linux/block/blk-timeout.c

152 lines
3.8 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Functions related to generic timeout handling of requests.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/fault-inject.h>
#include "blk.h"
#include "blk-mq.h"
#ifdef CONFIG_FAIL_IO_TIMEOUT
static DECLARE_FAULT_ATTR(fail_io_timeout);
static int __init setup_fail_io_timeout(char *str)
{
return setup_fault_attr(&fail_io_timeout, str);
}
__setup("fail_io_timeout=", setup_fail_io_timeout);
int blk_should_fake_timeout(struct request_queue *q)
{
if (!test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
return 0;
return should_fail(&fail_io_timeout, 1);
}
static int __init fail_io_timeout_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_io_timeout",
NULL, &fail_io_timeout);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_io_timeout_debugfs);
ssize_t part_timeout_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct gendisk *disk = dev_to_disk(dev);
int set = test_bit(QUEUE_FLAG_FAIL_IO, &disk->queue->queue_flags);
return sprintf(buf, "%d\n", set != 0);
}
ssize_t part_timeout_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct gendisk *disk = dev_to_disk(dev);
int val;
if (count) {
struct request_queue *q = disk->queue;
char *p = (char *) buf;
val = simple_strtoul(p, &p, 10);
if (val)
blk_queue_flag_set(QUEUE_FLAG_FAIL_IO, q);
else
blk_queue_flag_clear(QUEUE_FLAG_FAIL_IO, q);
}
return count;
}
#endif /* CONFIG_FAIL_IO_TIMEOUT */
/**
* blk_abort_request -- Request request recovery for the specified command
* @req: pointer to the request of interest
*
* This function requests that the block layer start recovery for the
* request by deleting the timer and calling the q's timeout function.
* LLDDs who implement their own error recovery MAY ignore the timeout
* event if they generated blk_abort_request.
*/
void blk_abort_request(struct request *req)
{
/*
* All we need to ensure is that timeout scan takes place
* immediately and that scan sees the new timeout value.
* No need for fancy synchronizations.
*/
WRITE_ONCE(req->deadline, jiffies);
kblockd_schedule_work(&req->q->timeout_work);
}
EXPORT_SYMBOL_GPL(blk_abort_request);
unsigned long blk_rq_timeout(unsigned long timeout)
{
unsigned long maxt;
maxt = round_jiffies_up(jiffies + BLK_MAX_TIMEOUT);
if (time_after(timeout, maxt))
timeout = maxt;
return timeout;
}
/**
* blk_add_timer - Start timeout timer for a single request
* @req: request that is about to start running.
*
* Notes:
* Each request has its own timer, and as it is added to the queue, we
* set up the timer. When the request completes, we cancel the timer.
*/
void blk_add_timer(struct request *req)
{
struct request_queue *q = req->q;
unsigned long expiry;
/*
* Some LLDs, like scsi, peek at the timeout to prevent a
* command from being retried forever.
*/
if (!req->timeout)
req->timeout = q->rq_timeout;
req->rq_flags &= ~RQF_TIMED_OUT;
expiry = jiffies + req->timeout;
WRITE_ONCE(req->deadline, expiry);
/*
* If the timer isn't already pending or this timeout is earlier
* than an existing one, modify the timer. Round up to next nearest
* second.
*/
expiry = blk_rq_timeout(round_jiffies_up(expiry));
if (!timer_pending(&q->timeout) ||
time_before(expiry, q->timeout.expires)) {
unsigned long diff = q->timeout.expires - expiry;
/*
* Due to added timer slack to group timers, the timer
* will often be a little in front of what we asked for.
* So apply some tolerance here too, otherwise we keep
* modifying the timer because expires for value X
* will be X + something.
*/
if (!timer_pending(&q->timeout) || (diff >= HZ / 2))
mod_timer(&q->timeout, expiry);
}
blk-mq: new multi-queue block IO queueing mechanism Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-24 09:20:05 +01:00
}