linux/arch/arm/mach-pxa/mfp-pxa2xx.c

435 lines
9.7 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
/*
* linux/arch/arm/mach-pxa/mfp-pxa2xx.c
*
* PXA2xx pin mux configuration support
*
* The GPIOs on PXA2xx can be configured as one of many alternate
* functions, this is by concept samilar to the MFP configuration
* on PXA3xx, what's more important, the low power pin state and
* wakeup detection are also supported by the same framework.
*/
#include <linux/gpio.h>
#include <linux/gpio-pxa.h>
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/syscore_ops.h>
ARM: pxa: split up mach/hardware.h The mach/hardware.h is included in lots of places, and it provides three different things on pxa: - the cpu_is_pxa* macros - an indirect inclusion of mach/addr-map.h - the __REG() and io_pv2() helper macros Split it up into separate <linux/soc/pxa/cpu.h> and mach/pxa-regs.h headers, then change all the files that use mach/hardware.h to include the exact set of those three headers that they actually need, allowing for further more targeted cleanup. linux/soc/pxa/cpu.h can remain permanently exported and is now in a global location along with similar headers. pxa-regs.h and addr-map.h are only used in a very small number of drivers now and can be moved to arch/arm/mach-pxa/ directly when those drivers are to pass the necessary data as resources. Cc: Michael Turquette <mturquette@baylibre.com> Cc: Stephen Boyd <sboyd@kernel.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Pavel Machek <pavel@ucw.cz> Acked-by: Ulf Hansson <ulf.hansson@linaro.org> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Acked-by: Mark Brown <broonie@kernel.org> Cc: linux-clk@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: linux-input@vger.kernel.org Cc: linux-leds@vger.kernel.org Cc: linux-mmc@vger.kernel.org Cc: linux-mtd@lists.infradead.org Cc: linux-rtc@vger.kernel.org Cc: linux-usb@vger.kernel.org Cc: dri-devel@lists.freedesktop.org Cc: linux-fbdev@vger.kernel.org Cc: linux-watchdog@vger.kernel.org Cc: alsa-devel@alsa-project.org Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-09-01 22:26:10 +02:00
#include <linux/soc/pxa/cpu.h>
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#include "pxa2xx-regs.h"
#include "mfp-pxa2xx.h"
ARM: pxa: fix missing-prototypes warnings The PXA platform has a number of configurations that end up with a warning like these when building with W=1: drivers/hwmon/max1111.c:83:5: error: no previous prototype for 'max1111_read_channel' [-Werror=missing-prototypes] arch/arm/mach-pxa/reset.c:86:6: error: no previous prototype for 'pxa_restart' [-Werror=missing-prototypes] arch/arm/mach-pxa/mfp-pxa2xx.c:254:5: error: no previous prototype for 'keypad_set_wake' [-Werror=missing-prototypes] drivers/clk/pxa/clk-pxa25x.c:70:14: error: no previous prototype for 'pxa25x_get_clk_frequency_khz' [-Werror=missing-prototypes] drivers/clk/pxa/clk-pxa25x.c:325:12: error: no previous prototype for 'pxa25x_clocks_init' [-Werror=missing-prototypes] drivers/clk/pxa/clk-pxa27x.c:74:14: error: no previous prototype for 'pxa27x_get_clk_frequency_khz' [-Werror=missing-prototypes] drivers/clk/pxa/clk-pxa27x.c:102:6: error: no previous prototype for 'pxa27x_is_ppll_disabled' [-Werror=missing-prototypes] drivers/clk/pxa/clk-pxa27x.c:470:12: error: no previous prototype for 'pxa27x_clocks_init' [-Werror=missing-prototypes] arch/arm/mach-pxa/pxa27x.c:44:6: error: no previous prototype for 'pxa27x_clear_otgph' [-Werror=missing-prototypes] arch/arm/mach-pxa/pxa27x.c:58:6: error: no previous prototype for 'pxa27x_configure_ac97reset' [-Werror=missing-prototypes] arch/arm/mach-pxa/spitz_pm.c:170:15: error: no previous prototype for 'spitzpm_read_devdata' [-Werror=missing-prototypes] The problem is that there is a declaration for each of these, but it's only seen by the caller and not the callee. Moving these into appropriate header files ensures that both use the same calling conventions and it avoids the warnings. Acked-by: Stephen Boyd <sboyd@kernel.org> Link: https://lore.kernel.org/r/20230516153109.514251-11-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2023-05-16 17:31:06 +02:00
#include "mfp-pxa27x.h"
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#include "generic.h"
#define PGSR(x) __REG2(0x40F00020, (x) << 2)
#define __GAFR(u, x) __REG2((u) ? 0x40E00058 : 0x40E00054, (x) << 3)
#define GAFR_L(x) __GAFR(0, x)
#define GAFR_U(x) __GAFR(1, x)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#define BANK_OFF(n) (((n) < 3) ? (n) << 2 : 0x100 + (((n) - 3) << 2))
#define GPLR(x) __REG2(0x40E00000, BANK_OFF((x) >> 5))
#define GPDR(x) __REG2(0x40E00000, BANK_OFF((x) >> 5) + 0x0c)
#define GPSR(x) __REG2(0x40E00000, BANK_OFF((x) >> 5) + 0x18)
#define GPCR(x) __REG2(0x40E00000, BANK_OFF((x) >> 5) + 0x24)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#define PWER_WE35 (1 << 24)
struct gpio_desc {
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
unsigned valid : 1;
unsigned can_wakeup : 1;
unsigned keypad_gpio : 1;
unsigned dir_inverted : 1;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
unsigned int mask; /* bit mask in PWER or PKWR */
unsigned int mux_mask; /* bit mask of muxed gpio bits, 0 if no mux */
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
unsigned long config;
};
static struct gpio_desc gpio_desc[MFP_PIN_GPIO127 + 1];
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
static unsigned long gpdr_lpm[4];
static int __mfp_config_gpio(unsigned gpio, unsigned long c)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
{
unsigned long gafr, mask = GPIO_bit(gpio);
int bank = gpio_to_bank(gpio);
int uorl = !!(gpio & 0x10); /* GAFRx_U or GAFRx_L ? */
int shft = (gpio & 0xf) << 1;
int fn = MFP_AF(c);
int is_out = (c & MFP_DIR_OUT) ? 1 : 0;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
if (fn > 3)
return -EINVAL;
/* alternate function and direction at run-time */
gafr = (uorl == 0) ? GAFR_L(bank) : GAFR_U(bank);
gafr = (gafr & ~(0x3 << shft)) | (fn << shft);
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
if (uorl == 0)
GAFR_L(bank) = gafr;
else
GAFR_U(bank) = gafr;
if (is_out ^ gpio_desc[gpio].dir_inverted)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
GPDR(gpio) |= mask;
else
GPDR(gpio) &= ~mask;
/* alternate function and direction at low power mode */
switch (c & MFP_LPM_STATE_MASK) {
case MFP_LPM_DRIVE_HIGH:
PGSR(bank) |= mask;
is_out = 1;
break;
case MFP_LPM_DRIVE_LOW:
PGSR(bank) &= ~mask;
is_out = 1;
break;
case MFP_LPM_INPUT:
case MFP_LPM_DEFAULT:
break;
default:
/* warning and fall through, treat as MFP_LPM_DEFAULT */
pr_warn("%s: GPIO%d: unsupported low power mode\n",
__func__, gpio);
break;
}
if (is_out ^ gpio_desc[gpio].dir_inverted)
gpdr_lpm[bank] |= mask;
else
gpdr_lpm[bank] &= ~mask;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
/* give early warning if MFP_LPM_CAN_WAKEUP is set on the
* configurations of those pins not able to wakeup
*/
if ((c & MFP_LPM_CAN_WAKEUP) && !gpio_desc[gpio].can_wakeup) {
pr_warn("%s: GPIO%d unable to wakeup\n", __func__, gpio);
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
return -EINVAL;
}
if ((c & MFP_LPM_CAN_WAKEUP) && is_out) {
pr_warn("%s: output GPIO%d unable to wakeup\n", __func__, gpio);
return -EINVAL;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
}
return 0;
}
static inline int __mfp_validate(int mfp)
{
int gpio = mfp_to_gpio(mfp);
if ((mfp > MFP_PIN_GPIO127) || !gpio_desc[gpio].valid) {
pr_warn("%s: GPIO%d is invalid pin\n", __func__, gpio);
return -1;
}
return gpio;
}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
void pxa2xx_mfp_config(unsigned long *mfp_cfgs, int num)
{
unsigned long flags;
unsigned long *c;
int i, gpio;
for (i = 0, c = mfp_cfgs; i < num; i++, c++) {
gpio = __mfp_validate(MFP_PIN(*c));
if (gpio < 0)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
continue;
local_irq_save(flags);
gpio_desc[gpio].config = *c;
__mfp_config_gpio(gpio, *c);
local_irq_restore(flags);
}
}
void pxa2xx_mfp_set_lpm(int mfp, unsigned long lpm)
{
unsigned long flags, c;
int gpio;
gpio = __mfp_validate(mfp);
if (gpio < 0)
return;
local_irq_save(flags);
c = gpio_desc[gpio].config;
c = (c & ~MFP_LPM_STATE_MASK) | lpm;
__mfp_config_gpio(gpio, c);
local_irq_restore(flags);
}
int gpio_set_wake(unsigned int gpio, unsigned int on)
{
struct gpio_desc *d;
unsigned long c, mux_taken;
if (gpio > mfp_to_gpio(MFP_PIN_GPIO127))
return -EINVAL;
d = &gpio_desc[gpio];
c = d->config;
if (!d->valid)
return -EINVAL;
/* Allow keypad GPIOs to wakeup system when
* configured as generic GPIOs.
*/
if (d->keypad_gpio && (MFP_AF(d->config) == 0) &&
(d->config & MFP_LPM_CAN_WAKEUP)) {
if (on)
PKWR |= d->mask;
else
PKWR &= ~d->mask;
return 0;
}
mux_taken = (PWER & d->mux_mask) & (~d->mask);
if (on && mux_taken)
return -EBUSY;
if (d->can_wakeup && (c & MFP_LPM_CAN_WAKEUP)) {
if (on) {
PWER = (PWER & ~d->mux_mask) | d->mask;
if (c & MFP_LPM_EDGE_RISE)
PRER |= d->mask;
else
PRER &= ~d->mask;
if (c & MFP_LPM_EDGE_FALL)
PFER |= d->mask;
else
PFER &= ~d->mask;
} else {
PWER &= ~d->mask;
PRER &= ~d->mask;
PFER &= ~d->mask;
}
}
return 0;
}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#ifdef CONFIG_PXA25x
static void __init pxa25x_mfp_init(void)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
{
int i;
/* running before pxa_gpio_probe() */
pxa_last_gpio = 84;
for (i = 0; i <= pxa_last_gpio; i++)
gpio_desc[i].valid = 1;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
for (i = 0; i <= 15; i++) {
gpio_desc[i].can_wakeup = 1;
gpio_desc[i].mask = GPIO_bit(i);
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
}
/* PXA26x has additional 4 GPIOs (86/87/88/89) which has the
* direction bit inverted in GPDR2. See PXA26x DM 4.1.1.
*/
for (i = 86; i <= pxa_last_gpio; i++)
gpio_desc[i].dir_inverted = 1;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
}
#else
static inline void pxa25x_mfp_init(void) {}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
#endif /* CONFIG_PXA25x */
#ifdef CONFIG_PXA27x
static int pxa27x_pkwr_gpio[] = {
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
13, 16, 17, 34, 36, 37, 38, 39, 90, 91, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102
};
int keypad_set_wake(unsigned int on)
{
unsigned int i, gpio, mask = 0;
struct gpio_desc *d;
for (i = 0; i < ARRAY_SIZE(pxa27x_pkwr_gpio); i++) {
gpio = pxa27x_pkwr_gpio[i];
d = &gpio_desc[gpio];
/* skip if configured as generic GPIO */
if (MFP_AF(d->config) == 0)
continue;
if (d->config & MFP_LPM_CAN_WAKEUP)
mask |= gpio_desc[gpio].mask;
}
if (on)
PKWR |= mask;
else
PKWR &= ~mask;
return 0;
}
#define PWER_WEMUX2_GPIO38 (1 << 16)
#define PWER_WEMUX2_GPIO53 (2 << 16)
#define PWER_WEMUX2_GPIO40 (3 << 16)
#define PWER_WEMUX2_GPIO36 (4 << 16)
#define PWER_WEMUX2_MASK (7 << 16)
#define PWER_WEMUX3_GPIO31 (1 << 19)
#define PWER_WEMUX3_GPIO113 (2 << 19)
#define PWER_WEMUX3_MASK (3 << 19)
#define INIT_GPIO_DESC_MUXED(mux, gpio) \
do { \
gpio_desc[(gpio)].can_wakeup = 1; \
gpio_desc[(gpio)].mask = PWER_ ## mux ## _GPIO ##gpio; \
gpio_desc[(gpio)].mux_mask = PWER_ ## mux ## _MASK; \
} while (0)
static void __init pxa27x_mfp_init(void)
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
{
int i, gpio;
pxa_last_gpio = 120; /* running before pxa_gpio_probe() */
for (i = 0; i <= pxa_last_gpio; i++) {
/* skip GPIO2, 5, 6, 7, 8, they are not
* valid pins allow configuration
*/
if (i == 2 || i == 5 || i == 6 || i == 7 || i == 8)
continue;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
gpio_desc[i].valid = 1;
}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
/* Keypad GPIOs */
for (i = 0; i < ARRAY_SIZE(pxa27x_pkwr_gpio); i++) {
gpio = pxa27x_pkwr_gpio[i];
gpio_desc[gpio].can_wakeup = 1;
gpio_desc[gpio].keypad_gpio = 1;
gpio_desc[gpio].mask = 1 << i;
}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
/* Overwrite GPIO13 as a PWER wakeup source */
for (i = 0; i <= 15; i++) {
/* skip GPIO2, 5, 6, 7, 8 */
if (GPIO_bit(i) & 0x1e4)
continue;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
gpio_desc[i].can_wakeup = 1;
gpio_desc[i].mask = GPIO_bit(i);
}
gpio_desc[35].can_wakeup = 1;
gpio_desc[35].mask = PWER_WE35;
INIT_GPIO_DESC_MUXED(WEMUX3, 31);
INIT_GPIO_DESC_MUXED(WEMUX3, 113);
INIT_GPIO_DESC_MUXED(WEMUX2, 38);
INIT_GPIO_DESC_MUXED(WEMUX2, 53);
INIT_GPIO_DESC_MUXED(WEMUX2, 40);
INIT_GPIO_DESC_MUXED(WEMUX2, 36);
}
#else
static inline void pxa27x_mfp_init(void) {}
#endif /* CONFIG_PXA27x */
#ifdef CONFIG_PM
static unsigned long saved_gafr[2][4];
static unsigned long saved_gpdr[4];
static unsigned long saved_gplr[4];
static unsigned long saved_pgsr[4];
static int pxa2xx_mfp_suspend(void)
{
int i;
/* set corresponding PGSR bit of those marked MFP_LPM_KEEP_OUTPUT */
for (i = 0; i < pxa_last_gpio; i++) {
if ((gpio_desc[i].config & MFP_LPM_KEEP_OUTPUT) &&
(GPDR(i) & GPIO_bit(i))) {
if (GPLR(i) & GPIO_bit(i))
PGSR(gpio_to_bank(i)) |= GPIO_bit(i);
else
PGSR(gpio_to_bank(i)) &= ~GPIO_bit(i);
}
}
for (i = 0; i <= gpio_to_bank(pxa_last_gpio); i++) {
saved_gafr[0][i] = GAFR_L(i);
saved_gafr[1][i] = GAFR_U(i);
saved_gpdr[i] = GPDR(i * 32);
saved_gplr[i] = GPLR(i * 32);
saved_pgsr[i] = PGSR(i);
GPSR(i * 32) = PGSR(i);
GPCR(i * 32) = ~PGSR(i);
}
/* set GPDR bits taking into account MFP_LPM_KEEP_OUTPUT */
for (i = 0; i < pxa_last_gpio; i++) {
if ((gpdr_lpm[gpio_to_bank(i)] & GPIO_bit(i)) ||
((gpio_desc[i].config & MFP_LPM_KEEP_OUTPUT) &&
(saved_gpdr[gpio_to_bank(i)] & GPIO_bit(i))))
GPDR(i) |= GPIO_bit(i);
else
GPDR(i) &= ~GPIO_bit(i);
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
}
return 0;
}
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
static void pxa2xx_mfp_resume(void)
{
int i;
for (i = 0; i <= gpio_to_bank(pxa_last_gpio); i++) {
GAFR_L(i) = saved_gafr[0][i];
GAFR_U(i) = saved_gafr[1][i];
GPSR(i * 32) = saved_gplr[i];
GPCR(i * 32) = ~saved_gplr[i];
GPDR(i * 32) = saved_gpdr[i];
PGSR(i) = saved_pgsr[i];
}
PSSR = PSSR_RDH | PSSR_PH;
[ARM] pxa: add MFP-alike pin configuration support for pxa{25x, 27x} Pin configuration on pxa{25x,27x} has now separated from generic GPIO into dedicated mfp-pxa2xx.c by this patch. The name "mfp" is borrowed from pxa3xx and is used here to alert the difference between the two concepts: pin configuration and generic GPIOs. A GPIO can be called a "GPIO" _only_ when the corresponding pin is configured so. A pin configuration on pxa{25x,27x} is composed of: - alternate function selection (or pin mux as commonly called) - low power state or sleep state - wakeup enabling from low power mode The following MFP_xxx bit definitions in mfp.h are re-used: - MFP_PIN(x) - MFP_AFx - MFP_LPM_DRIVE_{LOW, HIGH} - MFP_LPM_EDGE_* Selecting alternate function on pxa{25x, 27x} involves configuration of GPIO direction register GPDRx, so a new bit and MFP_DIR_{IN, OUT} are introduced. And pin configurations are defined by the following two macros: - MFP_CFG_IN : for input alternate functions - MFP_CFG_OUT : for output alternate functions Every configuration should provide a low power state if it configured as output using MFP_CFG_OUT(). As a general guideline, the low power state should be decided to minimize the overall power dissipation. As an example, it is better to drive the pin as high level in low power mode if the GPIO is configured as an active low chip select. Pins configured as GPIO are defined by MFP_CFG_IN(). This is to avoid side effects when it is firstly configured as output. The actual direction of the GPIO is configured by gpio_direction_{input, output} Wakeup enabling on pxa{25x, 27x} is actually GPIO based wakeup, thus the device based enable_irq_wake() mechanism is not applicable here. E.g. invoking enable_irq_wake() with a GPIO IRQ as in the following code to enable OTG wakeup is by no means portable and intuitive, and it is valid _only_ when GPIO35 is configured as USB_P2_1: enable_irq_wake( gpio_to_irq(35) ); To make things worse, not every GPIO is able to wakeup the system. Only a small number of them can, on either rising or falling edge, or when level is high (for keypad GPIOs). Thus, another new bit is introduced to indicate that the GPIO will wakeup the system: - MFP_LPM_WAKEUP_ENABLE The following macros can be used in platform code, and be OR'ed to the GPIO configuration to enable its wakeup: - WAKEUP_ON_EDGE_{RISE, FALL, BOTH} - WAKEUP_ON_LEVEL_HIGH The WAKEUP_ON_LEVEL_HIGH is used for keypad GPIOs _only_, there is no edge settings for those GPIOs. These WAKEUP_ON_* flags OR'ed on wrong GPIOs will be ignored in case that platform code author is careless enough. The tradeoff here is that the wakeup source is fully determined by the platform configuration, instead of enable_irq_wake(). Signed-off-by: eric miao <eric.miao@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-03-05 17:16:29 +08:00
}
#else
#define pxa2xx_mfp_suspend NULL
#define pxa2xx_mfp_resume NULL
#endif
struct syscore_ops pxa2xx_mfp_syscore_ops = {
.suspend = pxa2xx_mfp_suspend,
.resume = pxa2xx_mfp_resume,
};
static int __init pxa2xx_mfp_init(void)
{
int i;
if (!cpu_is_pxa2xx())
return 0;
if (cpu_is_pxa25x())
pxa25x_mfp_init();
if (cpu_is_pxa27x())
pxa27x_mfp_init();
/* clear RDH bit to enable GPIO receivers after reset/sleep exit */
PSSR = PSSR_RDH;
/* initialize gafr_run[], pgsr_lpm[] from existing values */
for (i = 0; i <= gpio_to_bank(pxa_last_gpio); i++)
gpdr_lpm[i] = GPDR(i * 32);
return 0;
}
postcore_initcall(pxa2xx_mfp_init);