mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* DAMON Primitives for Virtual Address Spaces
|
|
|
|
*
|
2023-12-13 19:03:33 +00:00
|
|
|
* Author: SeongJae Park <sj@kernel.org>
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define pr_fmt(fmt) "damon-va: " fmt
|
|
|
|
|
2021-11-05 13:46:53 -07:00
|
|
|
#include <linux/highmem.h>
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
#include <linux/hugetlb.h>
|
2023-12-21 23:11:01 +00:00
|
|
|
#include <linux/mman.h>
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <linux/page_idle.h>
|
|
|
|
#include <linux/pagewalk.h>
|
2021-12-02 12:34:00 -08:00
|
|
|
#include <linux/sched/mm.h>
|
2021-11-05 13:46:53 -07:00
|
|
|
|
2022-03-22 14:48:46 -07:00
|
|
|
#include "ops-common.h"
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
2021-09-07 19:57:09 -07:00
|
|
|
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
|
|
|
|
#undef DAMON_MIN_REGION
|
|
|
|
#define DAMON_MIN_REGION 1
|
|
|
|
#endif
|
|
|
|
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
/*
|
mm/damon: remove the target id concept
DAMON asks each monitoring target ('struct damon_target') to have one
'unsigned long' integer called 'id', which should be unique among the
targets of same monitoring context. Meaning of it is, however, totally up
to the monitoring primitives that registered to the monitoring context.
For example, the virtual address spaces monitoring primitives treats the
id as a 'struct pid' pointer.
This makes the code flexible, but ugly, not well-documented, and
type-unsafe[1]. Also, identification of each target can be done via its
index. For the reason, this commit removes the concept and uses clear
type definition. For now, only 'struct pid' pointer is used for the
virtual address spaces monitoring. If DAMON is extended in future so that
we need to put another identifier field in the struct, we will use a union
for such primitives-dependent fields and document which primitives are
using which type.
[1] https://lore.kernel.org/linux-mm/20211013154535.4aaeaaf9d0182922e405dd1e@linux-foundation.org/
Link: https://lkml.kernel.org/r/20211230100723.2238-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:48:40 -07:00
|
|
|
* 't->pid' should be the pointer to the relevant 'struct pid' having reference
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
* count. Caller must put the returned task, unless it is NULL.
|
|
|
|
*/
|
2022-01-14 14:09:59 -08:00
|
|
|
static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
|
|
|
|
{
|
mm/damon: remove the target id concept
DAMON asks each monitoring target ('struct damon_target') to have one
'unsigned long' integer called 'id', which should be unique among the
targets of same monitoring context. Meaning of it is, however, totally up
to the monitoring primitives that registered to the monitoring context.
For example, the virtual address spaces monitoring primitives treats the
id as a 'struct pid' pointer.
This makes the code flexible, but ugly, not well-documented, and
type-unsafe[1]. Also, identification of each target can be done via its
index. For the reason, this commit removes the concept and uses clear
type definition. For now, only 'struct pid' pointer is used for the
virtual address spaces monitoring. If DAMON is extended in future so that
we need to put another identifier field in the struct, we will use a union
for such primitives-dependent fields and document which primitives are
using which type.
[1] https://lore.kernel.org/linux-mm/20211013154535.4aaeaaf9d0182922e405dd1e@linux-foundation.org/
Link: https://lkml.kernel.org/r/20211230100723.2238-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 14:48:40 -07:00
|
|
|
return get_pid_task(t->pid, PIDTYPE_PID);
|
2022-01-14 14:09:59 -08:00
|
|
|
}
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the mm_struct of the given target
|
|
|
|
*
|
|
|
|
* Caller _must_ put the mm_struct after use, unless it is NULL.
|
|
|
|
*
|
|
|
|
* Returns the mm_struct of the target on success, NULL on failure
|
|
|
|
*/
|
|
|
|
static struct mm_struct *damon_get_mm(struct damon_target *t)
|
|
|
|
{
|
|
|
|
struct task_struct *task;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
|
|
|
|
task = damon_get_task_struct(t);
|
|
|
|
if (!task)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
mm = get_task_mm(task);
|
|
|
|
put_task_struct(task);
|
|
|
|
return mm;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions for the initial monitoring target regions construction
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Size-evenly split a region into 'nr_pieces' small regions
|
|
|
|
*
|
|
|
|
* Returns 0 on success, or negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int damon_va_evenly_split_region(struct damon_target *t,
|
|
|
|
struct damon_region *r, unsigned int nr_pieces)
|
|
|
|
{
|
|
|
|
unsigned long sz_orig, sz_piece, orig_end;
|
|
|
|
struct damon_region *n = NULL, *next;
|
|
|
|
unsigned long start;
|
mm/damon/vaddr: fix issue in damon_va_evenly_split_region()
Patch series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()". v2.
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision, then
each time split one piece of size 'sz_piece' from origin 'start' to 'end'
would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
And add 'nr_piece == 1' check in damon_va_evenly_split_region() for better
code readability and add a corresponding kunit testcase.
This patch (of 2):
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision,
then each time split one piece of size 'sz_piece' from origin 'start' to
'end' would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
After this patch, damon-operations test passed:
# ./tools/testing/kunit/kunit.py run damon-operations
[...]
============== damon-operations (6 subtests) ===============
[PASSED] damon_test_three_regions_in_vmas
[PASSED] damon_test_apply_three_regions1
[PASSED] damon_test_apply_three_regions2
[PASSED] damon_test_apply_three_regions3
[PASSED] damon_test_apply_three_regions4
[PASSED] damon_test_split_evenly
================ [PASSED] damon-operations =================
Link: https://lkml.kernel.org/r/20241022083927.3592237-1-zhengyejian@huaweicloud.com
Link: https://lkml.kernel.org/r/20241022083927.3592237-2-zhengyejian@huaweicloud.com
Fixes: 3f49584b262c ("mm/damon: implement primitives for the virtual memory address spaces")
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Fernand Sieber <sieberf@amazon.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Ye Weihua <yeweihua4@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-22 16:39:26 +08:00
|
|
|
unsigned int i;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
if (!r || !nr_pieces)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2024-10-22 16:39:27 +08:00
|
|
|
if (nr_pieces == 1)
|
|
|
|
return 0;
|
|
|
|
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
orig_end = r->ar.end;
|
2022-09-27 08:19:46 +08:00
|
|
|
sz_orig = damon_sz_region(r);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
|
|
|
|
|
|
|
|
if (!sz_piece)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
r->ar.end = r->ar.start + sz_piece;
|
|
|
|
next = damon_next_region(r);
|
mm/damon/vaddr: fix issue in damon_va_evenly_split_region()
Patch series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()". v2.
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision, then
each time split one piece of size 'sz_piece' from origin 'start' to 'end'
would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
And add 'nr_piece == 1' check in damon_va_evenly_split_region() for better
code readability and add a corresponding kunit testcase.
This patch (of 2):
According to the logic of damon_va_evenly_split_region(), currently
following split case would not meet the expectation:
Suppose DAMON_MIN_REGION=0x1000,
Case: Split [0x0, 0x3000) into 2 pieces, then the result would be
acutually 3 regions:
[0x0, 0x1000), [0x1000, 0x2000), [0x2000, 0x3000)
but NOT the expected 2 regions:
[0x0, 0x1000), [0x1000, 0x3000) !!!
The root cause is that when calculating size of each split piece in
damon_va_evenly_split_region():
`sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);`
both the dividing and the ALIGN_DOWN may cause loss of precision,
then each time split one piece of size 'sz_piece' from origin 'start' to
'end' would cause more pieces are split out than expected!!!
To fix it, count for each piece split and make sure no more than
'nr_pieces'. In addition, add above case into damon_test_split_evenly().
After this patch, damon-operations test passed:
# ./tools/testing/kunit/kunit.py run damon-operations
[...]
============== damon-operations (6 subtests) ===============
[PASSED] damon_test_three_regions_in_vmas
[PASSED] damon_test_apply_three_regions1
[PASSED] damon_test_apply_three_regions2
[PASSED] damon_test_apply_three_regions3
[PASSED] damon_test_apply_three_regions4
[PASSED] damon_test_split_evenly
================ [PASSED] damon-operations =================
Link: https://lkml.kernel.org/r/20241022083927.3592237-1-zhengyejian@huaweicloud.com
Link: https://lkml.kernel.org/r/20241022083927.3592237-2-zhengyejian@huaweicloud.com
Fixes: 3f49584b262c ("mm/damon: implement primitives for the virtual memory address spaces")
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Fernand Sieber <sieberf@amazon.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Ye Weihua <yeweihua4@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-22 16:39:26 +08:00
|
|
|
for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
n = damon_new_region(start, start + sz_piece);
|
|
|
|
if (!n)
|
|
|
|
return -ENOMEM;
|
|
|
|
damon_insert_region(n, r, next, t);
|
|
|
|
r = n;
|
|
|
|
}
|
|
|
|
/* complement last region for possible rounding error */
|
|
|
|
if (n)
|
|
|
|
n->ar.end = orig_end;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long sz_range(struct damon_addr_range *r)
|
|
|
|
{
|
|
|
|
return r->end - r->start;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find three regions separated by two biggest unmapped regions
|
|
|
|
*
|
|
|
|
* vma the head vma of the target address space
|
|
|
|
* regions an array of three address ranges that results will be saved
|
|
|
|
*
|
|
|
|
* This function receives an address space and finds three regions in it which
|
|
|
|
* separated by the two biggest unmapped regions in the space. Please refer to
|
|
|
|
* below comments of '__damon_va_init_regions()' function to know why this is
|
|
|
|
* necessary.
|
|
|
|
*
|
|
|
|
* Returns 0 if success, or negative error code otherwise.
|
|
|
|
*/
|
2022-09-06 19:48:48 +00:00
|
|
|
static int __damon_va_three_regions(struct mm_struct *mm,
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
struct damon_addr_range regions[3])
|
|
|
|
{
|
2022-09-06 19:48:48 +00:00
|
|
|
struct damon_addr_range first_gap = {0}, second_gap = {0};
|
|
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
struct vm_area_struct *vma, *prev = NULL;
|
|
|
|
unsigned long start;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
2022-09-06 19:48:48 +00:00
|
|
|
/*
|
|
|
|
* Find the two biggest gaps so that first_gap > second_gap > others.
|
|
|
|
* If this is too slow, it can be optimised to examine the maple
|
|
|
|
* tree gaps.
|
|
|
|
*/
|
2024-09-04 17:12:04 -07:00
|
|
|
rcu_read_lock();
|
2022-09-06 19:48:48 +00:00
|
|
|
for_each_vma(vmi, vma) {
|
|
|
|
unsigned long gap;
|
|
|
|
|
|
|
|
if (!prev) {
|
|
|
|
start = vma->vm_start;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
goto next;
|
|
|
|
}
|
2022-09-06 19:48:48 +00:00
|
|
|
gap = vma->vm_start - prev->vm_end;
|
|
|
|
|
|
|
|
if (gap > sz_range(&first_gap)) {
|
|
|
|
second_gap = first_gap;
|
|
|
|
first_gap.start = prev->vm_end;
|
|
|
|
first_gap.end = vma->vm_start;
|
|
|
|
} else if (gap > sz_range(&second_gap)) {
|
|
|
|
second_gap.start = prev->vm_end;
|
|
|
|
second_gap.end = vma->vm_start;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
}
|
|
|
|
next:
|
2022-09-06 19:48:48 +00:00
|
|
|
prev = vma;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
}
|
2024-09-04 17:12:04 -07:00
|
|
|
rcu_read_unlock();
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
if (!sz_range(&second_gap) || !sz_range(&first_gap))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Sort the two biggest gaps by address */
|
|
|
|
if (first_gap.start > second_gap.start)
|
2022-01-14 14:09:47 -08:00
|
|
|
swap(first_gap, second_gap);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
/* Store the result */
|
|
|
|
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
|
|
|
|
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
|
|
|
|
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
|
|
|
|
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
|
|
|
|
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
|
2022-09-06 19:48:48 +00:00
|
|
|
regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the three regions in the given target (task)
|
|
|
|
*
|
|
|
|
* Returns 0 on success, negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int damon_va_three_regions(struct damon_target *t,
|
|
|
|
struct damon_addr_range regions[3])
|
|
|
|
{
|
|
|
|
struct mm_struct *mm;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
mm = damon_get_mm(t);
|
|
|
|
if (!mm)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
2022-09-06 19:48:48 +00:00
|
|
|
rc = __damon_va_three_regions(mm, regions);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
mmap_read_unlock(mm);
|
|
|
|
|
|
|
|
mmput(mm);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize the monitoring target regions for the given target (task)
|
|
|
|
*
|
|
|
|
* t the given target
|
|
|
|
*
|
|
|
|
* Because only a number of small portions of the entire address space
|
|
|
|
* is actually mapped to the memory and accessed, monitoring the unmapped
|
|
|
|
* regions is wasteful. That said, because we can deal with small noises,
|
|
|
|
* tracking every mapping is not strictly required but could even incur a high
|
|
|
|
* overhead if the mapping frequently changes or the number of mappings is
|
|
|
|
* high. The adaptive regions adjustment mechanism will further help to deal
|
|
|
|
* with the noise by simply identifying the unmapped areas as a region that
|
|
|
|
* has no access. Moreover, applying the real mappings that would have many
|
|
|
|
* unmapped areas inside will make the adaptive mechanism quite complex. That
|
|
|
|
* said, too huge unmapped areas inside the monitoring target should be removed
|
|
|
|
* to not take the time for the adaptive mechanism.
|
|
|
|
*
|
|
|
|
* For the reason, we convert the complex mappings to three distinct regions
|
|
|
|
* that cover every mapped area of the address space. Also the two gaps
|
|
|
|
* between the three regions are the two biggest unmapped areas in the given
|
|
|
|
* address space. In detail, this function first identifies the start and the
|
|
|
|
* end of the mappings and the two biggest unmapped areas of the address space.
|
|
|
|
* Then, it constructs the three regions as below:
|
|
|
|
*
|
|
|
|
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
|
|
|
|
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
|
|
|
|
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
|
|
|
|
*
|
|
|
|
* As usual memory map of processes is as below, the gap between the heap and
|
|
|
|
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
|
|
|
|
* region and the stack will be two biggest unmapped regions. Because these
|
|
|
|
* gaps are exceptionally huge areas in usual address space, excluding these
|
|
|
|
* two biggest unmapped regions will be sufficient to make a trade-off.
|
|
|
|
*
|
|
|
|
* <heap>
|
|
|
|
* <BIG UNMAPPED REGION 1>
|
|
|
|
* <uppermost mmap()-ed region>
|
|
|
|
* (other mmap()-ed regions and small unmapped regions)
|
|
|
|
* <lowermost mmap()-ed region>
|
|
|
|
* <BIG UNMAPPED REGION 2>
|
|
|
|
* <stack>
|
|
|
|
*/
|
|
|
|
static void __damon_va_init_regions(struct damon_ctx *ctx,
|
|
|
|
struct damon_target *t)
|
|
|
|
{
|
2022-01-14 14:10:47 -08:00
|
|
|
struct damon_target *ti;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
struct damon_region *r;
|
|
|
|
struct damon_addr_range regions[3];
|
|
|
|
unsigned long sz = 0, nr_pieces;
|
2022-01-14 14:10:47 -08:00
|
|
|
int i, tidx = 0;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
if (damon_va_three_regions(t, regions)) {
|
2022-01-14 14:10:47 -08:00
|
|
|
damon_for_each_target(ti, ctx) {
|
|
|
|
if (ti == t)
|
|
|
|
break;
|
|
|
|
tidx++;
|
|
|
|
}
|
|
|
|
pr_debug("Failed to get three regions of %dth target\n", tidx);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 3; i++)
|
|
|
|
sz += regions[i].end - regions[i].start;
|
2022-09-13 17:44:32 +00:00
|
|
|
if (ctx->attrs.min_nr_regions)
|
|
|
|
sz /= ctx->attrs.min_nr_regions;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
if (sz < DAMON_MIN_REGION)
|
|
|
|
sz = DAMON_MIN_REGION;
|
|
|
|
|
|
|
|
/* Set the initial three regions of the target */
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
r = damon_new_region(regions[i].start, regions[i].end);
|
|
|
|
if (!r) {
|
|
|
|
pr_err("%d'th init region creation failed\n", i);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
damon_add_region(r, t);
|
|
|
|
|
|
|
|
nr_pieces = (regions[i].end - regions[i].start) / sz;
|
|
|
|
damon_va_evenly_split_region(t, r, nr_pieces);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialize '->regions_list' of every target (task) */
|
2022-01-14 14:09:44 -08:00
|
|
|
static void damon_va_init(struct damon_ctx *ctx)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct damon_target *t;
|
|
|
|
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
|
|
/* the user may set the target regions as they want */
|
|
|
|
if (!damon_nr_regions(t))
|
|
|
|
__damon_va_init_regions(ctx, t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update regions for current memory mappings
|
|
|
|
*/
|
2022-01-14 14:09:44 -08:00
|
|
|
static void damon_va_update(struct damon_ctx *ctx)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct damon_addr_range three_regions[3];
|
|
|
|
struct damon_target *t;
|
|
|
|
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
|
|
if (damon_va_three_regions(t, three_regions))
|
|
|
|
continue;
|
2022-05-09 18:20:55 -07:00
|
|
|
damon_set_regions(t, three_regions, 3);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
|
|
unsigned long next, struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
pte_t *pte;
|
2023-07-28 06:21:57 +09:00
|
|
|
pmd_t pmde;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
spinlock_t *ptl;
|
|
|
|
|
2023-07-28 06:21:57 +09:00
|
|
|
if (pmd_trans_huge(pmdp_get(pmd))) {
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
ptl = pmd_lock(walk->mm, pmd);
|
2023-07-28 06:21:57 +09:00
|
|
|
pmde = pmdp_get(pmd);
|
|
|
|
|
|
|
|
if (!pmd_present(pmde)) {
|
2022-08-18 15:37:43 +08:00
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-07-28 06:21:57 +09:00
|
|
|
if (pmd_trans_huge(pmde)) {
|
2023-06-02 10:29:47 +01:00
|
|
|
damon_pmdp_mkold(pmd, walk->vma, addr);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
|
|
}
|
|
|
|
|
|
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
2023-06-08 18:17:26 -07:00
|
|
|
if (!pte) {
|
|
|
|
walk->action = ACTION_AGAIN;
|
|
|
|
return 0;
|
|
|
|
}
|
mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
|
|
|
if (!pte_present(ptep_get(pte)))
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
goto out;
|
2023-06-02 10:29:47 +01:00
|
|
|
damon_ptep_mkold(pte, walk->vma, addr);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
out:
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-01-14 14:10:35 -08:00
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
|
|
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
|
|
{
|
|
|
|
bool referenced = false;
|
2024-07-02 15:51:20 +02:00
|
|
|
pte_t entry = huge_ptep_get(mm, addr, pte);
|
2022-12-30 15:08:49 +08:00
|
|
|
struct folio *folio = pfn_folio(pte_pfn(entry));
|
mm: hugetlb: add huge page size param to set_huge_pte_at()
Patch series "Fix set_huge_pte_at() panic on arm64", v2.
This series fixes a bug in arm64's implementation of set_huge_pte_at(),
which can result in an unprivileged user causing a kernel panic. The
problem was triggered when running the new uffd poison mm selftest for
HUGETLB memory. This test (and the uffd poison feature) was merged for
v6.5-rc7.
Ideally, I'd like to get this fix in for v6.6 and I've cc'ed stable
(correctly this time) to get it backported to v6.5, where the issue first
showed up.
Description of Bug
==================
arm64's huge pte implementation supports multiple huge page sizes, some of
which are implemented in the page table with multiple contiguous entries.
So set_huge_pte_at() needs to work out how big the logical pte is, so that
it can also work out how many physical ptes (or pmds) need to be written.
It previously did this by grabbing the folio out of the pte and querying
its size.
However, there are cases when the pte being set is actually a swap entry.
But this also used to work fine, because for huge ptes, we only ever saw
migration entries and hwpoison entries. And both of these types of swap
entries have a PFN embedded, so the code would grab that and everything
still worked out.
But over time, more calls to set_huge_pte_at() have been added that set
swap entry types that do not embed a PFN. And this causes the code to go
bang. The triggering case is for the uffd poison test, commit
99aa77215ad0 ("selftests/mm: add uffd unit test for UFFDIO_POISON"), which
causes a PTE_MARKER_POISONED swap entry to be set, coutesey of commit
8a13897fb0da ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs") -
added in v6.5-rc7. Although review shows that there are other call sites
that set PTE_MARKER_UFFD_WP (which also has no PFN), these don't trigger
on arm64 because arm64 doesn't support UFFD WP.
If CONFIG_DEBUG_VM is enabled, we do at least get a BUG(), but otherwise,
it will dereference a bad pointer in page_folio():
static inline struct folio *hugetlb_swap_entry_to_folio(swp_entry_t entry)
{
VM_BUG_ON(!is_migration_entry(entry) && !is_hwpoison_entry(entry));
return page_folio(pfn_to_page(swp_offset_pfn(entry)));
}
Fix
===
The simplest fix would have been to revert the dodgy cleanup commit
18f3962953e4 ("mm: hugetlb: kill set_huge_swap_pte_at()"), but since
things have moved on, this would have required an audit of all the new
set_huge_pte_at() call sites to see if they should be converted to
set_huge_swap_pte_at(). As per the original intent of the change, it
would also leave us open to future bugs when people invariably get it
wrong and call the wrong helper.
So instead, I've added a huge page size parameter to set_huge_pte_at().
This means that the arm64 code has the size in all cases. It's a bigger
change, due to needing to touch the arches that implement the function,
but it is entirely mechanical, so in my view, low risk.
I've compile-tested all touched arches; arm64, parisc, powerpc, riscv,
s390, sparc (and additionally x86_64). I've additionally booted and run
mm selftests against arm64, where I observe the uffd poison test is fixed,
and there are no other regressions.
This patch (of 2):
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the pte is being set in set_huge_pte_at(). Provide for this by
adding an `unsigned long sz` parameter to the function. This follows the
same pattern as huge_pte_clear().
This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, parisc, powerpc,
riscv, s390, sparc). The actual arm64 bug will be fixed in a separate
commit.
No behavioral changes intended.
Link: https://lkml.kernel.org/r/20230922115804.2043771-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20230922115804.2043771-2-ryan.roberts@arm.com
Fixes: 8a13897fb0da ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> [powerpc 8xx]
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> [vmalloc change]
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-22 12:58:03 +01:00
|
|
|
unsigned long psize = huge_page_size(hstate_vma(vma));
|
2022-01-14 14:10:35 -08:00
|
|
|
|
2022-12-30 15:08:49 +08:00
|
|
|
folio_get(folio);
|
2022-01-14 14:10:35 -08:00
|
|
|
|
|
|
|
if (pte_young(entry)) {
|
|
|
|
referenced = true;
|
|
|
|
entry = pte_mkold(entry);
|
mm: hugetlb: add huge page size param to set_huge_pte_at()
Patch series "Fix set_huge_pte_at() panic on arm64", v2.
This series fixes a bug in arm64's implementation of set_huge_pte_at(),
which can result in an unprivileged user causing a kernel panic. The
problem was triggered when running the new uffd poison mm selftest for
HUGETLB memory. This test (and the uffd poison feature) was merged for
v6.5-rc7.
Ideally, I'd like to get this fix in for v6.6 and I've cc'ed stable
(correctly this time) to get it backported to v6.5, where the issue first
showed up.
Description of Bug
==================
arm64's huge pte implementation supports multiple huge page sizes, some of
which are implemented in the page table with multiple contiguous entries.
So set_huge_pte_at() needs to work out how big the logical pte is, so that
it can also work out how many physical ptes (or pmds) need to be written.
It previously did this by grabbing the folio out of the pte and querying
its size.
However, there are cases when the pte being set is actually a swap entry.
But this also used to work fine, because for huge ptes, we only ever saw
migration entries and hwpoison entries. And both of these types of swap
entries have a PFN embedded, so the code would grab that and everything
still worked out.
But over time, more calls to set_huge_pte_at() have been added that set
swap entry types that do not embed a PFN. And this causes the code to go
bang. The triggering case is for the uffd poison test, commit
99aa77215ad0 ("selftests/mm: add uffd unit test for UFFDIO_POISON"), which
causes a PTE_MARKER_POISONED swap entry to be set, coutesey of commit
8a13897fb0da ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs") -
added in v6.5-rc7. Although review shows that there are other call sites
that set PTE_MARKER_UFFD_WP (which also has no PFN), these don't trigger
on arm64 because arm64 doesn't support UFFD WP.
If CONFIG_DEBUG_VM is enabled, we do at least get a BUG(), but otherwise,
it will dereference a bad pointer in page_folio():
static inline struct folio *hugetlb_swap_entry_to_folio(swp_entry_t entry)
{
VM_BUG_ON(!is_migration_entry(entry) && !is_hwpoison_entry(entry));
return page_folio(pfn_to_page(swp_offset_pfn(entry)));
}
Fix
===
The simplest fix would have been to revert the dodgy cleanup commit
18f3962953e4 ("mm: hugetlb: kill set_huge_swap_pte_at()"), but since
things have moved on, this would have required an audit of all the new
set_huge_pte_at() call sites to see if they should be converted to
set_huge_swap_pte_at(). As per the original intent of the change, it
would also leave us open to future bugs when people invariably get it
wrong and call the wrong helper.
So instead, I've added a huge page size parameter to set_huge_pte_at().
This means that the arm64 code has the size in all cases. It's a bigger
change, due to needing to touch the arches that implement the function,
but it is entirely mechanical, so in my view, low risk.
I've compile-tested all touched arches; arm64, parisc, powerpc, riscv,
s390, sparc (and additionally x86_64). I've additionally booted and run
mm selftests against arm64, where I observe the uffd poison test is fixed,
and there are no other regressions.
This patch (of 2):
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the pte is being set in set_huge_pte_at(). Provide for this by
adding an `unsigned long sz` parameter to the function. This follows the
same pattern as huge_pte_clear().
This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, parisc, powerpc,
riscv, s390, sparc). The actual arm64 bug will be fixed in a separate
commit.
No behavioral changes intended.
Link: https://lkml.kernel.org/r/20230922115804.2043771-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20230922115804.2043771-2-ryan.roberts@arm.com
Fixes: 8a13897fb0da ("mm: userfaultfd: support UFFDIO_POISON for hugetlbfs")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> [powerpc 8xx]
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> [vmalloc change]
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-22 12:58:03 +01:00
|
|
|
set_huge_pte_at(mm, addr, pte, entry, psize);
|
2022-01-14 14:10:35 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (mmu_notifier_clear_young(mm, addr,
|
|
|
|
addr + huge_page_size(hstate_vma(vma))))
|
|
|
|
referenced = true;
|
|
|
|
|
|
|
|
if (referenced)
|
2022-12-30 15:08:49 +08:00
|
|
|
folio_set_young(folio);
|
2022-01-14 14:10:35 -08:00
|
|
|
|
2022-12-30 15:08:49 +08:00
|
|
|
folio_set_idle(folio);
|
|
|
|
folio_put(folio);
|
2022-01-14 14:10:35 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
|
|
unsigned long addr, unsigned long end,
|
|
|
|
struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
struct hstate *h = hstate_vma(walk->vma);
|
|
|
|
spinlock_t *ptl;
|
|
|
|
pte_t entry;
|
|
|
|
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
2024-07-02 15:51:20 +02:00
|
|
|
entry = huge_ptep_get(walk->mm, addr, pte);
|
2022-01-14 14:10:35 -08:00
|
|
|
if (!pte_present(entry))
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
|
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define damon_mkold_hugetlb_entry NULL
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
|
2021-11-05 13:47:07 -07:00
|
|
|
static const struct mm_walk_ops damon_mkold_ops = {
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
.pmd_entry = damon_mkold_pmd_entry,
|
2022-01-14 14:10:35 -08:00
|
|
|
.hugetlb_entry = damon_mkold_hugetlb_entry,
|
2023-08-04 08:27:19 -07:00
|
|
|
.walk_lock = PGWALK_RDLOCK,
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
|
|
|
|
{
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions for the access checking of the regions
|
|
|
|
*/
|
|
|
|
|
2022-09-13 17:11:24 +08:00
|
|
|
static void __damon_va_prepare_access_check(struct mm_struct *mm,
|
|
|
|
struct damon_region *r)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
|
|
|
|
|
|
|
|
damon_va_mkold(mm, r->sampling_addr);
|
|
|
|
}
|
|
|
|
|
2022-01-14 14:09:44 -08:00
|
|
|
static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct damon_target *t;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct damon_region *r;
|
|
|
|
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
|
|
mm = damon_get_mm(t);
|
|
|
|
if (!mm)
|
|
|
|
continue;
|
|
|
|
damon_for_each_region(r, t)
|
2022-09-13 17:11:24 +08:00
|
|
|
__damon_va_prepare_access_check(mm, r);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
mmput(mm);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct damon_young_walk_private {
|
2023-01-09 21:33:30 +00:00
|
|
|
/* size of the folio for the access checked virtual memory address */
|
|
|
|
unsigned long *folio_sz;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
bool young;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
|
|
|
|
unsigned long next, struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
pte_t *pte;
|
mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
|
|
|
pte_t ptent;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
spinlock_t *ptl;
|
2022-12-30 15:08:47 +08:00
|
|
|
struct folio *folio;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
|
|
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
2023-07-28 06:21:57 +09:00
|
|
|
if (pmd_trans_huge(pmdp_get(pmd))) {
|
|
|
|
pmd_t pmde;
|
|
|
|
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
ptl = pmd_lock(walk->mm, pmd);
|
2023-07-28 06:21:57 +09:00
|
|
|
pmde = pmdp_get(pmd);
|
|
|
|
|
|
|
|
if (!pmd_present(pmde)) {
|
2022-08-18 15:37:43 +08:00
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-07-28 06:21:57 +09:00
|
|
|
if (!pmd_trans_huge(pmde)) {
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
spin_unlock(ptl);
|
|
|
|
goto regular_page;
|
|
|
|
}
|
2023-07-28 06:21:57 +09:00
|
|
|
folio = damon_get_folio(pmd_pfn(pmde));
|
2022-12-30 15:08:47 +08:00
|
|
|
if (!folio)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
goto huge_out;
|
2023-07-28 06:21:57 +09:00
|
|
|
if (pmd_young(pmde) || !folio_test_idle(folio) ||
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
mmu_notifier_test_young(walk->mm,
|
2023-01-09 21:33:32 +00:00
|
|
|
addr))
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
priv->young = true;
|
2023-01-09 21:33:32 +00:00
|
|
|
*priv->folio_sz = HPAGE_PMD_SIZE;
|
2022-12-30 15:08:47 +08:00
|
|
|
folio_put(folio);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
huge_out:
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
regular_page:
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
|
|
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
2023-06-08 18:17:26 -07:00
|
|
|
if (!pte) {
|
|
|
|
walk->action = ACTION_AGAIN;
|
|
|
|
return 0;
|
|
|
|
}
|
mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
|
|
|
ptent = ptep_get(pte);
|
|
|
|
if (!pte_present(ptent))
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
goto out;
|
mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
|
|
|
folio = damon_get_folio(pte_pfn(ptent));
|
2022-12-30 15:08:47 +08:00
|
|
|
if (!folio)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
goto out;
|
mm: ptep_get() conversion
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-12 16:15:45 +01:00
|
|
|
if (pte_young(ptent) || !folio_test_idle(folio) ||
|
2023-01-09 21:33:32 +00:00
|
|
|
mmu_notifier_test_young(walk->mm, addr))
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
priv->young = true;
|
2023-01-09 21:33:32 +00:00
|
|
|
*priv->folio_sz = folio_size(folio);
|
2022-12-30 15:08:47 +08:00
|
|
|
folio_put(folio);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
out:
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-01-14 14:10:35 -08:00
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
|
|
static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
|
|
unsigned long addr, unsigned long end,
|
|
|
|
struct mm_walk *walk)
|
|
|
|
{
|
|
|
|
struct damon_young_walk_private *priv = walk->private;
|
|
|
|
struct hstate *h = hstate_vma(walk->vma);
|
2022-12-30 15:08:49 +08:00
|
|
|
struct folio *folio;
|
2022-01-14 14:10:35 -08:00
|
|
|
spinlock_t *ptl;
|
|
|
|
pte_t entry;
|
|
|
|
|
|
|
|
ptl = huge_pte_lock(h, walk->mm, pte);
|
2024-07-02 15:51:20 +02:00
|
|
|
entry = huge_ptep_get(walk->mm, addr, pte);
|
2022-01-14 14:10:35 -08:00
|
|
|
if (!pte_present(entry))
|
|
|
|
goto out;
|
|
|
|
|
2022-12-30 15:08:49 +08:00
|
|
|
folio = pfn_folio(pte_pfn(entry));
|
|
|
|
folio_get(folio);
|
2022-01-14 14:10:35 -08:00
|
|
|
|
2022-12-30 15:08:49 +08:00
|
|
|
if (pte_young(entry) || !folio_test_idle(folio) ||
|
2023-01-09 21:33:32 +00:00
|
|
|
mmu_notifier_test_young(walk->mm, addr))
|
2022-01-14 14:10:35 -08:00
|
|
|
priv->young = true;
|
2023-01-09 21:33:32 +00:00
|
|
|
*priv->folio_sz = huge_page_size(h);
|
2022-01-14 14:10:35 -08:00
|
|
|
|
2022-12-30 15:08:49 +08:00
|
|
|
folio_put(folio);
|
2022-01-14 14:10:35 -08:00
|
|
|
|
|
|
|
out:
|
|
|
|
spin_unlock(ptl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
#define damon_young_hugetlb_entry NULL
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
|
2021-11-05 13:47:07 -07:00
|
|
|
static const struct mm_walk_ops damon_young_ops = {
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
.pmd_entry = damon_young_pmd_entry,
|
2022-01-14 14:10:35 -08:00
|
|
|
.hugetlb_entry = damon_young_hugetlb_entry,
|
2023-08-04 08:27:19 -07:00
|
|
|
.walk_lock = PGWALK_RDLOCK,
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
|
2023-01-09 21:33:30 +00:00
|
|
|
unsigned long *folio_sz)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct damon_young_walk_private arg = {
|
2023-01-09 21:33:30 +00:00
|
|
|
.folio_sz = folio_sz,
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
.young = false,
|
|
|
|
};
|
|
|
|
|
|
|
|
mmap_read_lock(mm);
|
|
|
|
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
return arg.young;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check whether the region was accessed after the last preparation
|
|
|
|
*
|
|
|
|
* mm 'mm_struct' for the given virtual address space
|
|
|
|
* r the region to be checked
|
|
|
|
*/
|
2022-08-27 17:02:50 +08:00
|
|
|
static void __damon_va_check_access(struct mm_struct *mm,
|
2023-09-15 02:52:49 +00:00
|
|
|
struct damon_region *r, bool same_target,
|
|
|
|
struct damon_attrs *attrs)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
static unsigned long last_addr;
|
2023-01-09 21:33:30 +00:00
|
|
|
static unsigned long last_folio_sz = PAGE_SIZE;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
static bool last_accessed;
|
|
|
|
|
2023-09-15 02:52:45 +00:00
|
|
|
if (!mm) {
|
2023-09-15 02:52:49 +00:00
|
|
|
damon_update_region_access_rate(r, false, attrs);
|
2023-09-15 02:52:45 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
/* If the region is in the last checked page, reuse the result */
|
2023-01-09 21:33:30 +00:00
|
|
|
if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
|
|
|
|
ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
|
2023-09-15 02:52:49 +00:00
|
|
|
damon_update_region_access_rate(r, last_accessed, attrs);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2023-01-09 21:33:30 +00:00
|
|
|
last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
|
2023-09-15 02:52:49 +00:00
|
|
|
damon_update_region_access_rate(r, last_accessed, attrs);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
last_addr = r->sampling_addr;
|
|
|
|
}
|
|
|
|
|
2022-01-14 14:09:44 -08:00
|
|
|
static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct damon_target *t;
|
|
|
|
struct mm_struct *mm;
|
|
|
|
struct damon_region *r;
|
|
|
|
unsigned int max_nr_accesses = 0;
|
2022-08-27 17:02:51 +08:00
|
|
|
bool same_target;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
|
|
|
|
damon_for_each_target(t, ctx) {
|
|
|
|
mm = damon_get_mm(t);
|
2022-08-27 17:02:51 +08:00
|
|
|
same_target = false;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
damon_for_each_region(r, t) {
|
2023-09-15 02:52:49 +00:00
|
|
|
__damon_va_check_access(mm, r, same_target,
|
|
|
|
&ctx->attrs);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
|
2022-08-27 17:02:51 +08:00
|
|
|
same_target = true;
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
}
|
2023-09-15 02:52:45 +00:00
|
|
|
if (mm)
|
|
|
|
mmput(mm);
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return max_nr_accesses;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Functions for the target validity check and cleanup
|
|
|
|
*/
|
|
|
|
|
2022-09-15 19:33:41 +08:00
|
|
|
static bool damon_va_target_valid(struct damon_target *t)
|
mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.
The low level primitives for the fundamental access monitoring are defined
in two parts:
1. Identification of the monitoring target address range for the address
space.
2. Access check of specific address range in the target space.
The reference implementation for the virtual address space does the works
as below.
PTE Accessed-bit Based Access Check
-----------------------------------
The implementation uses PTE Accessed-bit for basic access checks. That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period. This could disturb the reclaim
logic. DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.
VMA-based Target Address Range Construction
-------------------------------------------
Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed. Thus, tracking the unmapped
address regions is just wasteful. However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases. That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.
For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space. Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space. The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off. Below
shows this in detail::
<heap>
<BIG UNMAPPED REGION 1>
<uppermost mmap()-ed region>
(small mmap()-ed regions and munmap()-ed regions)
<lowermost mmap()-ed region>
<BIG UNMAPPED REGION 2>
<stack>
[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-07 19:56:44 -07:00
|
|
|
{
|
|
|
|
struct task_struct *task;
|
|
|
|
|
|
|
|
task = damon_get_task_struct(t);
|
|
|
|
if (task) {
|
|
|
|
put_task_struct(task);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2021-11-05 13:46:25 -07:00
|
|
|
#ifndef CONFIG_ADVISE_SYSCALLS
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
|
|
struct damon_region *r, int behavior)
|
2021-11-05 13:46:25 -07:00
|
|
|
{
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
return 0;
|
2021-11-05 13:46:25 -07:00
|
|
|
}
|
|
|
|
#else
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
static unsigned long damos_madvise(struct damon_target *target,
|
|
|
|
struct damon_region *r, int behavior)
|
2021-11-05 13:46:25 -07:00
|
|
|
{
|
|
|
|
struct mm_struct *mm;
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
unsigned long start = PAGE_ALIGN(r->ar.start);
|
2022-09-27 08:19:46 +08:00
|
|
|
unsigned long len = PAGE_ALIGN(damon_sz_region(r));
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
unsigned long applied;
|
2021-11-05 13:46:25 -07:00
|
|
|
|
|
|
|
mm = damon_get_mm(target);
|
|
|
|
if (!mm)
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
return 0;
|
2021-11-05 13:46:25 -07:00
|
|
|
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
applied = do_madvise(mm, start, len, behavior) ? 0 : len;
|
2021-11-05 13:46:25 -07:00
|
|
|
mmput(mm);
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
|
|
|
|
return applied;
|
2021-11-05 13:46:25 -07:00
|
|
|
}
|
|
|
|
#endif /* CONFIG_ADVISE_SYSCALLS */
|
|
|
|
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
|
|
|
|
struct damon_target *t, struct damon_region *r,
|
|
|
|
struct damos *scheme)
|
2021-11-05 13:46:25 -07:00
|
|
|
{
|
|
|
|
int madv_action;
|
|
|
|
|
|
|
|
switch (scheme->action) {
|
|
|
|
case DAMOS_WILLNEED:
|
|
|
|
madv_action = MADV_WILLNEED;
|
|
|
|
break;
|
|
|
|
case DAMOS_COLD:
|
|
|
|
madv_action = MADV_COLD;
|
|
|
|
break;
|
|
|
|
case DAMOS_PAGEOUT:
|
|
|
|
madv_action = MADV_PAGEOUT;
|
|
|
|
break;
|
|
|
|
case DAMOS_HUGEPAGE:
|
|
|
|
madv_action = MADV_HUGEPAGE;
|
|
|
|
break;
|
|
|
|
case DAMOS_NOHUGEPAGE:
|
|
|
|
madv_action = MADV_NOHUGEPAGE;
|
|
|
|
break;
|
2021-11-05 13:46:32 -07:00
|
|
|
case DAMOS_STAT:
|
|
|
|
return 0;
|
2021-11-05 13:46:25 -07:00
|
|
|
default:
|
2022-09-08 11:13:17 +08:00
|
|
|
/*
|
|
|
|
* DAMOS actions that are not yet supported by 'vaddr'.
|
|
|
|
*/
|
mm/damon/schemes: account scheme actions that successfully applied
Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".
To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.
For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.
This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).
This patch (of 6):
DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.
Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-14 14:10:17 -08:00
|
|
|
return 0;
|
2021-11-05 13:46:25 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return damos_madvise(t, r, madv_action);
|
|
|
|
}
|
|
|
|
|
2022-01-14 14:09:44 -08:00
|
|
|
static int damon_va_scheme_score(struct damon_ctx *context,
|
|
|
|
struct damon_target *t, struct damon_region *r,
|
|
|
|
struct damos *scheme)
|
2021-11-05 13:47:37 -07:00
|
|
|
{
|
|
|
|
|
|
|
|
switch (scheme->action) {
|
|
|
|
case DAMOS_PAGEOUT:
|
2022-09-17 21:56:54 +08:00
|
|
|
return damon_cold_score(context, r, scheme);
|
2021-11-05 13:47:37 -07:00
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return DAMOS_MAX_SCORE;
|
|
|
|
}
|
|
|
|
|
2022-03-22 14:48:52 -07:00
|
|
|
static int __init damon_va_initcall(void)
|
|
|
|
{
|
|
|
|
struct damon_operations ops = {
|
|
|
|
.id = DAMON_OPS_VADDR,
|
|
|
|
.init = damon_va_init,
|
|
|
|
.update = damon_va_update,
|
|
|
|
.prepare_access_checks = damon_va_prepare_access_checks,
|
|
|
|
.check_accesses = damon_va_check_accesses,
|
|
|
|
.reset_aggregated = NULL,
|
|
|
|
.target_valid = damon_va_target_valid,
|
|
|
|
.cleanup = NULL,
|
|
|
|
.apply_scheme = damon_va_apply_scheme,
|
|
|
|
.get_scheme_score = damon_va_scheme_score,
|
|
|
|
};
|
2022-05-09 18:20:52 -07:00
|
|
|
/* ops for fixed virtual address ranges */
|
|
|
|
struct damon_operations ops_fvaddr = ops;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* Don't set the monitoring target regions for the entire mapping */
|
|
|
|
ops_fvaddr.id = DAMON_OPS_FVADDR;
|
|
|
|
ops_fvaddr.init = NULL;
|
|
|
|
ops_fvaddr.update = NULL;
|
|
|
|
|
|
|
|
err = damon_register_ops(&ops);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
return damon_register_ops(&ops_fvaddr);
|
2022-03-22 14:48:52 -07:00
|
|
|
};
|
|
|
|
|
|
|
|
subsys_initcall(damon_va_initcall);
|
|
|
|
|
2024-08-26 20:03:35 -07:00
|
|
|
#include "tests/vaddr-kunit.h"
|