linux/net/tipc/link.h

160 lines
6.8 KiB
C
Raw Normal View History

/*
* net/tipc/link.h: Include file for TIPC link code
*
* Copyright (c) 1995-2006, 2013-2014, Ericsson AB
* Copyright (c) 2004-2005, 2010-2011, Wind River Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the names of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _TIPC_LINK_H
#define _TIPC_LINK_H
#include <net/genetlink.h>
#include "msg.h"
#include "node.h"
/* TIPC-specific error codes
*/
#define ELINKCONG EAGAIN /* link congestion <=> resource unavailable */
tipc: merge link->exec_mode and link->state into one FSM Until now, we have been handling link failover and synchronization by using an additional link state variable, "exec_mode". This variable is not independent of the link FSM state, something causing a risk of inconsistencies, apart from the fact that it clutters the code. The conditions are now in place to define a new link FSM that covers all existing use cases, including failover and synchronization, and eliminate the "exec_mode" field altogether. The FSM must also support non-atomic resetting of links, which will be introduced later. The new link FSM is shown below, with 7 states and 8 events. Only events leading to state change are shown as edges. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | | | | | | +--------------+ | | | RESET_EVT| |RESET_EVT |ESTABLISH_EVT | | | | | | | | | | | | V V | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ These changes are fully backwards compatible. Tested-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 18:24:21 -04:00
/* Link FSM events:
*/
enum {
tipc: merge link->exec_mode and link->state into one FSM Until now, we have been handling link failover and synchronization by using an additional link state variable, "exec_mode". This variable is not independent of the link FSM state, something causing a risk of inconsistencies, apart from the fact that it clutters the code. The conditions are now in place to define a new link FSM that covers all existing use cases, including failover and synchronization, and eliminate the "exec_mode" field altogether. The FSM must also support non-atomic resetting of links, which will be introduced later. The new link FSM is shown below, with 7 states and 8 events. Only events leading to state change are shown as edges. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | | | | | | +--------------+ | | | RESET_EVT| |RESET_EVT |ESTABLISH_EVT | | | | | | | | | | | | V V | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ These changes are fully backwards compatible. Tested-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 18:24:21 -04:00
LINK_ESTABLISH_EVT = 0xec1ab1e,
LINK_PEER_RESET_EVT = 0x9eed0e,
LINK_FAILURE_EVT = 0xfa110e,
LINK_RESET_EVT = 0x10ca1d0e,
LINK_FAILOVER_BEGIN_EVT = 0xfa110bee,
LINK_FAILOVER_END_EVT = 0xfa110ede,
LINK_SYNCH_BEGIN_EVT = 0xc1ccbee,
LINK_SYNCH_END_EVT = 0xc1ccede
};
/* Events returned from link at packet reception or at timeout
*/
enum {
TIPC_LINK_UP_EVT = 1,
TIPC_LINK_DOWN_EVT = (1 << 1),
TIPC_LINK_SND_STATE = (1 << 2)
};
/* Starting value for maximum packet size negotiation on unicast links
* (unless bearer MTU is less)
*/
#define MAX_PKT_DEFAULT 1500
bool tipc_link_create(struct net *net, char *if_name, int bearer_id,
int tolerance, char net_plane, u32 mtu, int priority,
tipc: introduce variable window congestion control We introduce a simple variable window congestion control for links. The algorithm is inspired by the Reno algorithm, covering both 'slow start', 'congestion avoidance', and 'fast recovery' modes. - We introduce hard lower and upper window limits per link, still different and configurable per bearer type. - We introduce a 'slow start theshold' variable, initially set to the maximum window size. - We let a link start at the minimum congestion window, i.e. in slow start mode, and then let is grow rapidly (+1 per rceived ACK) until it reaches the slow start threshold and enters congestion avoidance mode. - In congestion avoidance mode we increment the congestion window for each window-size number of acked packets, up to a possible maximum equal to the configured maximum window. - For each non-duplicate NACK received, we drop back to fast recovery mode, by setting the both the slow start threshold to and the congestion window to (current_congestion_window / 2). - If the timeout handler finds that the transmit queue has not moved since the previous timeout, it drops the link back to slow start and forces a probe containing the last sent sequence number to the sent to the peer, so that this can discover the stale situation. This change does in reality have effect only on unicast ethernet transport, as we have seen that there is no room whatsoever for increasing the window max size for the UDP bearer. For now, we also choose to keep the limits for the broadcast link unchanged and equal. This algorithm seems to give a 50-100% throughput improvement for messages larger than MTU. Suggested-by: Xin Long <lucien.xin@gmail.com> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 00:52:46 +01:00
u32 min_win, u32 max_win, u32 session, u32 ownnode,
tipc: handle collisions of 32-bit node address hash values When a 32-bit node address is generated from a 128-bit identifier, there is a risk of collisions which must be discovered and handled. We do this as follows: - We don't apply the generated address immediately to the node, but do instead initiate a 1 sec trial period to allow other cluster members to discover and handle such collisions. - During the trial period the node periodically sends out a new type of message, DSC_TRIAL_MSG, using broadcast or emulated broadcast, to all the other nodes in the cluster. - When a node is receiving such a message, it must check that the presented 32-bit identifier either is unused, or was used by the very same peer in a previous session. In both cases it accepts the request by not responding to it. - If it finds that the same node has been up before using a different address, it responds with a DSC_TRIAL_FAIL_MSG containing that address. - If it finds that the address has already been taken by some other node, it generates a new, unused address and returns it to the requester. - During the trial period the requesting node must always be prepared to accept a failure message, i.e., a message where a peer suggests a different (or equal) address to the one tried. In those cases it must apply the suggested value as trial address and restart the trial period. This algorithm ensures that in the vast majority of cases a node will have the same address before and after a reboot. If a legacy user configures the address explicitly, there will be no trial period and messages, so this protocol addition is completely backwards compatible. Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-22 20:42:51 +01:00
u32 peer, u8 *peer_id, u16 peer_caps,
struct tipc_link *bc_sndlink,
struct tipc_link *bc_rcvlink,
struct sk_buff_head *inputq,
struct sk_buff_head *namedq,
struct tipc_link **link);
bool tipc_link_bc_create(struct net *net, u32 ownnode, u32 peer, u8 *peer_id,
tipc: introduce variable window congestion control We introduce a simple variable window congestion control for links. The algorithm is inspired by the Reno algorithm, covering both 'slow start', 'congestion avoidance', and 'fast recovery' modes. - We introduce hard lower and upper window limits per link, still different and configurable per bearer type. - We introduce a 'slow start theshold' variable, initially set to the maximum window size. - We let a link start at the minimum congestion window, i.e. in slow start mode, and then let is grow rapidly (+1 per rceived ACK) until it reaches the slow start threshold and enters congestion avoidance mode. - In congestion avoidance mode we increment the congestion window for each window-size number of acked packets, up to a possible maximum equal to the configured maximum window. - For each non-duplicate NACK received, we drop back to fast recovery mode, by setting the both the slow start threshold to and the congestion window to (current_congestion_window / 2). - If the timeout handler finds that the transmit queue has not moved since the previous timeout, it drops the link back to slow start and forces a probe containing the last sent sequence number to the sent to the peer, so that this can discover the stale situation. This change does in reality have effect only on unicast ethernet transport, as we have seen that there is no room whatsoever for increasing the window max size for the UDP bearer. For now, we also choose to keep the limits for the broadcast link unchanged and equal. This algorithm seems to give a 50-100% throughput improvement for messages larger than MTU. Suggested-by: Xin Long <lucien.xin@gmail.com> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 00:52:46 +01:00
int mtu, u32 min_win, u32 max_win, u16 peer_caps,
struct sk_buff_head *inputq,
struct sk_buff_head *namedq,
struct tipc_link *bc_sndlink,
struct tipc_link **link);
void tipc_link_tnl_prepare(struct tipc_link *l, struct tipc_link *tnl,
int mtyp, struct sk_buff_head *xmitq);
void tipc_link_create_dummy_tnl_msg(struct tipc_link *tnl,
struct sk_buff_head *xmitq);
tipc: fix missing Name entries due to half-failover TIPC link can temporarily fall into "half-establish" that only one of the link endpoints is ESTABLISHED and starts to send traffic, PROTOCOL messages, whereas the other link endpoint is not up (e.g. immediately when the endpoint receives ACTIVATE_MSG, the network interface goes down...). This is a normal situation and will be settled because the link endpoint will be eventually brought down after the link tolerance time. However, the situation will become worse when the second link is established before the first link endpoint goes down, For example: 1. Both links <1A-2A>, <1B-2B> down 2. Link endpoint 2A up, but 1A still down (e.g. due to network disturbance, wrong session, etc.) 3. Link <1B-2B> up 4. Link endpoint 2A down (e.g. due to link tolerance timeout) 5. Node B starts failover onto link <1B-2B> ==> Node A does never start link failover. When the "half-failover" situation happens, two consequences have been observed: a) Peer link/node gets stuck in FAILINGOVER state; b) Traffic or user messages that peer node is trying to failover onto the second link can be partially or completely dropped by this node. The consequence a) was actually solved by commit c140eb166d68 ("tipc: fix failover problem"), but that commit didn't cover the b). It's due to the fact that the tunnel link endpoint has never been prepared for a failover, so the 'l->drop_point' (and the other data...) is not set correctly. When a TUNNEL_MSG from peer node arrives on the link, depending on the inner message's seqno and the current 'l->drop_point' value, the message can be dropped (- treated as a duplicate message) or processed. At this early stage, the traffic messages from peer are likely to be NAME_DISTRIBUTORs, this means some name table entries will be missed on the node forever! The commit resolves the issue by starting the FAILOVER process on this node as well. Another benefit from this solution is that we ensure the link will not be re-established until the failover ends. Acked-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-02 17:23:23 +07:00
void tipc_link_failover_prepare(struct tipc_link *l, struct tipc_link *tnl,
struct sk_buff_head *xmitq);
void tipc_link_build_reset_msg(struct tipc_link *l, struct sk_buff_head *xmitq);
tipc: merge link->exec_mode and link->state into one FSM Until now, we have been handling link failover and synchronization by using an additional link state variable, "exec_mode". This variable is not independent of the link FSM state, something causing a risk of inconsistencies, apart from the fact that it clutters the code. The conditions are now in place to define a new link FSM that covers all existing use cases, including failover and synchronization, and eliminate the "exec_mode" field altogether. The FSM must also support non-atomic resetting of links, which will be introduced later. The new link FSM is shown below, with 7 states and 8 events. Only events leading to state change are shown as edges. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | | | | | | +--------------+ | | | RESET_EVT| |RESET_EVT |ESTABLISH_EVT | | | | | | | | | | | | V V | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ These changes are fully backwards compatible. Tested-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 18:24:21 -04:00
int tipc_link_fsm_evt(struct tipc_link *l, int evt);
bool tipc_link_is_up(struct tipc_link *l);
bool tipc_link_peer_is_down(struct tipc_link *l);
tipc: merge link->exec_mode and link->state into one FSM Until now, we have been handling link failover and synchronization by using an additional link state variable, "exec_mode". This variable is not independent of the link FSM state, something causing a risk of inconsistencies, apart from the fact that it clutters the code. The conditions are now in place to define a new link FSM that covers all existing use cases, including failover and synchronization, and eliminate the "exec_mode" field altogether. The FSM must also support non-atomic resetting of links, which will be introduced later. The new link FSM is shown below, with 7 states and 8 events. Only events leading to state change are shown as edges. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | | | | | | +--------------+ | | | RESET_EVT| |RESET_EVT |ESTABLISH_EVT | | | | | | | | | | | | V V | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ These changes are fully backwards compatible. Tested-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 18:24:21 -04:00
bool tipc_link_is_reset(struct tipc_link *l);
tipc: delay ESTABLISH state event when link is established Link establishing, just like link teardown, is a non-atomic action, in the sense that discovering that conditions are right to establish a link, and the actual adding of the link to one of the node's send slots is done in two different lock contexts. The link FSM is designed to help bridging the gap between the two contexts in a safe manner. We have now discovered a weakness in the implementaton of this FSM. Because we directly let the link go from state LINK_ESTABLISHING to state LINK_ESTABLISHED already in the first lock context, we are unable to distinguish between a fully established link, i.e., a link that has been added to its slot, and a link that has not yet reached the second lock context. It may hence happen that a manual intervention, e.g., when disabling an interface, causes the function tipc_node_link_down() to try removing the link from the node slots, decrementing its active link counter etc, although the link was never added there in the first place. We solve this by delaying the actual state change until we reach the second lock context, inside the function tipc_node_link_up(). This makes it possible for potentail callers of __tipc_node_link_down() to know if they should proceed or not, and the problem is solved. Unforunately, the situation described above also has a second problem. Since there by necessity is a tipc_node_link_up() call pending once the node lock has been released, we must defuse that call by setting the link back from LINK_ESTABLISHING to LINK_RESET state. This forces us to make a slight modification to the link FSM, which will now look as follows. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | +----------------+ | | | RESET_EVT| |RESET_EVT | | | | | | | | | | |ESTABLISH_EVT | | | | +-------------+ | | | | | | RESET_EVT | | | | | | | | | | | V V V | | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-15 14:52:44 -04:00
bool tipc_link_is_establishing(struct tipc_link *l);
tipc: merge link->exec_mode and link->state into one FSM Until now, we have been handling link failover and synchronization by using an additional link state variable, "exec_mode". This variable is not independent of the link FSM state, something causing a risk of inconsistencies, apart from the fact that it clutters the code. The conditions are now in place to define a new link FSM that covers all existing use cases, including failover and synchronization, and eliminate the "exec_mode" field altogether. The FSM must also support non-atomic resetting of links, which will be introduced later. The new link FSM is shown below, with 7 states and 8 events. Only events leading to state change are shown as edges. +------------------------------------+ |RESET_EVT | | | | +--------------+ | +-----------------| SYNCHING |-----------------+ | |FAILURE_EVT +--------------+ PEER_RESET_EVT| | | A | | | | | | | | | | | | | | |SYNCH_ |SYNCH_ | | | |BEGIN_EVT |END_EVT | | | | | | | V | V V | +-------------+ +--------------+ +------------+ | | RESETTING |<---------| ESTABLISHED |--------->| PEER_RESET | | +-------------+ FAILURE_ +--------------+ PEER_ +------------+ | | EVT | A RESET_EVT | | | | | | | | | | | | | +--------------+ | | | RESET_EVT| |RESET_EVT |ESTABLISH_EVT | | | | | | | | | | | | V V | | | +-------------+ +--------------+ RESET_EVT| +--->| RESET |--------->| ESTABLISHING |<----------------+ +-------------+ PEER_ +--------------+ | A RESET_EVT | | | | | | | |FAILOVER_ |FAILOVER_ |FAILOVER_ |BEGIN_EVT |END_EVT |BEGIN_EVT | | | V | | +-------------+ | | FAILINGOVER |<----------------+ +-------------+ These changes are fully backwards compatible. Tested-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-07-30 18:24:21 -04:00
bool tipc_link_is_synching(struct tipc_link *l);
bool tipc_link_is_failingover(struct tipc_link *l);
bool tipc_link_is_blocked(struct tipc_link *l);
void tipc_link_set_active(struct tipc_link *l, bool active);
void tipc_link_reset(struct tipc_link *l);
void tipc_link_reset_stats(struct tipc_link *l);
int tipc_link_xmit(struct tipc_link *link, struct sk_buff_head *list,
struct sk_buff_head *xmitq);
struct sk_buff_head *tipc_link_inputq(struct tipc_link *l);
u16 tipc_link_rcv_nxt(struct tipc_link *l);
u16 tipc_link_acked(struct tipc_link *l);
u32 tipc_link_id(struct tipc_link *l);
char *tipc_link_name(struct tipc_link *l);
u32 tipc_link_state(struct tipc_link *l);
char tipc_link_plane(struct tipc_link *l);
int tipc_link_prio(struct tipc_link *l);
tipc: introduce variable window congestion control We introduce a simple variable window congestion control for links. The algorithm is inspired by the Reno algorithm, covering both 'slow start', 'congestion avoidance', and 'fast recovery' modes. - We introduce hard lower and upper window limits per link, still different and configurable per bearer type. - We introduce a 'slow start theshold' variable, initially set to the maximum window size. - We let a link start at the minimum congestion window, i.e. in slow start mode, and then let is grow rapidly (+1 per rceived ACK) until it reaches the slow start threshold and enters congestion avoidance mode. - In congestion avoidance mode we increment the congestion window for each window-size number of acked packets, up to a possible maximum equal to the configured maximum window. - For each non-duplicate NACK received, we drop back to fast recovery mode, by setting the both the slow start threshold to and the congestion window to (current_congestion_window / 2). - If the timeout handler finds that the transmit queue has not moved since the previous timeout, it drops the link back to slow start and forces a probe containing the last sent sequence number to the sent to the peer, so that this can discover the stale situation. This change does in reality have effect only on unicast ethernet transport, as we have seen that there is no room whatsoever for increasing the window max size for the UDP bearer. For now, we also choose to keep the limits for the broadcast link unchanged and equal. This algorithm seems to give a 50-100% throughput improvement for messages larger than MTU. Suggested-by: Xin Long <lucien.xin@gmail.com> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 00:52:46 +01:00
int tipc_link_min_win(struct tipc_link *l);
int tipc_link_max_win(struct tipc_link *l);
void tipc_link_update_caps(struct tipc_link *l, u16 capabilities);
bool tipc_link_validate_msg(struct tipc_link *l, struct tipc_msg *hdr);
unsigned long tipc_link_tolerance(struct tipc_link *l);
void tipc_link_set_tolerance(struct tipc_link *l, u32 tol,
struct sk_buff_head *xmitq);
void tipc_link_set_prio(struct tipc_link *l, u32 prio,
struct sk_buff_head *xmitq);
void tipc_link_set_abort_limit(struct tipc_link *l, u32 limit);
tipc: introduce variable window congestion control We introduce a simple variable window congestion control for links. The algorithm is inspired by the Reno algorithm, covering both 'slow start', 'congestion avoidance', and 'fast recovery' modes. - We introduce hard lower and upper window limits per link, still different and configurable per bearer type. - We introduce a 'slow start theshold' variable, initially set to the maximum window size. - We let a link start at the minimum congestion window, i.e. in slow start mode, and then let is grow rapidly (+1 per rceived ACK) until it reaches the slow start threshold and enters congestion avoidance mode. - In congestion avoidance mode we increment the congestion window for each window-size number of acked packets, up to a possible maximum equal to the configured maximum window. - For each non-duplicate NACK received, we drop back to fast recovery mode, by setting the both the slow start threshold to and the congestion window to (current_congestion_window / 2). - If the timeout handler finds that the transmit queue has not moved since the previous timeout, it drops the link back to slow start and forces a probe containing the last sent sequence number to the sent to the peer, so that this can discover the stale situation. This change does in reality have effect only on unicast ethernet transport, as we have seen that there is no room whatsoever for increasing the window max size for the UDP bearer. For now, we also choose to keep the limits for the broadcast link unchanged and equal. This algorithm seems to give a 50-100% throughput improvement for messages larger than MTU. Suggested-by: Xin Long <lucien.xin@gmail.com> Acked-by: Ying Xue <ying.xue@windriver.com> Signed-off-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-10 00:52:46 +01:00
void tipc_link_set_queue_limits(struct tipc_link *l, u32 min_win, u32 max_win);
int __tipc_nl_add_link(struct net *net, struct tipc_nl_msg *msg,
struct tipc_link *link, int nlflags);
int tipc_nl_parse_link_prop(struct nlattr *prop, struct nlattr *props[]);
int tipc_link_timeout(struct tipc_link *l, struct sk_buff_head *xmitq);
int tipc_link_rcv(struct tipc_link *l, struct sk_buff *skb,
struct sk_buff_head *xmitq);
int tipc_link_build_state_msg(struct tipc_link *l, struct sk_buff_head *xmitq);
void tipc_link_add_bc_peer(struct tipc_link *snd_l,
struct tipc_link *uc_l,
struct sk_buff_head *xmitq);
void tipc_link_remove_bc_peer(struct tipc_link *snd_l,
struct tipc_link *rcv_l,
struct sk_buff_head *xmitq);
int tipc_link_bc_peers(struct tipc_link *l);
void tipc_link_set_mtu(struct tipc_link *l, int mtu);
int tipc_link_mtu(struct tipc_link *l);
tipc: introduce TIPC encryption & authentication This commit offers an option to encrypt and authenticate all messaging, including the neighbor discovery messages. The currently most advanced algorithm supported is the AEAD AES-GCM (like IPSec or TLS). All encryption/decryption is done at the bearer layer, just before leaving or after entering TIPC. Supported features: - Encryption & authentication of all TIPC messages (header + data); - Two symmetric-key modes: Cluster and Per-node; - Automatic key switching; - Key-expired revoking (sequence number wrapped); - Lock-free encryption/decryption (RCU); - Asynchronous crypto, Intel AES-NI supported; - Multiple cipher transforms; - Logs & statistics; Two key modes: - Cluster key mode: One single key is used for both TX & RX in all nodes in the cluster. - Per-node key mode: Each nodes in the cluster has one specific TX key. For RX, a node requires its peers' TX key to be able to decrypt the messages from those peers. Key setting from user-space is performed via netlink by a user program (e.g. the iproute2 'tipc' tool). Internal key state machine: Attach Align(RX) +-+ +-+ | V | V +---------+ Attach +---------+ | IDLE |---------------->| PENDING |(user = 0) +---------+ +---------+ A A Switch| A | | | | | | Free(switch/revoked) | | (Free)| +----------------------+ | |Timeout | (TX) | | |(RX) | | | | | | v | +---------+ Switch +---------+ | PASSIVE |<----------------| ACTIVE | +---------+ (RX) +---------+ (user = 1) (user >= 1) The number of TFMs is 10 by default and can be changed via the procfs 'net/tipc/max_tfms'. At this moment, as for simplicity, this file is also used to print the crypto statistics at runtime: echo 0xfff1 > /proc/sys/net/tipc/max_tfms The patch defines a new TIPC version (v7) for the encryption message (- backward compatibility as well). The message is basically encapsulated as follows: +----------------------------------------------------------+ | TIPCv7 encryption | Original TIPCv2 | Authentication | | header | packet (encrypted) | Tag | +----------------------------------------------------------+ The throughput is about ~40% for small messages (compared with non- encryption) and ~9% for large messages. With the support from hardware crypto i.e. the Intel AES-NI CPU instructions, the throughput increases upto ~85% for small messages and ~55% for large messages. By default, the new feature is inactive (i.e. no encryption) until user sets a key for TIPC. There is however also a new option - "TIPC_CRYPTO" in the kernel configuration to enable/disable the new code when needed. MAINTAINERS | add two new files 'crypto.h' & 'crypto.c' in tipc Acked-by: Ying Xue <ying.xue@windreiver.com> Acked-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-08 12:05:11 +07:00
int tipc_link_mss(struct tipc_link *l);
tipc: introduce Gap ACK blocks for broadcast link As achieved through commit 9195948fbf34 ("tipc: improve TIPC throughput by Gap ACK blocks"), we apply the same mechanism for the broadcast link as well. The 'Gap ACK blocks' data field in a 'PROTOCOL/STATE_MSG' will consist of two parts built for both the broadcast and unicast types: 31 16 15 0 +-------------+-------------+-------------+-------------+ | bgack_cnt | ugack_cnt | len | +-------------+-------------+-------------+-------------+ - | gap | ack | | +-------------+-------------+-------------+-------------+ > bc gacks : : : | +-------------+-------------+-------------+-------------+ - | gap | ack | | +-------------+-------------+-------------+-------------+ > uc gacks : : : | +-------------+-------------+-------------+-------------+ - which is "automatically" backward-compatible. We also increase the max number of Gap ACK blocks to 128, allowing upto 64 blocks per type (total buffer size = 516 bytes). Besides, the 'tipc_link_advance_transmq()' function is refactored which is applicable for both the unicast and broadcast cases now, so some old functions can be removed and the code is optimized. With the patch, TIPC broadcast is more robust regardless of packet loss or disorder, latency, ... in the underlying network. Its performance is boost up significantly. For example, experiment with a 5% packet loss rate results: $ time tipc-pipe --mc --rdm --data_size 123 --data_num 1500000 real 0m 42.46s user 0m 1.16s sys 0m 17.67s Without the patch: $ time tipc-pipe --mc --rdm --data_size 123 --data_num 1500000 real 8m 27.94s user 0m 0.55s sys 0m 2.38s Acked-by: Ying Xue <ying.xue@windriver.com> Acked-by: Jon Maloy <jmaloy@redhat.com> Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26 16:38:34 +07:00
u16 tipc_get_gap_ack_blks(struct tipc_gap_ack_blks **ga, struct tipc_link *l,
struct tipc_msg *hdr, bool uc);
int tipc_link_bc_ack_rcv(struct tipc_link *l, u16 acked, u16 gap,
struct tipc_gap_ack_blks *ga,
struct sk_buff_head *xmitq,
struct sk_buff_head *retrq);
void tipc_link_build_bc_sync_msg(struct tipc_link *l,
struct sk_buff_head *xmitq);
void tipc_link_bc_init_rcv(struct tipc_link *l, struct tipc_msg *hdr);
int tipc_link_bc_sync_rcv(struct tipc_link *l, struct tipc_msg *hdr,
struct sk_buff_head *xmitq);
int tipc_link_bc_nack_rcv(struct tipc_link *l, struct sk_buff *skb,
struct sk_buff_head *xmitq);
tipc: add trace_events for tipc link The commit adds the new trace_events for TIPC link object: trace_tipc_link_timeout() trace_tipc_link_fsm() trace_tipc_link_reset() trace_tipc_link_too_silent() trace_tipc_link_retrans() trace_tipc_link_bc_ack() trace_tipc_link_conges() And the traces for PROTOCOL messages at building and receiving: trace_tipc_proto_build() trace_tipc_proto_rcv() Note: a) The 'tipc_link_too_silent' event will only happen when the 'silent_intv_cnt' is about to reach the 'abort_limit' value (and the event is enabled). The benefit for this kind of event is that we can get an early indication about TIPC link loss issue due to timeout, then can do some necessary actions for troubleshooting. For example: To trigger the 'tipc_proto_rcv' when the 'too_silent' event occurs: echo 'enable_event:tipc:tipc_proto_rcv' > \ events/tipc/tipc_link_too_silent/trigger And disable it when TIPC link is reset: echo 'disable_event:tipc:tipc_proto_rcv' > \ events/tipc/tipc_link_reset/trigger b) The 'tipc_link_retrans' or 'tipc_link_bc_ack' event is useful to trace TIPC retransmission issues. In addition, the commit adds the 'trace_tipc_list/link_dump()' at the 'retransmission failure' case. Then, if the issue occurs, the link 'transmq' along with the link data can be dumped for post-analysis. These dump events should be enabled by default since it will only take effect when the failure happens. The same approach is also applied for the faulty case that the validation of protocol message is failed. Acked-by: Ying Xue <ying.xue@windriver.com> Tested-by: Ying Xue <ying.xue@windriver.com> Acked-by: Jon Maloy <jon.maloy@ericsson.com> Signed-off-by: Tuong Lien <tuong.t.lien@dektech.com.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-12-19 09:17:57 +07:00
bool tipc_link_too_silent(struct tipc_link *l);
#endif