 15);
if (type == SKX) {
d->seg = pci_domain_nr(pdev->bus);
d->bus[2] = GET_BITFIELD(reg, 16, 23);
d->bus[3] = GET_BITFIELD(reg, 24, 31);
} else {
d->seg = GET_BITFIELD(reg, 16, 23);
}
edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
list_add_tail(&d->list, &dev_edac_list);
prev = pdev;
}
if (list)
*list = &dev_edac_list;
return ndev;
}
int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
{
struct pci_dev *pdev;
u32 reg;
pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
if (!pdev) {
skx_printk(KERN_ERR, "Can't get tolm/tohm\n");
return -ENODEV;
}
if (pci_read_config_dword(pdev, off[0], &reg)) {
skx_printk(KERN_ERR, "Failed to read tolm\n");
goto fail;
}
skx_tolm = reg;
if (pci_read_config_dword(pdev, off[1], &reg)) {
skx_printk(KERN_ERR, "Failed to read lower tohm\n");
goto fail;
}
skx_tohm = reg;
if (pci_read_config_dword(pdev, off[2], &reg)) {
skx_printk(KERN_ERR, "Failed to read upper tohm\n");
goto fail;
}
skx_tohm |= (u64)reg << 32;
pci_dev_put(pdev);
*tolm = skx_tolm;
*tohm = skx_tohm;
edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
return 0;
fail:
pci_dev_put(pdev);
return -ENODEV;
}
static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
int minval, int maxval, const char *name)
{
u32 val = GET_BITFIELD(reg, lobit, hibit);
if (val < minval || val > maxval) {
edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
return -EINVAL;
}
return val + add;
}
#define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
#define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
#define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
int skx_get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
struct skx_imc *imc, int chan, int dimmno)
{
int banks = 16, ranks, rows, cols, npages;
u64 size;
ranks = numrank(mtr);
rows = numrow(mtr);
cols = numcol(mtr);
/*
* Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
*/
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
imc->mc, chan, dimmno, size, npages,
banks, 1 << ranks, rows, cols);
imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
imc->chan[chan].dimms[dimmno].rowbits = rows;
imc->chan[chan].dimms[dimmno].colbits = cols;
dimm->nr_pages = npages;
dimm->grain = 32;
dimm->dtype = get_width(mtr);
dimm->mtype = MEM_DDR4;
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
imc->src_id, imc->lmc, chan, dimmno);
return 1;
}
int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
int chan, int dimmno, const char *mod_str)
{
int smbios_handle;
u32 dev_handle;
u16 flags;
u64 size = 0;
dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
imc->src_id, 0);
smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
if (smbios_handle == -EOPNOTSUPP) {
pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
goto unknown_size;
}
if (smbios_handle < 0) {
skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
goto unknown_size;
}
if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
goto unknown_size;
}
size = dmi_memdev_size(smbios_handle);
if (size == ~0ull)
skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
dev_handle, smbios_handle);
unknown_size:
dimm->nr_pages = size >> PAGE_SHIFT;
dimm->grain = 32;
dimm->dtype = DEV_UNKNOWN;
dimm->mtype = MEM_NVDIMM;
dimm->edac_mode = EDAC_SECDED; /* likely better than this */
edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
imc->src_id, imc->lmc, chan, dimmno);
return (size == 0 || size == ~0ull) ? 0 : 1;
}
int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
const char *ctl_name, const char *mod_str,
get_dimm_config_f get_dimm_config)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct skx_pvt *pvt;
int rc;
/* Allocate a new MC control structure */
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = NUM_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
sizeof(struct skx_pvt));
if (unlikely(!mci))
return -ENOMEM;
edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
/* Associate skx_dev and mci for future usage */
imc->mci = mci;
pvt = mci->pvt_info;
pvt->imc = imc;
mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
imc->node_id, imc->lmc);
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail0;
}
mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = mod_str;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
rc = get_dimm_config(mci);
if (rc < 0)
goto fail;
/* Record ptr to the generic device */
mci->pdev = &pdev->dev;
/* Add this new MC control structure to EDAC's list of MCs */
if (unlikely(edac_mc_add_mc(mci))) {
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
rc = -EINVAL;
goto fail;
}
return 0;
fail:
kfree(mci->ctl_name);
fail0:
edac_mc_free(mci);
imc->mci = NULL;
return rc;
}
static void skx_unregister_mci(struct skx_imc *imc)
{
struct mem_ctl_info *mci = imc->mci;
if (!mci)
return;
edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
/* Remove MC sysfs nodes */
edac_mc_del_mc(mci->pdev);
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
kfree(mci->ctl_name);
edac_mc_free(mci);
}
static struct mem_ctl_info *get_mci(int src_id, int lmc)
{
struct skx_dev *d;
if (lmc > NUM_IMC - 1) {
skx_printk(KERN_ERR, "Bad lmc %d\n", lmc);
return NULL;
}
list_for_each_entry(d, &dev_edac_list, list) {
if (d->imc[0].src_id == src_id)
return d->imc[lmc].mci;
}
skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc);
return NULL;
}
static void skx_mce_output_error(struct mem_ctl_info *mci,
const struct mce *m,
struct decoded_addr *res)
{
enum hw_event_mc_err_type tp_event;
char *type, *optype;
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
bool overflow = GET_BITFIELD(m->status, 62, 62);
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
bool recoverable;
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
u32 mscod = GET_BITFIELD(m->status, 16, 31);
u32 errcode = GET_BITFIELD(m->status, 0, 15);
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
recoverable = GET_BITFIELD(m->status, 56, 56);
if (uncorrected_error) {
core_err_cnt = 1;
if (ripv) {
type = "FATAL";
tp_event = HW_EVENT_ERR_FATAL;
} else {
type = "NON_FATAL";
tp_event = HW_EVENT_ERR_UNCORRECTED;
}
} else {
type = "CORRECTED";
tp_event = HW_EVENT_ERR_CORRECTED;
}
/*
* According to Intel Architecture spec vol 3B,
* Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
* memory errors should fit one of these masks:
* 000f 0000 1mmm cccc (binary)
* 000f 0010 1mmm cccc (binary) [RAM used as cache]
* where:
* f = Correction Report Filtering Bit. If 1, subsequent errors
* won't be shown
* mmm = error type
* cccc = channel
* If the mask doesn't match, report an error to the parsing logic
*/
if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
optype = "Can't parse: it is not a mem";
} else {
switch (optypenum) {
case 0:
optype = "generic undef request error";
break;
case 1:
optype = "memory read error";
break;
case 2:
optype = "memory write error";
break;
case 3:
optype = "addr/cmd error";
break;
case 4:
optype = "memory scrubbing error";
break;
default:
optype = "reserved";
break;
}
}
if (adxl_component_count) {
snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode, adxl_msg);
} else {
snprintf(skx_msg, MSG_SIZE,
"%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode,
res->socket, res->imc, res->rank,
res->bank_group, res->bank_address, res->row, res->column);
}
edac_dbg(0, "%s\n", skx_msg);
/* Call the helper to output message */
edac_mc_handle_error(tp_event, mci, core_err_cnt,
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
res->channel, res->dimm, -1,
optype, skx_msg);
}
int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
struct decoded_addr res;
struct mem_ctl_info *mci;
char *type;
if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
return NOTIFY_DONE;
/* ignore unless this is memory related with an address */
if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
return NOTIFY_DONE;
memset(&res, 0, sizeof(res));
res.addr = mce->addr;
if (adxl_component_count) {
if (!skx_adxl_decode(&res))
return NOTIFY_DONE;
mci = get_mci(res.socket, res.imc);
} else {
if (!skx_decode || !skx_decode(&res))
return NOTIFY_DONE;
mci = res.dev->imc[res.imc].mci;
}
if (!mci)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
"Bank %d: 0x%llx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status);
skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
"%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid);
skx_mce_output_error(mci, mce, &res);
return NOTIFY_DONE;
}
void skx_remove(void)
{
int i, j;
struct skx_dev *d, *tmp;
edac_dbg(0, "\n");
list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
list_del(&d->list);
for (i = 0; i < NUM_IMC; i++) {
if (d->imc[i].mci)
skx_unregister_mci(&d->imc[i]);
if (d->imc[i].mdev)
pci_dev_put(d->imc[i].mdev);
if (d->imc[i].mbase)
iounmap(d->imc[i].mbase);
for (j = 0; j < NUM_CHANNELS; j++) {
if (d->imc[i].chan[j].cdev)
pci_dev_put(d->imc[i].chan[j].cdev);
}
}
if (d->util_all)
pci_dev_put(d->util_all);
if (d->sad_all)
pci_dev_put(d->sad_all);
if (d->uracu)
pci_dev_put(d->uracu);
kfree(d);
}
}