Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next

Pull networking updates from David Miller:
 "Highlights:

   1) Support more Realtek wireless chips, from Jes Sorenson.

   2) New BPF types for per-cpu hash and arrap maps, from Alexei
      Starovoitov.

   3) Make several TCP sysctls per-namespace, from Nikolay Borisov.

   4) Allow the use of SO_REUSEPORT in order to do per-thread processing
   of incoming TCP/UDP connections.  The muxing can be done using a
   BPF program which hashes the incoming packet.  From Craig Gallek.

   5) Add a multiplexer for TCP streams, to provide a messaged based
      interface.  BPF programs can be used to determine the message
      boundaries.  From Tom Herbert.

   6) Add 802.1AE MACSEC support, from Sabrina Dubroca.

   7) Avoid factorial complexity when taking down an inetdev interface
      with lots of configured addresses.  We were doing things like
      traversing the entire address less for each address removed, and
      flushing the entire netfilter conntrack table for every address as
      well.

   8) Add and use SKB bulk free infrastructure, from Jesper Brouer.

   9) Allow offloading u32 classifiers to hardware, and implement for
      ixgbe, from John Fastabend.

  10) Allow configuring IRQ coalescing parameters on a per-queue basis,
      from Kan Liang.

  11) Extend ethtool so that larger link mode masks can be supported.
      From David Decotigny.

  12) Introduce devlink, which can be used to configure port link types
      (ethernet vs Infiniband, etc.), port splitting, and switch device
      level attributes as a whole.  From Jiri Pirko.

  13) Hardware offload support for flower classifiers, from Amir Vadai.

  14) Add "Local Checksum Offload".  Basically, for a tunneled packet
      the checksum of the outer header is 'constant' (because with the
      checksum field filled into the inner protocol header, the payload
      of the outer frame checksums to 'zero'), and we can take advantage
      of that in various ways.  From Edward Cree"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1548 commits)
  bonding: fix bond_get_stats()
  net: bcmgenet: fix dma api length mismatch
  net/mlx4_core: Fix backward compatibility on VFs
  phy: mdio-thunder: Fix some Kconfig typos
  lan78xx: add ndo_get_stats64
  lan78xx: handle statistics counter rollover
  RDS: TCP: Remove unused constant
  RDS: TCP: Add sysctl tunables for sndbuf/rcvbuf on rds-tcp socket
  net: smc911x: convert pxa dma to dmaengine
  team: remove duplicate set of flag IFF_MULTICAST
  bonding: remove duplicate set of flag IFF_MULTICAST
  net: fix a comment typo
  ethernet: micrel: fix some error codes
  ip_tunnels, bpf: define IP_TUNNEL_OPTS_MAX and use it
  bpf, dst: add and use dst_tclassid helper
  bpf: make skb->tc_classid also readable
  net: mvneta: bm: clarify dependencies
  cls_bpf: reset class and reuse major in da
  ldmvsw: Checkpatch sunvnet.c and sunvnet_common.c
  ldmvsw: Add ldmvsw.c driver code
  ...
This commit is contained in:
Linus Torvalds 2016-03-19 10:05:34 -07:00
commit 1200b6809d
1281 changed files with 79169 additions and 34149 deletions

View File

@ -1,29 +0,0 @@
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
What: /sys/class/rfkill/rfkill[0-9]+/state
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Current state of the transmitter.
This file is deprecated and scheduled to be removed in 2014,
because its not possible to express the 'soft and hard block'
state of the rfkill driver.
Values: A numeric value.
0: RFKILL_STATE_SOFT_BLOCKED
transmitter is turned off by software
1: RFKILL_STATE_UNBLOCKED
transmitter is (potentially) active
2: RFKILL_STATE_HARD_BLOCKED
transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/claim
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: This file is deprecated because there no longer is a way to
claim just control over a single rfkill instance.
This file is scheduled to be removed in 2012.
Values: 0: Kernel handles events

View File

@ -0,0 +1,13 @@
rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
What: /sys/class/rfkill/rfkill[0-9]+/claim
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: This file was deprecated because there no longer was a way to
claim just control over a single rfkill instance.
This file was scheduled to be removed in 2012, and was removed
in 2016.
Values: 0: Kernel handles events

View File

@ -2,9 +2,8 @@ rfkill - radio frequency (RF) connector kill switch support
For details to this subsystem look at Documentation/rfkill.txt.
For the deprecated /sys/class/rfkill/*/state and
/sys/class/rfkill/*/claim knobs of this interface look in
Documentation/ABI/obsolete/sysfs-class-rfkill.
For the deprecated /sys/class/rfkill/*/claim knobs of this interface look in
Documentation/ABI/removed/sysfs-class-rfkill.
What: /sys/class/rfkill
Date: 09-Jul-2007
@ -42,6 +41,28 @@ Values: A numeric value.
1: true
What: /sys/class/rfkill/rfkill[0-9]+/state
Date: 09-Jul-2007
KernelVersion v2.6.22
Contact: linux-wireless@vger.kernel.org
Description: Current state of the transmitter.
This file was scheduled to be removed in 2014, but due to its
large number of users it will be sticking around for a bit
longer. Despite it being marked as stabe, the newer "hard" and
"soft" interfaces should be preffered, since it is not possible
to express the 'soft and hard block' state of the rfkill driver
through this interface. There will likely be another attempt to
remove it in the future.
Values: A numeric value.
0: RFKILL_STATE_SOFT_BLOCKED
transmitter is turned off by software
1: RFKILL_STATE_UNBLOCKED
transmitter is (potentially) active
2: RFKILL_STATE_HARD_BLOCKED
transmitter is forced off by something outside of
the driver's control.
What: /sys/class/rfkill/rfkill[0-9]+/hard
Date: 12-March-2010
KernelVersion v2.6.34

View File

@ -1,4 +1,20 @@
What: /sys/class/net/<iface>/batman-adv/throughput_override
Date: Feb 2014
Contact: Antonio Quartulli <antonio@meshcoding.com>
description:
Defines the throughput value to be used by B.A.T.M.A.N. V
when estimating the link throughput using this interface.
If the value is set to 0 then batman-adv will try to
estimate the throughput by itself.
What: /sys/class/net/<iface>/batman-adv/elp_interval
Date: Feb 2014
Contact: Linus Lüssing <linus.luessing@web.de>
Description:
Defines the interval in milliseconds in which batman
sends its probing packets for link quality measurements.
What: /sys/class/net/<iface>/batman-adv/iface_status
Date: May 2010
Contact: Marek Lindner <mareklindner@neomailbox.ch>
@ -12,4 +28,3 @@ Description:
The /sys/class/net/<iface>/batman-adv/mesh_iface file
displays the batman mesh interface this <iface>
currently is associated with.

View File

@ -7,6 +7,13 @@ Required properties:
- max-speed: see ethernet.txt file in the same directory.
- phy: see ethernet.txt file in the same directory.
Optional properties:
- phy-reset-gpios : Should specify the gpio for phy reset
- phy-reset-duration : Reset duration in milliseconds. Should present
only if property "phy-reset-gpios" is available. Missing the property
will have the duration be 1 millisecond. Numbers greater than 1000 are
invalid and 1 millisecond will be used instead.
Clock handling:
The clock frequency is needed to calculate and set polling period of EMAC.
It must be provided by one of:

View File

@ -0,0 +1,15 @@
IFI CANFD controller
--------------------
Required properties:
- compatible: Should be "ifi,canfd-1.0"
- reg: Should contain CAN controller registers location and length
- interrupts: Should contain IRQ line for the CAN controller
Example:
canfd0: canfd@ff220000 {
compatible = "ifi,canfd-1.0";
reg = <0xff220000 0x00001000>;
interrupts = <0 43 0>;
};

View File

@ -6,6 +6,17 @@ Required properties:
"renesas,can-r8a7779" if CAN controller is a part of R8A7779 SoC.
"renesas,can-r8a7790" if CAN controller is a part of R8A7790 SoC.
"renesas,can-r8a7791" if CAN controller is a part of R8A7791 SoC.
"renesas,can-r8a7792" if CAN controller is a part of R8A7792 SoC.
"renesas,can-r8a7793" if CAN controller is a part of R8A7793 SoC.
"renesas,can-r8a7794" if CAN controller is a part of R8A7794 SoC.
"renesas,can-r8a7795" if CAN controller is a part of R8A7795 SoC.
"renesas,rcar-gen1-can" for a generic R-Car Gen1 compatible device.
"renesas,rcar-gen2-can" for a generic R-Car Gen2 compatible device.
"renesas,rcar-gen3-can" for a generic R-Car Gen3 compatible device.
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first
followed by the generic version.
- reg: physical base address and size of the R-Car CAN register map.
- interrupts: interrupt specifier for the sole interrupt.
- clocks: phandles and clock specifiers for 3 CAN clock inputs.
@ -13,6 +24,15 @@ Required properties:
- pinctrl-0: pin control group to be used for this controller.
- pinctrl-names: must be "default".
Required properties for "renesas,can-r8a7795" compatible:
In R8A7795 SoC, "clkp2" can be CANFD clock. This is a div6 clock and can be
used by both CAN and CAN FD controller at the same time. It needs to be scaled
to maximum frequency if any of these controllers use it. This is done using
the below properties.
- assigned-clocks: phandle of clkp2(CANFD) clock.
- assigned-clock-rates: maximum frequency of this clock.
Optional properties:
- renesas,can-clock-select: R-Car CAN Clock Source Select. Valid values are:
<0x0> (default) : Peripheral clock (clkp1)
@ -25,7 +45,7 @@ Example
SoC common .dtsi file:
can0: can@e6e80000 {
compatible = "renesas,can-r8a7791";
compatible = "renesas,can-r8a7791", "renesas,rcar-gen2-can";
reg = <0 0xe6e80000 0 0x1000>;
interrupts = <0 186 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&mstp9_clks R8A7791_CLK_RCAN0>,

View File

@ -2,7 +2,7 @@ Memory mapped SJA1000 CAN controller from NXP (formerly Philips)
Required properties:
- compatible : should be "nxp,sja1000".
- compatible : should be one of "nxp,sja1000", "technologic,sja1000".
- reg : should specify the chip select, address offset and size required
to map the registers of the SJA1000. The size is usually 0x80.
@ -14,6 +14,7 @@ Optional properties:
- reg-io-width : Specify the size (in bytes) of the IO accesses that
should be performed on the device. Valid value is 1, 2 or 4.
This property is ignored for technologic version.
Default to 1 (8 bits).
- nxp,external-clock-frequency : Frequency of the external oscillator

View File

@ -1,9 +1,12 @@
* System Management Interface (SMI) / MDIO
Properties:
- compatible: "cavium,octeon-3860-mdio"
- compatible: One of:
Compatibility with all cn3XXX, cn5XXX and cn6XXX SOCs.
"cavium,octeon-3860-mdio": Compatibility with all cn3XXX, cn5XXX
and cn6XXX SOCs.
"cavium,thunder-8890-mdio": Compatibility with all cn8XXX SOCs.
- reg: The base address of the MDIO bus controller register bank.
@ -25,3 +28,57 @@ Example:
reg = <0>;
};
};
* System Management Interface (SMI) / MDIO Nexus
Several mdio buses may be gathered as children of a single PCI
device, this PCI device is the nexus of the buses.
Properties:
- compatible: "cavium,thunder-8890-mdio-nexus";
- reg: The PCI device and function numbers of the nexus device.
- #address-cells: Must be <2>.
- #size-cells: Must be <2>.
- ranges: As needed for mapping of the MDIO bus device registers.
- assigned-addresses: As needed for mapping of the MDIO bus device registers.
Example:
mdio-nexus@1,3 {
compatible = "cavium,thunder-8890-mdio-nexus";
#address-cells = <2>;
#size-cells = <2>;
reg = <0x0b00 0 0 0 0>; /* DEVFN = 0x0b (1:3) */
assigned-addresses = <0x03000000 0x87e0 0x05000000 0x0 0x800000>;
ranges = <0x87e0 0x05000000 0x03000000 0x87e0 0x05000000 0x0 0x800000>;
mdio0@87e0,05003800 {
compatible = "cavium,thunder-8890-mdio";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x87e0 0x05003800 0x0 0x30>;
ethernet-phy@0 {
...
reg = <0>;
};
};
mdio0@87e0,05003880 {
compatible = "cavium,thunder-8890-mdio";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x87e0 0x05003880 0x0 0x30>;
ethernet-phy@0 {
...
reg = <0>;
};
};
};

View File

@ -1,8 +1,10 @@
* ARC EMAC 10/100 Ethernet platform driver for Rockchip Rk3066/RK3188 SoCs
* ARC EMAC 10/100 Ethernet platform driver for Rockchip RK3036/RK3066/RK3188 SoCs
Required properties:
- compatible: Should be "rockchip,rk3066-emac" or "rockchip,rk3188-emac"
according to the target SoC.
- compatible: should be "rockchip,<name>-emac"
"rockchip,rk3036-emac": found on RK3036 SoCs
"rockchip,rk3066-emac": found on RK3066 SoCs
"rockchip,rk3188-emac": found on RK3188 SoCs
- reg: Address and length of the register set for the device
- interrupts: Should contain the EMAC interrupts
- rockchip,grf: phandle to the syscon grf used to control speed and mode

View File

@ -12,6 +12,9 @@ Optional properties:
only if property "phy-reset-gpios" is available. Missing the property
will have the duration be 1 millisecond. Numbers greater than 1000 are
invalid and 1 millisecond will be used instead.
- phy-reset-active-high : If present then the reset sequence using the GPIO
specified in the "phy-reset-gpios" property is reversed (H=reset state,
L=operation state).
- phy-supply : regulator that powers the Ethernet PHY.
- phy-handle : phandle to the PHY device connected to this device.
- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.

View File

@ -25,6 +25,8 @@ Required properties:
Optional properties for PHY child node:
- reset-gpios : Should specify the gpio for phy reset
- magic-packet : If present, indicates that the hardware supports waking
up via magic packet.
Examples:

View File

@ -18,15 +18,30 @@ Optional properties:
"core" for core clock and "bus" for the optional bus clock.
Optional properties (valid only for Armada XP/38x):
- buffer-manager: a phandle to a buffer manager node. Please refer to
Documentation/devicetree/bindings/net/marvell-neta-bm.txt
- bm,pool-long: ID of a pool, that will accept all packets of a size
higher than 'short' pool's threshold (if set) and up to MTU value.
Obligatory, when the port is supposed to use hardware
buffer management.
- bm,pool-short: ID of a pool, that will be used for accepting
packets of a size lower than given threshold. If not set, the port
will use a single 'long' pool for all packets, as defined above.
Example:
ethernet@d0070000 {
ethernet@70000 {
compatible = "marvell,armada-370-neta";
reg = <0xd0070000 0x2500>;
reg = <0x70000 0x2500>;
interrupts = <8>;
clocks = <&gate_clk 4>;
tx-csum-limit = <9800>
status = "okay";
phy = <&phy0>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
bm,pool-short = <1>;
};

View File

@ -0,0 +1,49 @@
* Marvell Armada 380/XP Buffer Manager driver (BM)
Required properties:
- compatible: should be "marvell,armada-380-neta-bm".
- reg: address and length of the register set for the device.
- clocks: a pointer to the reference clock for this device.
- internal-mem: a phandle to BM internal SRAM definition.
Optional properties (port):
- pool<0 : 3>,capacity: size of external buffer pointers' ring maintained
in DRAM. Can be set for each pool (id 0 : 3) separately. The value has
to be chosen between 128 and 16352 and it also has to be aligned to 32.
Otherwise the driver would adjust a given number or choose default if
not set.
- pool<0 : 3>,pkt-size: maximum size of a packet accepted by a given buffer
pointers' pool (id 0 : 3). It will be taken into consideration only when pool
type is 'short'. For 'long' ones it would be overridden by port's MTU.
If not set a driver will choose a default value.
In order to see how to hook the BM to a given ethernet port, please
refer to Documentation/devicetree/bindings/net/marvell-armada-370-neta.txt.
Example:
- main node:
bm: bm@c8000 {
compatible = "marvell,armada-380-neta-bm";
reg = <0xc8000 0xac>;
clocks = <&gateclk 13>;
internal-mem = <&bm_bppi>;
status = "okay";
pool2,capacity = <4096>;
pool1,pkt-size = <512>;
};
- internal SRAM node:
bm_bppi: bm-bppi {
compatible = "mmio-sram";
reg = <MBUS_ID(0x0c, 0x04) 0 0x100000>;
ranges = <0 MBUS_ID(0x0c, 0x04) 0 0x100000>;
#address-cells = <1>;
#size-cells = <1>;
clocks = <&gateclk 13>;
status = "okay";
};

View File

@ -0,0 +1,77 @@
MediaTek Frame Engine Ethernet controller
=========================================
The frame engine ethernet controller can be found on MediaTek SoCs. These SoCs
have dual GMAC each represented by a child node..
* Ethernet controller node
Required properties:
- compatible: Should be "mediatek,mt7623-eth"
- reg: Address and length of the register set for the device
- interrupts: Should contain the frame engines interrupt
- clocks: the clock used by the core
- clock-names: the names of the clock listed in the clocks property. These are
"ethif", "esw", "gp2", "gp1"
- power-domains: phandle to the power domain that the ethernet is part of
- resets: Should contain a phandle to the ethsys reset signal
- reset-names: Should contain the reset signal name "eth"
- mediatek,ethsys: phandle to the syscon node that handles the port setup
- mediatek,pctl: phandle to the syscon node that handles the ports slew rate
and driver current
Optional properties:
- interrupt-parent: Should be the phandle for the interrupt controller
that services interrupts for this device
* Ethernet MAC node
Required properties:
- compatible: Should be "mediatek,eth-mac"
- reg: The number of the MAC
- phy-handle: see ethernet.txt file in the same directory.
Example:
eth: ethernet@1b100000 {
compatible = "mediatek,mt7623-eth";
reg = <0 0x1b100000 0 0x20000>;
clocks = <&topckgen CLK_TOP_ETHIF_SEL>,
<&ethsys CLK_ETHSYS_ESW>,
<&ethsys CLK_ETHSYS_GP2>,
<&ethsys CLK_ETHSYS_GP1>;
clock-names = "ethif", "esw", "gp2", "gp1";
interrupts = <GIC_SPI 200 IRQ_TYPE_LEVEL_LOW>;
power-domains = <&scpsys MT2701_POWER_DOMAIN_ETH>;
resets = <&ethsys MT2701_ETHSYS_ETH_RST>;
reset-names = "eth";
mediatek,ethsys = <&ethsys>;
mediatek,pctl = <&syscfg_pctl_a>;
#address-cells = <1>;
#size-cells = <0>;
gmac1: mac@0 {
compatible = "mediatek,eth-mac";
reg = <0>;
phy-handle = <&phy0>;
};
gmac2: mac@1 {
compatible = "mediatek,eth-mac";
reg = <1>;
phy-handle = <&phy1>;
};
mdio-bus {
phy0: ethernet-phy@0 {
reg = <0>;
phy-mode = "rgmii";
};
phy1: ethernet-phy@1 {
reg = <1>;
phy-mode = "rgmii";
};
};
};

View File

@ -0,0 +1,20 @@
Micrel KS8995 SPI controlled Ethernet Switch families
Required properties (according to spi-bus.txt):
- compatible: either "micrel,ks8995", "micrel,ksz8864" or "micrel,ksz8795"
Optional properties:
- reset-gpios : phandle of gpio that will be used to reset chip during probe
Example:
spi-master {
...
switch@0 {
compatible = "micrel,ksz8795";
reg = <0>;
spi-max-frequency = <50000000>;
reset-gpios = <&gpio0 46 GPIO_ACTIVE_LOW>;
};
};

View File

@ -17,7 +17,25 @@ Required properties:
The 1st cell is reset pre-delay in micro seconds.
The 2nd cell is reset pulse in micro seconds.
The 3rd cell is reset post-delay in micro seconds.
Optional properties:
- resets: Should contain a phandle to the STMMAC reset signal, if any
- reset-names: Should contain the reset signal name "stmmaceth", if a
reset phandle is given
- max-frame-size: See ethernet.txt file in the same directory
- clocks: If present, the first clock should be the GMAC main clock and
the second clock should be peripheral's register interface clock. Further
clocks may be specified in derived bindings.
- clock-names: One name for each entry in the clocks property, the
first one should be "stmmaceth" and the second one should be "pclk".
- clk_ptp_ref: this is the PTP reference clock; in case of the PTP is
available this clock is used for programming the Timestamp Addend Register.
If not passed then the system clock will be used and this is fine on some
platforms.
- tx-fifo-depth: See ethernet.txt file in the same directory
- rx-fifo-depth: See ethernet.txt file in the same directory
- snps,pbl Programmable Burst Length
- snps,aal Address-Aligned Beats
- snps,fixed-burst Program the DMA to use the fixed burst mode
- snps,mixed-burst Program the DMA to use the mixed burst mode
- snps,force_thresh_dma_mode Force DMA to use the threshold mode for
@ -29,27 +47,28 @@ Required properties:
supported by this device instance
- snps,perfect-filter-entries: Number of perfect filter entries supported
by this device instance
Optional properties:
- resets: Should contain a phandle to the STMMAC reset signal, if any
- reset-names: Should contain the reset signal name "stmmaceth", if a
reset phandle is given
- max-frame-size: See ethernet.txt file in the same directory
- clocks: If present, the first clock should be the GMAC main clock
The optional second clock should be peripheral's register interface clock.
The third optional clock should be the ptp reference clock.
Further clocks may be specified in derived bindings.
- clock-names: One name for each entry in the clocks property.
The first one should be "stmmaceth".
The optional second one should be "pclk".
The optional third one should be "clk_ptp_ref".
- snps,burst_len: The AXI burst lenth value of the AXI BUS MODE register.
- tx-fifo-depth: See ethernet.txt file in the same directory
- rx-fifo-depth: See ethernet.txt file in the same directory
- AXI BUS Mode parameters: below the list of all the parameters to program the
AXI register inside the DMA module:
- snps,lpi_en: enable Low Power Interface
- snps,xit_frm: unlock on WoL
- snps,wr_osr_lmt: max write oustanding req. limit
- snps,rd_osr_lmt: max read oustanding req. limit
- snps,kbbe: do not cross 1KiB boundary.
- snps,axi_all: align address
- snps,blen: this is a vector of supported burst length.
- snps,fb: fixed-burst
- snps,mb: mixed-burst
- snps,rb: rebuild INCRx Burst
- mdio: with compatible = "snps,dwmac-mdio", create and register mdio bus.
Examples:
stmmac_axi_setup: stmmac-axi-config {
snps,wr_osr_lmt = <0xf>;
snps,rd_osr_lmt = <0xf>;
snps,blen = <256 128 64 32 0 0 0>;
};
gmac0: ethernet@e0800000 {
compatible = "st,spear600-gmac";
reg = <0xe0800000 0x8000>;
@ -65,6 +84,7 @@ Examples:
tx-fifo-depth = <16384>;
clocks = <&clock>;
clock-names = "stmmaceth";
snps,axi-config = <&stmmac_axi_setup>;
mdio0 {
#address-cells = <1>;
#size-cells = <0>;

View File

@ -1,17 +1,46 @@
* Qualcomm Atheros ath10k wireless devices
For ath10k devices the calibration data can be provided through Device
Tree. The node is a child node of the PCI controller.
Required properties:
-compatible : Should be "qcom,ath10k"
- compatible: Should be one of the following:
* "qcom,ath10k"
* "qcom,ipq4019-wifi"
PCI based devices uses compatible string "qcom,ath10k" and takes only
calibration data via "qcom,ath10k-calibration-data". Rest of the properties
are not applicable for PCI based devices.
AHB based devices (i.e. ipq4019) uses compatible string "qcom,ipq4019-wifi"
and also uses most of the properties defined in this doc.
Optional properties:
- reg: Address and length of the register set for the device.
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reseti.txt for details.
- reset-names: Must include the list of following reset names,
"wifi_cpu_init"
"wifi_radio_srif"
"wifi_radio_warm"
"wifi_radio_cold"
"wifi_core_warm"
"wifi_core_cold"
- clocks: List of clock specifiers, must contain an entry for each required
entry in clock-names.
- clock-names: Should contain the clock names "wifi_wcss_cmd", "wifi_wcss_ref",
"wifi_wcss_rtc".
- interrupts: List of interrupt lines. Must contain an entry
for each entry in the interrupt-names property.
- interrupt-names: Must include the entries for MSI interrupt
names ("msi0" to "msi15") and legacy interrupt
name ("legacy"),
- qcom,msi_addr: MSI interrupt address.
- qcom,msi_base: Base value to add before writing MSI data into
MSI address register.
- qcom,ath10k-calibration-data : calibration data as an array, the
length can vary between hw versions
Example (to supply the calibration data alone):
Example:
In this example, the node is defined as child node of the PCI controller.
pci {
pcie@0 {
@ -28,3 +57,53 @@ pci {
};
};
};
Example (to supply ipq4019 SoC wifi block details):
wifi0: wifi@a000000 {
compatible = "qcom,ipq4019-wifi";
reg = <0xa000000 0x200000>;
resets = <&gcc WIFI0_CPU_INIT_RESET>,
<&gcc WIFI0_RADIO_SRIF_RESET>,
<&gcc WIFI0_RADIO_WARM_RESET>,
<&gcc WIFI0_RADIO_COLD_RESET>,
<&gcc WIFI0_CORE_WARM_RESET>,
<&gcc WIFI0_CORE_COLD_RESET>;
reset-names = "wifi_cpu_init",
"wifi_radio_srif",
"wifi_radio_warm",
"wifi_radio_cold",
"wifi_core_warm",
"wifi_core_cold";
clocks = <&gcc GCC_WCSS2G_CLK>,
<&gcc GCC_WCSS2G_REF_CLK>,
<&gcc GCC_WCSS2G_RTC_CLK>;
clock-names = "wifi_wcss_cmd",
"wifi_wcss_ref",
"wifi_wcss_rtc";
interrupts = <0 0x20 0x1>,
<0 0x21 0x1>,
<0 0x22 0x1>,
<0 0x23 0x1>,
<0 0x24 0x1>,
<0 0x25 0x1>,
<0 0x26 0x1>,
<0 0x27 0x1>,
<0 0x28 0x1>,
<0 0x29 0x1>,
<0 0x2a 0x1>,
<0 0x2b 0x1>,
<0 0x2c 0x1>,
<0 0x2d 0x1>,
<0 0x2e 0x1>,
<0 0x2f 0x1>,
<0 0xa8 0x0>;
interrupt-names = "msi0", "msi1", "msi2", "msi3",
"msi4", "msi5", "msi6", "msi7",
"msi8", "msi9", "msi10", "msi11",
"msi12", "msi13", "msi14", "msi15",
"legacy";
qcom,msi_addr = <0x0b006040>;
qcom,msi_base = <0x40>;
qcom,ath10k-calibration-data = [ 01 02 03 ... ];
};

View File

@ -0,0 +1,36 @@
* Texas Instruments wl1271 wireless lan controller
The wl1271 chip can be connected via SPI or via SDIO. This
document describes the binding for the SPI connected chip.
Required properties:
- compatible : Should be "ti,wl1271"
- reg : Chip select address of device
- spi-max-frequency : Maximum SPI clocking speed of device in Hz
- ref-clock-frequency : Reference clock frequency
- interrupt-parent, interrupts :
Should contain parameters for 1 interrupt line.
Interrupt parameters: parent, line number, type.
- vwlan-supply : Point the node of the regulator that powers/enable the wl1271 chip
Optional properties:
- clock-xtal : boolean, clock is generated from XTAL
- Please consult Documentation/devicetree/bindings/spi/spi-bus.txt
for optional SPI connection related properties,
Examples:
&spi1 {
wl1271@1 {
compatible = "ti,wl1271";
reg = <1>;
spi-max-frequency = <48000000>;
clock-xtal;
ref-clock-frequency = <38400000>;
interrupt-parent = <&gpio3>;
interrupts = <8 IRQ_TYPE_LEVEL_HIGH>;
vwlan-supply = <&vwlan_fixed>;
};
};

View File

@ -25,6 +25,11 @@ Required properties in the sram node:
- ranges : standard definition, should translate from local addresses
within the sram to bus addresses
Optional properties in the sram node:
- no-memory-wc : the flag indicating, that SRAM memory region has not to
be remapped as write combining. WC is used by default.
Required properties in the area nodes:
- reg : iomem address range, relative to the SRAM range

View File

@ -112,6 +112,7 @@ hp Hewlett Packard
i2se I2SE GmbH
ibm International Business Machines (IBM)
idt Integrated Device Technologies, Inc.
ifi Ingenieurburo Fur Ic-Technologie (I/F/I)
iom Iomega Corporation
img Imagination Technologies Ltd.
ingenic Ingenic Semiconductor

View File

@ -44,6 +44,8 @@ can.txt
- documentation on CAN protocol family.
cdc_mbim.txt
- 3G/LTE USB modem (Mobile Broadband Interface Model)
checksum-offloads.txt
- Explanation of checksum offloads; LCO, RCO
cops.txt
- info on the COPS LocalTalk Linux driver
cs89x0.txt

View File

@ -187,7 +187,7 @@ interfaces to the kernel module settings.
For more information, please see the manpage (man batctl).
batctl is available on http://www.open-mesh.org/
batctl is available on https://www.open-mesh.org/
CONTACT

View File

@ -0,0 +1,119 @@
Checksum Offloads in the Linux Networking Stack
Introduction
============
This document describes a set of techniques in the Linux networking stack
to take advantage of checksum offload capabilities of various NICs.
The following technologies are described:
* TX Checksum Offload
* LCO: Local Checksum Offload
* RCO: Remote Checksum Offload
Things that should be documented here but aren't yet:
* RX Checksum Offload
* CHECKSUM_UNNECESSARY conversion
TX Checksum Offload
===================
The interface for offloading a transmit checksum to a device is explained
in detail in comments near the top of include/linux/skbuff.h.
In brief, it allows to request the device fill in a single ones-complement
checksum defined by the sk_buff fields skb->csum_start and
skb->csum_offset. The device should compute the 16-bit ones-complement
checksum (i.e. the 'IP-style' checksum) from csum_start to the end of the
packet, and fill in the result at (csum_start + csum_offset).
Because csum_offset cannot be negative, this ensures that the previous
value of the checksum field is included in the checksum computation, thus
it can be used to supply any needed corrections to the checksum (such as
the sum of the pseudo-header for UDP or TCP).
This interface only allows a single checksum to be offloaded. Where
encapsulation is used, the packet may have multiple checksum fields in
different header layers, and the rest will have to be handled by another
mechanism such as LCO or RCO.
No offloading of the IP header checksum is performed; it is always done in
software. This is OK because when we build the IP header, we obviously
have it in cache, so summing it isn't expensive. It's also rather short.
The requirements for GSO are more complicated, because when segmenting an
encapsulated packet both the inner and outer checksums may need to be
edited or recomputed for each resulting segment. See the skbuff.h comment
(section 'E') for more details.
A driver declares its offload capabilities in netdev->hw_features; see
Documentation/networking/netdev-features for more. Note that a device
which only advertises NETIF_F_IP[V6]_CSUM must still obey the csum_start
and csum_offset given in the SKB; if it tries to deduce these itself in
hardware (as some NICs do) the driver should check that the values in the
SKB match those which the hardware will deduce, and if not, fall back to
checksumming in software instead (with skb_checksum_help or one of the
skb_csum_off_chk* functions as mentioned in include/linux/skbuff.h). This
is a pain, but that's what you get when hardware tries to be clever.
The stack should, for the most part, assume that checksum offload is
supported by the underlying device. The only place that should check is
validate_xmit_skb(), and the functions it calls directly or indirectly.
That function compares the offload features requested by the SKB (which
may include other offloads besides TX Checksum Offload) and, if they are
not supported or enabled on the device (determined by netdev->features),
performs the corresponding offload in software. In the case of TX
Checksum Offload, that means calling skb_checksum_help(skb).
LCO: Local Checksum Offload
===========================
LCO is a technique for efficiently computing the outer checksum of an
encapsulated datagram when the inner checksum is due to be offloaded.
The ones-complement sum of a correctly checksummed TCP or UDP packet is
equal to the sum of the pseudo header, because everything else gets
'cancelled out' by the checksum field. This is because the sum was
complemented before being written to the checksum field.
More generally, this holds in any case where the 'IP-style' ones complement
checksum is used, and thus any checksum that TX Checksum Offload supports.
That is, if we have set up TX Checksum Offload with a start/offset pair, we
know that _after the device has filled in that checksum_, the ones
complement sum from csum_start to the end of the packet will be equal to
_whatever value we put in the checksum field beforehand_. This allows us
to compute the outer checksum without looking at the payload: we simply
stop summing when we get to csum_start, then add the 16-bit word at
(csum_start + csum_offset).
Then, when the true inner checksum is filled in (either by hardware or by
skb_checksum_help()), the outer checksum will become correct by virtue of
the arithmetic.
LCO is performed by the stack when constructing an outer UDP header for an
encapsulation such as VXLAN or GENEVE, in udp_set_csum(). Similarly for
the IPv6 equivalents, in udp6_set_csum().
It is also performed when constructing an IPv4 GRE header, in
net/ipv4/ip_gre.c:build_header(). It is *not* currently performed when
constructing an IPv6 GRE header; the GRE checksum is computed over the
whole packet in net/ipv6/ip6_gre.c:ip6gre_xmit2(), but it should be
possible to use LCO here as IPv6 GRE still uses an IP-style checksum.
All of the LCO implementations use a helper function lco_csum(), in
include/linux/skbuff.h.
LCO can safely be used for nested encapsulations; in this case, the outer
encapsulation layer will sum over both its own header and the 'middle'
header. This does mean that the 'middle' header will get summed multiple
times, but there doesn't seem to be a way to avoid that without incurring
bigger costs (e.g. in SKB bloat).
RCO: Remote Checksum Offload
============================
RCO is a technique for eliding the inner checksum of an encapsulated
datagram, allowing the outer checksum to be offloaded. It does, however,
involve a change to the encapsulation protocols, which the receiver must
also support. For this reason, it is disabled by default.
RCO is detailed in the following Internet-Drafts:
https://tools.ietf.org/html/draft-herbert-remotecsumoffload-00
https://tools.ietf.org/html/draft-herbert-vxlan-rco-00
In Linux, RCO is implemented individually in each encapsulation protocol,
and most tunnel types have flags controlling its use. For instance, VXLAN
has the flag VXLAN_F_REMCSUM_TX (per struct vxlan_rdst) to indicate that
RCO should be used when transmitting to a given remote destination.

View File

@ -521,20 +521,17 @@ See Documentation/hwmon/sysfs-interface for details.
Bridge layer
------------
- port_join_bridge: bridge layer function invoked when a given switch port is
- port_bridge_join: bridge layer function invoked when a given switch port is
added to a bridge, this function should be doing the necessary at the switch
level to permit the joining port from being added to the relevant logical
domain for it to ingress/egress traffic with other members of the bridge. DSA
does nothing but calculate a bitmask of switch ports currently members of the
specified bridge being requested the join
domain for it to ingress/egress traffic with other members of the bridge.
- port_leave_bridge: bridge layer function invoked when a given switch port is
- port_bridge_leave: bridge layer function invoked when a given switch port is
removed from a bridge, this function should be doing the necessary at the
switch level to deny the leaving port from ingress/egress traffic from the
remaining bridge members. When the port leaves the bridge, it should be aged
out at the switch hardware for the switch to (re) learn MAC addresses behind
this port. DSA calculates the bitmask of ports still members of the bridge
being left
this port.
- port_stp_update: bridge layer function invoked when a given switch port STP
state is computed by the bridge layer and should be propagated to switch
@ -545,20 +542,15 @@ Bridge layer
Bridge VLAN filtering
---------------------
- port_pvid_get: bridge layer function invoked when a Port-based VLAN ID is
queried for the given switch port
- port_pvid_set: bridge layer function invoked when a Port-based VLAN ID needs
to be configured on the given switch port
- port_vlan_add: bridge layer function invoked when a VLAN is configured
(tagged or untagged) for the given switch port
- port_vlan_del: bridge layer function invoked when a VLAN is removed from the
given switch port
- vlan_getnext: bridge layer function invoked to query the next configured VLAN
in the switch, i.e. returns the bitmaps of members and untagged ports
- port_vlan_dump: bridge layer function invoked with a switchdev callback
function that the driver has to call for each VLAN the given port is a member
of. A switchdev object is used to carry the VID and bridge flags.
- port_fdb_add: bridge layer function invoked when the bridge wants to install a
Forwarding Database entry, the switch hardware should be programmed with the

View File

@ -1216,6 +1216,19 @@ promote_secondaries - BOOLEAN
promote a corresponding secondary IP address instead of
removing all the corresponding secondary IP addresses.
drop_unicast_in_l2_multicast - BOOLEAN
Drop any unicast IP packets that are received in link-layer
multicast (or broadcast) frames.
This behavior (for multicast) is actually a SHOULD in RFC
1122, but is disabled by default for compatibility reasons.
Default: off (0)
drop_gratuitous_arp - BOOLEAN
Drop all gratuitous ARP frames, for example if there's a known
good ARP proxy on the network and such frames need not be used
(or in the case of 802.11, must not be used to prevent attacks.)
Default: off (0)
tag - INTEGER
Allows you to write a number, which can be used as required.
@ -1550,6 +1563,15 @@ temp_prefered_lft - INTEGER
Preferred lifetime (in seconds) for temporary addresses.
Default: 86400 (1 day)
keep_addr_on_down - INTEGER
Keep all IPv6 addresses on an interface down event. If set static
global addresses with no expiration time are not flushed.
>0 : enabled
0 : system default
<0 : disabled
Default: 0 (addresses are removed)
max_desync_factor - INTEGER
Maximum value for DESYNC_FACTOR, which is a random value
that ensures that clients don't synchronize with each
@ -1661,6 +1683,19 @@ stable_secret - IPv6 address
By default the stable secret is unset.
drop_unicast_in_l2_multicast - BOOLEAN
Drop any unicast IPv6 packets that are received in link-layer
multicast (or broadcast) frames.
By default this is turned off.
drop_unsolicited_na - BOOLEAN
Drop all unsolicited neighbor advertisements, for example if there's
a known good NA proxy on the network and such frames need not be used
(or in the case of 802.11, must not be used to prevent attacks.)
By default this is turned off.
icmp/*:
ratelimit - INTEGER
Limit the maximal rates for sending ICMPv6 packets.

View File

@ -0,0 +1,285 @@
Kernel Connection Mulitplexor
-----------------------------
Kernel Connection Multiplexor (KCM) is a mechanism that provides a message based
interface over TCP for generic application protocols. With KCM an application
can efficiently send and receive application protocol messages over TCP using
datagram sockets.
KCM implements an NxM multiplexor in the kernel as diagrammed below:
+------------+ +------------+ +------------+ +------------+
| KCM socket | | KCM socket | | KCM socket | | KCM socket |
+------------+ +------------+ +------------+ +------------+
| | | |
+-----------+ | | +----------+
| | | |
+----------------------------------+
| Multiplexor |
+----------------------------------+
| | | | |
+---------+ | | | ------------+
| | | | |
+----------+ +----------+ +----------+ +----------+ +----------+
| Psock | | Psock | | Psock | | Psock | | Psock |
+----------+ +----------+ +----------+ +----------+ +----------+
| | | | |
+----------+ +----------+ +----------+ +----------+ +----------+
| TCP sock | | TCP sock | | TCP sock | | TCP sock | | TCP sock |
+----------+ +----------+ +----------+ +----------+ +----------+
KCM sockets
-----------
The KCM sockets provide the user interface to the muliplexor. All the KCM sockets
bound to a multiplexor are considered to have equivalent function, and I/O
operations in different sockets may be done in parallel without the need for
synchronization between threads in userspace.
Multiplexor
-----------
The multiplexor provides the message steering. In the transmit path, messages
written on a KCM socket are sent atomically on an appropriate TCP socket.
Similarly, in the receive path, messages are constructed on each TCP socket
(Psock) and complete messages are steered to a KCM socket.
TCP sockets & Psocks
--------------------
TCP sockets may be bound to a KCM multiplexor. A Psock structure is allocated
for each bound TCP socket, this structure holds the state for constructing
messages on receive as well as other connection specific information for KCM.
Connected mode semantics
------------------------
Each multiplexor assumes that all attached TCP connections are to the same
destination and can use the different connections for load balancing when
transmitting. The normal send and recv calls (include sendmmsg and recvmmsg)
can be used to send and receive messages from the KCM socket.
Socket types
------------
KCM supports SOCK_DGRAM and SOCK_SEQPACKET socket types.
Message delineation
-------------------
Messages are sent over a TCP stream with some application protocol message
format that typically includes a header which frames the messages. The length
of a received message can be deduced from the application protocol header
(often just a simple length field).
A TCP stream must be parsed to determine message boundaries. Berkeley Packet
Filter (BPF) is used for this. When attaching a TCP socket to a multiplexor a
BPF program must be specified. The program is called at the start of receiving
a new message and is given an skbuff that contains the bytes received so far.
It parses the message header and returns the length of the message. Given this
information, KCM will construct the message of the stated length and deliver it
to a KCM socket.
TCP socket management
---------------------
When a TCP socket is attached to a KCM multiplexor data ready (POLLIN) and
write space available (POLLOUT) events are handled by the multiplexor. If there
is a state change (disconnection) or other error on a TCP socket, an error is
posted on the TCP socket so that a POLLERR event happens and KCM discontinues
using the socket. When the application gets the error notification for a
TCP socket, it should unattach the socket from KCM and then handle the error
condition (the typical response is to close the socket and create a new
connection if necessary).
KCM limits the maximum receive message size to be the size of the receive
socket buffer on the attached TCP socket (the socket buffer size can be set by
SO_RCVBUF). If the length of a new message reported by the BPF program is
greater than this limit a corresponding error (EMSGSIZE) is posted on the TCP
socket. The BPF program may also enforce a maximum messages size and report an
error when it is exceeded.
A timeout may be set for assembling messages on a receive socket. The timeout
value is taken from the receive timeout of the attached TCP socket (this is set
by SO_RCVTIMEO). If the timer expires before assembly is complete an error
(ETIMEDOUT) is posted on the socket.
User interface
==============
Creating a multiplexor
----------------------
A new multiplexor and initial KCM socket is created by a socket call:
socket(AF_KCM, type, protocol)
- type is either SOCK_DGRAM or SOCK_SEQPACKET
- protocol is KCMPROTO_CONNECTED
Cloning KCM sockets
-------------------
After the first KCM socket is created using the socket call as described
above, additional sockets for the multiplexor can be created by cloning
a KCM socket. This is accomplished by an ioctl on a KCM socket:
/* From linux/kcm.h */
struct kcm_clone {
int fd;
};
struct kcm_clone info;
memset(&info, 0, sizeof(info));
err = ioctl(kcmfd, SIOCKCMCLONE, &info);
if (!err)
newkcmfd = info.fd;
Attach transport sockets
------------------------
Attaching of transport sockets to a multiplexor is performed by calling an
ioctl on a KCM socket for the multiplexor. e.g.:
/* From linux/kcm.h */
struct kcm_attach {
int fd;
int bpf_fd;
};
struct kcm_attach info;
memset(&info, 0, sizeof(info));
info.fd = tcpfd;
info.bpf_fd = bpf_prog_fd;
ioctl(kcmfd, SIOCKCMATTACH, &info);
The kcm_attach structure contains:
fd: file descriptor for TCP socket being attached
bpf_prog_fd: file descriptor for compiled BPF program downloaded
Unattach transport sockets
--------------------------
Unattaching a transport socket from a multiplexor is straightforward. An
"unattach" ioctl is done with the kcm_unattach structure as the argument:
/* From linux/kcm.h */
struct kcm_unattach {
int fd;
};
struct kcm_unattach info;
memset(&info, 0, sizeof(info));
info.fd = cfd;
ioctl(fd, SIOCKCMUNATTACH, &info);
Disabling receive on KCM socket
-------------------------------
A setsockopt is used to disable or enable receiving on a KCM socket.
When receive is disabled, any pending messages in the socket's
receive buffer are moved to other sockets. This feature is useful
if an application thread knows that it will be doing a lot of
work on a request and won't be able to service new messages for a
while. Example use:
int val = 1;
setsockopt(kcmfd, SOL_KCM, KCM_RECV_DISABLE, &val, sizeof(val))
BFP programs for message delineation
------------------------------------
BPF programs can be compiled using the BPF LLVM backend. For exmple,
the BPF program for parsing Thrift is:
#include "bpf.h" /* for __sk_buff */
#include "bpf_helpers.h" /* for load_word intrinsic */
SEC("socket_kcm")
int bpf_prog1(struct __sk_buff *skb)
{
return load_word(skb, 0) + 4;
}
char _license[] SEC("license") = "GPL";
Use in applications
===================
KCM accelerates application layer protocols. Specifically, it allows
applications to use a message based interface for sending and receiving
messages. The kernel provides necessary assurances that messages are sent
and received atomically. This relieves much of the burden applications have
in mapping a message based protocol onto the TCP stream. KCM also make
application layer messages a unit of work in the kernel for the purposes of
steerng and scheduling, which in turn allows a simpler networking model in
multithreaded applications.
Configurations
--------------
In an Nx1 configuration, KCM logically provides multiple socket handles
to the same TCP connection. This allows parallelism between in I/O
operations on the TCP socket (for instance copyin and copyout of data is
parallelized). In an application, a KCM socket can be opened for each
processing thread and inserted into the epoll (similar to how SO_REUSEPORT
is used to allow multiple listener sockets on the same port).
In a MxN configuration, multiple connections are established to the
same destination. These are used for simple load balancing.
Message batching
----------------
The primary purpose of KCM is load balancing between KCM sockets and hence
threads in a nominal use case. Perfect load balancing, that is steering
each received message to a different KCM socket or steering each sent
message to a different TCP socket, can negatively impact performance
since this doesn't allow for affinities to be established. Balancing
based on groups, or batches of messages, can be beneficial for performance.
On transmit, there are three ways an application can batch (pipeline)
messages on a KCM socket.
1) Send multiple messages in a single sendmmsg.
2) Send a group of messages each with a sendmsg call, where all messages
except the last have MSG_BATCH in the flags of sendmsg call.
3) Create "super message" composed of multiple messages and send this
with a single sendmsg.
On receive, the KCM module attempts to queue messages received on the
same KCM socket during each TCP ready callback. The targeted KCM socket
changes at each receive ready callback on the KCM socket. The application
does not need to configure this.
Error handling
--------------
An application should include a thread to monitor errors raised on
the TCP connection. Normally, this will be done by placing each
TCP socket attached to a KCM multiplexor in epoll set for POLLERR
event. If an error occurs on an attached TCP socket, KCM sets an EPIPE
on the socket thus waking up the application thread. When the application
sees the error (which may just be a disconnect) it should unattach the
socket from KCM and then close it. It is assumed that once an error is
posted on the TCP socket the data stream is unrecoverable (i.e. an error
may have occurred in in the middle of receiving a messssge).
TCP connection monitoring
-------------------------
In KCM there is no means to correlate a message to the TCP socket that
was used to send or receive the message (except in the case there is
only one attached TCP socket). However, the application does retain
an open file descriptor to the socket so it will be able to get statistics
from the socket which can be used in detecting issues (such as high
retransmissions on the socket).

View File

@ -28,6 +28,23 @@ radiotap headers and used to control injection:
IEEE80211_RADIOTAP_F_TX_NOACK: frame should be sent without waiting for
an ACK even if it is a unicast frame
* IEEE80211_RADIOTAP_RATE
legacy rate for the transmission (only for devices without own rate control)
* IEEE80211_RADIOTAP_MCS
HT rate for the transmission (only for devices without own rate control).
Also some flags are parsed
IEEE80211_TX_RC_SHORT_GI: use short guard interval
IEEE80211_TX_RC_40_MHZ_WIDTH: send in HT40 mode
* IEEE80211_RADIOTAP_DATA_RETRIES
number of retries when either IEEE80211_RADIOTAP_RATE or
IEEE80211_RADIOTAP_MCS was used
The injection code can also skip all other currently defined radiotap fields
facilitating replay of captured radiotap headers directly.

View File

@ -1,332 +0,0 @@
This file documents how to use memory mapped I/O with netlink.
Author: Patrick McHardy <kaber@trash.net>
Overview
--------
Memory mapped netlink I/O can be used to increase throughput and decrease
overhead of unicast receive and transmit operations. Some netlink subsystems
require high throughput, these are mainly the netfilter subsystems
nfnetlink_queue and nfnetlink_log, but it can also help speed up large
dump operations of f.i. the routing database.
Memory mapped netlink I/O used two circular ring buffers for RX and TX which
are mapped into the processes address space.
The RX ring is used by the kernel to directly construct netlink messages into
user-space memory without copying them as done with regular socket I/O,
additionally as long as the ring contains messages no recvmsg() or poll()
syscalls have to be issued by user-space to get more message.
The TX ring is used to process messages directly from user-space memory, the
kernel processes all messages contained in the ring using a single sendmsg()
call.
Usage overview
--------------
In order to use memory mapped netlink I/O, user-space needs three main changes:
- ring setup
- conversion of the RX path to get messages from the ring instead of recvmsg()
- conversion of the TX path to construct messages into the ring
Ring setup is done using setsockopt() to provide the ring parameters to the
kernel, then a call to mmap() to map the ring into the processes address space:
- setsockopt(fd, SOL_NETLINK, NETLINK_RX_RING, &params, sizeof(params));
- setsockopt(fd, SOL_NETLINK, NETLINK_TX_RING, &params, sizeof(params));
- ring = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)
Usage of either ring is optional, but even if only the RX ring is used the
mapping still needs to be writable in order to update the frame status after
processing.
Conversion of the reception path involves calling poll() on the file
descriptor, once the socket is readable the frames from the ring are
processed in order until no more messages are available, as indicated by
a status word in the frame header.
On kernel side, in order to make use of memory mapped I/O on receive, the
originating netlink subsystem needs to support memory mapped I/O, otherwise
it will use an allocated socket buffer as usual and the contents will be
copied to the ring on transmission, nullifying most of the performance gains.
Dumps of kernel databases automatically support memory mapped I/O.
Conversion of the transmit path involves changing message construction to
use memory from the TX ring instead of (usually) a buffer declared on the
stack and setting up the frame header appropriately. Optionally poll() can
be used to wait for free frames in the TX ring.
Structured and definitions for using memory mapped I/O are contained in
<linux/netlink.h>.
RX and TX rings
----------------
Each ring contains a number of continuous memory blocks, containing frames of
fixed size dependent on the parameters used for ring setup.
Ring: [ block 0 ]
[ frame 0 ]
[ frame 1 ]
[ block 1 ]
[ frame 2 ]
[ frame 3 ]
...
[ block n ]
[ frame 2 * n ]
[ frame 2 * n + 1 ]
The blocks are only visible to the kernel, from the point of view of user-space
the ring just contains the frames in a continuous memory zone.
The ring parameters used for setting up the ring are defined as follows:
struct nl_mmap_req {
unsigned int nm_block_size;
unsigned int nm_block_nr;
unsigned int nm_frame_size;
unsigned int nm_frame_nr;
};
Frames are grouped into blocks, where each block is a continuous region of memory
and holds nm_block_size / nm_frame_size frames. The total number of frames in
the ring is nm_frame_nr. The following invariants hold:
- frames_per_block = nm_block_size / nm_frame_size
- nm_frame_nr = frames_per_block * nm_block_nr
Some parameters are constrained, specifically:
- nm_block_size must be a multiple of the architectures memory page size.
The getpagesize() function can be used to get the page size.
- nm_frame_size must be equal or larger to NL_MMAP_HDRLEN, IOW a frame must be
able to hold at least the frame header
- nm_frame_size must be smaller or equal to nm_block_size
- nm_frame_size must be a multiple of NL_MMAP_MSG_ALIGNMENT
- nm_frame_nr must equal the actual number of frames as specified above.
When the kernel can't allocate physically continuous memory for a ring block,
it will fall back to use physically discontinuous memory. This might affect
performance negatively, in order to avoid this the nm_frame_size parameter
should be chosen to be as small as possible for the required frame size and
the number of blocks should be increased instead.
Ring frames
------------
Each frames contain a frame header, consisting of a synchronization word and some
meta-data, and the message itself.
Frame: [ header message ]
The frame header is defined as follows:
struct nl_mmap_hdr {
unsigned int nm_status;
unsigned int nm_len;
__u32 nm_group;
/* credentials */
__u32 nm_pid;
__u32 nm_uid;
__u32 nm_gid;
};
- nm_status is used for synchronizing processing between the kernel and user-
space and specifies ownership of the frame as well as the operation to perform
- nm_len contains the length of the message contained in the data area
- nm_group specified the destination multicast group of message
- nm_pid, nm_uid and nm_gid contain the netlink pid, UID and GID of the sending
process. These values correspond to the data available using SOCK_PASSCRED in
the SCM_CREDENTIALS cmsg.
The possible values in the status word are:
- NL_MMAP_STATUS_UNUSED:
RX ring: frame belongs to the kernel and contains no message
for user-space. Approriate action is to invoke poll()
to wait for new messages.
TX ring: frame belongs to user-space and can be used for
message construction.
- NL_MMAP_STATUS_RESERVED:
RX ring only: frame is currently used by the kernel for message
construction and contains no valid message yet.
Appropriate action is to invoke poll() to wait for
new messages.
- NL_MMAP_STATUS_VALID:
RX ring: frame contains a valid message. Approriate action is
to process the message and release the frame back to
the kernel by setting the status to
NL_MMAP_STATUS_UNUSED or queue the frame by setting the
status to NL_MMAP_STATUS_SKIP.
TX ring: the frame contains a valid message from user-space to
be processed by the kernel. After completing processing
the kernel will release the frame back to user-space by
setting the status to NL_MMAP_STATUS_UNUSED.
- NL_MMAP_STATUS_COPY:
RX ring only: a message is ready to be processed but could not be
stored in the ring, either because it exceeded the
frame size or because the originating subsystem does
not support memory mapped I/O. Appropriate action is
to invoke recvmsg() to receive the message and release
the frame back to the kernel by setting the status to
NL_MMAP_STATUS_UNUSED.
- NL_MMAP_STATUS_SKIP:
RX ring only: user-space queued the message for later processing, but
processed some messages following it in the ring. The
kernel should skip this frame when looking for unused
frames.
The data area of a frame begins at a offset of NL_MMAP_HDRLEN relative to the
frame header.
TX limitations
--------------
As of Jan 2015 the message is always copied from the ring frame to an
allocated buffer due to unresolved security concerns.
See commit 4682a0358639b29cf ("netlink: Always copy on mmap TX.").
Example
-------
Ring setup:
unsigned int block_size = 16 * getpagesize();
struct nl_mmap_req req = {
.nm_block_size = block_size,
.nm_block_nr = 64,
.nm_frame_size = 16384,
.nm_frame_nr = 64 * block_size / 16384,
};
unsigned int ring_size;
void *rx_ring, *tx_ring;
/* Configure ring parameters */
if (setsockopt(fd, SOL_NETLINK, NETLINK_RX_RING, &req, sizeof(req)) < 0)
exit(1);
if (setsockopt(fd, SOL_NETLINK, NETLINK_TX_RING, &req, sizeof(req)) < 0)
exit(1)
/* Calculate size of each individual ring */
ring_size = req.nm_block_nr * req.nm_block_size;
/* Map RX/TX rings. The TX ring is located after the RX ring */
rx_ring = mmap(NULL, 2 * ring_size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if ((long)rx_ring == -1L)
exit(1);
tx_ring = rx_ring + ring_size:
Message reception:
This example assumes some ring parameters of the ring setup are available.
unsigned int frame_offset = 0;
struct nl_mmap_hdr *hdr;
struct nlmsghdr *nlh;
unsigned char buf[16384];
ssize_t len;
while (1) {
struct pollfd pfds[1];
pfds[0].fd = fd;
pfds[0].events = POLLIN | POLLERR;
pfds[0].revents = 0;
if (poll(pfds, 1, -1) < 0 && errno != -EINTR)
exit(1);
/* Check for errors. Error handling omitted */
if (pfds[0].revents & POLLERR)
<handle error>
/* If no new messages, poll again */
if (!(pfds[0].revents & POLLIN))
continue;
/* Process all frames */
while (1) {
/* Get next frame header */
hdr = rx_ring + frame_offset;
if (hdr->nm_status == NL_MMAP_STATUS_VALID) {
/* Regular memory mapped frame */
nlh = (void *)hdr + NL_MMAP_HDRLEN;
len = hdr->nm_len;
/* Release empty message immediately. May happen
* on error during message construction.
*/
if (len == 0)
goto release;
} else if (hdr->nm_status == NL_MMAP_STATUS_COPY) {
/* Frame queued to socket receive queue */
len = recv(fd, buf, sizeof(buf), MSG_DONTWAIT);
if (len <= 0)
break;
nlh = buf;
} else
/* No more messages to process, continue polling */
break;
process_msg(nlh);
release:
/* Release frame back to the kernel */
hdr->nm_status = NL_MMAP_STATUS_UNUSED;
/* Advance frame offset to next frame */
frame_offset = (frame_offset + frame_size) % ring_size;
}
}
Message transmission:
This example assumes some ring parameters of the ring setup are available.
A single message is constructed and transmitted, to send multiple messages
at once they would be constructed in consecutive frames before a final call
to sendto().
unsigned int frame_offset = 0;
struct nl_mmap_hdr *hdr;
struct nlmsghdr *nlh;
struct sockaddr_nl addr = {
.nl_family = AF_NETLINK,
};
hdr = tx_ring + frame_offset;
if (hdr->nm_status != NL_MMAP_STATUS_UNUSED)
/* No frame available. Use poll() to avoid. */
exit(1);
nlh = (void *)hdr + NL_MMAP_HDRLEN;
/* Build message */
build_message(nlh);
/* Fill frame header: length and status need to be set */
hdr->nm_len = nlh->nlmsg_len;
hdr->nm_status = NL_MMAP_STATUS_VALID;
if (sendto(fd, NULL, 0, 0, &addr, sizeof(addr)) < 0)
exit(1);
/* Advance frame offset to next frame */
frame_offset = (frame_offset + frame_size) % ring_size;

View File

@ -267,13 +267,23 @@ Writing a PHY driver
config_intr: Enable or disable interrupts
remove: Does any driver take-down
ts_info: Queries about the HW timestamping status
match_phy_device: used for Clause 45 capable PHYs to match devices
in package and ensure they are compatible
hwtstamp: Set the PHY HW timestamping configuration
rxtstamp: Requests a receive timestamp at the PHY level for a 'skb'
txtsamp: Requests a transmit timestamp at the PHY level for a 'skb'
set_wol: Enable Wake-on-LAN at the PHY level
get_wol: Get the Wake-on-LAN status at the PHY level
link_change_notify: called to inform the core is about to change the
link state, can be used to work around bogus PHY between state changes
read_mmd_indirect: Read PHY MMD indirect register
write_mmd_indirect: Write PHY MMD indirect register
module_info: Get the size and type of an EEPROM contained in an plug-in
module
module_eeprom: Get EEPROM information of a plug-in module
get_sset_count: Get number of strings sets that get_strings will count
get_strings: Get strings from requested objects (statistics)
get_stats: Get the extended statistics from the PHY device
Of these, only config_aneg and read_status are required to be
assigned by the driver code. The rest are optional. Also, it is

View File

@ -19,9 +19,7 @@ to N*N if you use a connection-oriented socket transport like TCP.
RDS is not Infiniband-specific; it was designed to support different
transports. The current implementation used to support RDS over TCP as well
as IB. Work is in progress to support RDS over iWARP, and using DCE to
guarantee no dropped packets on Ethernet, it may be possible to use RDS over
UDP in the future.
as IB.
The high-level semantics of RDS from the application's point of view are

View File

@ -83,6 +83,8 @@ rfkill drivers that control devices that can be hard-blocked unless they also
assign the poll_hw_block() callback (then the rfkill core will poll the
device). Don't do this unless you cannot get the event in any other way.
RFKill provides per-switch LED triggers, which can be used to drive LEDs
according to the switch state (LED_FULL when blocked, LED_OFF otherwise).
5. Userspace support

View File

@ -151,7 +151,7 @@ S: Maintained
F: drivers/scsi/53c700*
6LOWPAN GENERIC (BTLE/IEEE 802.15.4)
M: Alexander Aring <alex.aring@gmail.com>
M: Alexander Aring <aar@pengutronix.de>
M: Jukka Rissanen <jukka.rissanen@linux.intel.com>
L: linux-bluetooth@vger.kernel.org
L: linux-wpan@vger.kernel.org
@ -2176,7 +2176,8 @@ M: Marek Lindner <mareklindner@neomailbox.ch>
M: Simon Wunderlich <sw@simonwunderlich.de>
M: Antonio Quartulli <a@unstable.cc>
L: b.a.t.m.a.n@lists.open-mesh.org
W: http://www.open-mesh.org/
W: https://www.open-mesh.org/
Q: https://patchwork.open-mesh.org/project/batman/list/
S: Maintained
F: net/batman-adv/
@ -2447,6 +2448,7 @@ F: include/linux/bcm963xx_nvram.h
F: include/linux/bcm963xx_tag.h
BROADCOM TG3 GIGABIT ETHERNET DRIVER
M: Siva Reddy Kallam <siva.kallam@broadcom.com>
M: Prashant Sreedharan <prashant@broadcom.com>
M: Michael Chan <mchan@broadcom.com>
L: netdev@vger.kernel.org
@ -3523,6 +3525,14 @@ F: include/linux/device-mapper.h
F: include/linux/dm-*.h
F: include/uapi/linux/dm-*.h
DEVLINK
M: Jiri Pirko <jiri@mellanox.com>
L: netdev@vger.kernel.org
S: Supported
F: net/core/devlink.c
F: include/net/devlink.h
F: include/uapi/linux/devlink.h
DIALOG SEMICONDUCTOR DRIVERS
M: Support Opensource <support.opensource@diasemi.com>
W: http://www.dialog-semiconductor.com/products
@ -5447,10 +5457,11 @@ S: Supported
F: drivers/idle/i7300_idle.c
IEEE 802.15.4 SUBSYSTEM
M: Alexander Aring <alex.aring@gmail.com>
M: Alexander Aring <aar@pengutronix.de>
L: linux-wpan@vger.kernel.org
W: https://github.com/linux-wpan
T: git git://github.com/linux-wpan/linux-wpan-next.git
W: http://wpan.cakelab.org/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next.git
S: Maintained
F: net/ieee802154/
F: net/mac802154/
@ -7043,6 +7054,13 @@ F: include/uapi/linux/meye.h
F: include/uapi/linux/ivtv*
F: include/uapi/linux/uvcvideo.h
MEDIATEK ETHERNET DRIVER
M: Felix Fietkau <nbd@openwrt.org>
M: John Crispin <blogic@openwrt.org>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ethernet/mediatek/
MEDIATEK MT7601U WIRELESS LAN DRIVER
M: Jakub Kicinski <kubakici@wp.pl>
L: linux-wireless@vger.kernel.org
@ -7540,7 +7558,6 @@ F: net/netrom/
NETRONOME ETHERNET DRIVERS
M: Jakub Kicinski <jakub.kicinski@netronome.com>
M: Rolf Neugebauer <rolf.neugebauer@netronome.com>
L: oss-drivers@netronome.com
S: Maintained
F: drivers/net/ethernet/netronome/
@ -7677,7 +7694,6 @@ F: net/nfc/
F: include/net/nfc/
F: include/uapi/linux/nfc.h
F: drivers/nfc/
F: include/linux/platform_data/microread.h
F: include/linux/platform_data/nfcmrvl.h
F: include/linux/platform_data/nxp-nci.h
F: include/linux/platform_data/pn544.h
@ -9138,10 +9154,14 @@ S: Maintained
F: drivers/net/ethernet/rdc/r6040.c
RDS - RELIABLE DATAGRAM SOCKETS
M: Chien Yen <chien.yen@oracle.com>
M: Santosh Shilimkar <santosh.shilimkar@oracle.com>
L: netdev@vger.kernel.org
L: linux-rdma@vger.kernel.org
L: rds-devel@oss.oracle.com (moderated for non-subscribers)
W: https://oss.oracle.com/projects/rds/
S: Supported
F: net/rds/
F: Documentation/networking/rds.txt
READ-COPY UPDATE (RCU)
M: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
@ -9542,6 +9562,7 @@ F: drivers/media/i2c/s5k5baf.c
SAMSUNG S3FWRN5 NFC DRIVER
M: Robert Baldyga <r.baldyga@samsung.com>
M: Krzysztof Opasiak <k.opasiak@samsung.com>
L: linux-nfc@lists.01.org (moderated for non-subscribers)
S: Supported
F: drivers/nfc/s3fwrn5
@ -11405,6 +11426,13 @@ S: Maintained
F: drivers/usb/host/isp116x*
F: include/linux/usb/isp116x.h
USB LAN78XX ETHERNET DRIVER
M: Woojung Huh <woojung.huh@microchip.com>
M: Microchip Linux Driver Support <UNGLinuxDriver@microchip.com>
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/usb/lan78xx.*
USB MASS STORAGE DRIVER
M: Matthew Dharm <mdharm-usb@one-eyed-alien.net>
L: linux-usb@vger.kernel.org

View File

@ -13,14 +13,11 @@ extern __sum16 ip_fast_csum(const void *iph, unsigned int ihl);
* computes the checksum of the TCP/UDP pseudo-header
* returns a 16-bit checksum, already complemented
*/
extern __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum);
__sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len, unsigned short proto,
__wsum sum);
__u32 len, __u8 proto, __wsum sum);
/*
* computes the checksum of a memory block at buff, length len,
@ -70,6 +67,5 @@ static inline __sum16 csum_fold(__wsum csum)
#define _HAVE_ARCH_IPV6_CSUM
extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum);
__u32 len, __u8 proto, __wsum sum);
#endif

View File

@ -95,4 +95,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _UAPI_ASM_SOCKET_H */

View File

@ -42,9 +42,7 @@ static inline unsigned short from64to16(unsigned long x)
* returns a 16-bit checksum, already complemented.
*/
__sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
return (__force __sum16)~from64to16(
(__force u64)saddr + (__force u64)daddr +
@ -52,9 +50,7 @@ __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
}
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
unsigned long result;

View File

@ -70,8 +70,8 @@ ip_fast_csum(const void *iph, unsigned int ihl)
* SA [4], DA [4], zeroes [1], Proto[1], TCP Seg(hdr+data) Len [2]
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
__asm__ __volatile__(
" add.f %0, %0, %1 \n"

View File

@ -61,7 +61,8 @@ soc {
ranges = <MBUS_ID(0xf0, 0x01) 0 0xf1000000 0x100000
MBUS_ID(0x01, 0x1d) 0 0xfff00000 0x100000
MBUS_ID(0x09, 0x19) 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0xf1200000 0x100000>;
internal-regs {
spi1: spi@10680 {
@ -138,12 +139,18 @@ ethernet@30000 {
status = "okay";
phy = <&phy2>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <1>;
bm,pool-short = <3>;
};
ethernet@34000 {
status = "okay";
phy = <&phy1>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <2>;
bm,pool-short = <3>;
};
ethernet@70000 {
@ -157,6 +164,13 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
bm,pool-short = <3>;
};
bm@c8000 {
status = "okay";
};
nfc: flash@d0000 {
@ -178,6 +192,10 @@ usb3@f0000 {
};
};
bm-bppi {
status = "okay";
};
pcie-controller {
status = "okay";

View File

@ -78,6 +78,9 @@ soc {
internal-regs {
ethernet@30000 {
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <2>;
bm,pool-short = <1>;
status = "okay";
fixed-link {
@ -88,6 +91,9 @@ fixed-link {
ethernet@34000 {
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <3>;
bm,pool-short = <1>;
status = "okay";
fixed-link {

View File

@ -66,7 +66,8 @@ soc {
ranges = <MBUS_ID(0xf0, 0x01) 0 0xf1000000 0x100000
MBUS_ID(0x01, 0x1d) 0 0xfff00000 0x100000
MBUS_ID(0x09, 0x19) 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0xf1200000 0x100000>;
internal-regs {
spi@10600 {
@ -99,6 +100,9 @@ ethernet@30000 {
status = "okay";
phy = <&phy1>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <2>;
bm,pool-short = <3>;
};
usb@58000 {
@ -109,6 +113,9 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
bm,pool-short = <1>;
};
mdio@72004 {
@ -129,6 +136,10 @@ sata@e0000 {
status = "okay";
};
bm@c8000 {
status = "okay";
};
flash@d0000 {
status = "okay";
num-cs = <1>;
@ -169,6 +180,10 @@ usb3@f8000 {
};
};
bm-bppi {
status = "okay";
};
pcie-controller {
status = "okay";
/*

View File

@ -60,7 +60,8 @@ soc {
ranges = <MBUS_ID(0xf0, 0x01) 0 0xf1000000 0x100000
MBUS_ID(0x01, 0x1d) 0 0xfff00000 0x100000
MBUS_ID(0x09, 0x19) 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0xf1200000 0x100000>;
internal-regs {
spi@10600 {
@ -133,6 +134,9 @@ ethernet@30000 {
status = "okay";
phy = <&phy1>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <2>;
bm,pool-short = <3>;
};
/* CON4 */
@ -152,6 +156,9 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
bm,pool-short = <1>;
};
@ -186,6 +193,10 @@ sata1: sata-port@1 {
};
};
bm@c8000 {
status = "okay";
};
sata@e0000 {
pinctrl-names = "default";
pinctrl-0 = <&sata2_pins>, <&sata3_pins>;
@ -240,6 +251,10 @@ usb3@f8000 {
};
};
bm-bppi {
status = "okay";
};
pcie-controller {
status = "okay";
/*

View File

@ -58,7 +58,8 @@ soc {
ranges = <MBUS_ID(0xf0, 0x01) 0 0xf1000000 0x100000
MBUS_ID(0x01, 0x1d) 0 0xfff00000 0x100000
MBUS_ID(0x09, 0x19) 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x15) 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0xf1200000 0x100000>;
internal-regs {
ethernet@70000 {
@ -66,6 +67,9 @@ ethernet@70000 {
pinctrl-names = "default";
phy = <&phy_dedicated>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
bm,pool-short = <1>;
status = "okay";
};
@ -110,6 +114,15 @@ serial@12000 {
pinctrl-names = "default";
status = "okay";
};
bm@c8000 {
status = "okay";
};
};
bm-bppi {
status = "okay";
};
};
};

View File

@ -540,6 +540,14 @@ sata@a8000 {
status = "disabled";
};
bm: bm@c8000 {
compatible = "marvell,armada-380-neta-bm";
reg = <0xc8000 0xac>;
clocks = <&gateclk 13>;
internal-mem = <&bm_bppi>;
status = "disabled";
};
sata@e0000 {
compatible = "marvell,armada-380-ahci";
reg = <0xe0000 0x2000>;
@ -618,6 +626,17 @@ crypto_sram1: sa-sram1 {
#size-cells = <1>;
ranges = <0 MBUS_ID(0x09, 0x15) 0 0x800>;
};
bm_bppi: bm-bppi {
compatible = "mmio-sram";
reg = <MBUS_ID(0x0c, 0x04) 0 0x100000>;
ranges = <0 MBUS_ID(0x0c, 0x04) 0 0x100000>;
#address-cells = <1>;
#size-cells = <1>;
clocks = <&gateclk 13>;
no-memory-wc;
status = "disabled";
};
};
clocks {

View File

@ -77,7 +77,8 @@ soc {
MBUS_ID(0x01, 0x1d) 0 0 0xfff00000 0x100000
MBUS_ID(0x01, 0x2f) 0 0 0xf0000000 0x1000000
MBUS_ID(0x09, 0x09) 0 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0 0xf1200000 0x100000>;
devbus-bootcs {
status = "okay";
@ -181,21 +182,33 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <0>;
};
ethernet@74000 {
status = "okay";
phy = <&phy1>;
phy-mode = "rgmii-id";
buffer-manager = <&bm>;
bm,pool-long = <1>;
};
ethernet@30000 {
status = "okay";
phy = <&phy2>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <2>;
};
ethernet@34000 {
status = "okay";
phy = <&phy3>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <3>;
};
bm@c0000 {
status = "okay";
};
mvsdio@d4000 {
@ -230,5 +243,9 @@ spi-flash@0 {
};
};
};
bm-bppi {
status = "okay";
};
};
};

View File

@ -96,7 +96,8 @@ soc {
MBUS_ID(0x01, 0x1d) 0 0 0xfff00000 0x100000
MBUS_ID(0x01, 0x2f) 0 0 0xf0000000 0x1000000
MBUS_ID(0x09, 0x09) 0 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0 0xf1200000 0x100000>;
devbus-bootcs {
status = "okay";
@ -196,21 +197,29 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "qsgmii";
buffer-manager = <&bm>;
bm,pool-long = <0>;
};
ethernet@74000 {
status = "okay";
phy = <&phy1>;
phy-mode = "qsgmii";
buffer-manager = <&bm>;
bm,pool-long = <1>;
};
ethernet@30000 {
status = "okay";
phy = <&phy2>;
phy-mode = "qsgmii";
buffer-manager = <&bm>;
bm,pool-long = <2>;
};
ethernet@34000 {
status = "okay";
phy = <&phy3>;
phy-mode = "qsgmii";
buffer-manager = <&bm>;
bm,pool-long = <3>;
};
/* Front-side USB slot */
@ -235,6 +244,10 @@ spi-flash@0 {
};
};
bm@c0000 {
status = "okay";
};
nand@d0000 {
status = "okay";
num-cs = <1>;
@ -243,5 +256,9 @@ nand@d0000 {
nand-on-flash-bbt;
};
};
bm-bppi {
status = "okay";
};
};
};

View File

@ -67,7 +67,8 @@ soc {
MBUS_ID(0x01, 0x1d) 0 0 0xfff00000 0x100000
MBUS_ID(0x01, 0x2f) 0 0 0xe8000000 0x8000000
MBUS_ID(0x09, 0x09) 0 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000>;
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000
MBUS_ID(0x0c, 0x04) 0 0 0xd1200000 0x100000>;
devbus-bootcs {
status = "okay";
@ -176,21 +177,29 @@ ethernet@70000 {
status = "okay";
phy = <&phy0>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <0>;
};
ethernet@74000 {
status = "okay";
phy = <&phy1>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <1>;
};
ethernet@30000 {
status = "okay";
phy = <&phy2>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <2>;
};
ethernet@34000 {
status = "okay";
phy = <&phy3>;
phy-mode = "sgmii";
buffer-manager = <&bm>;
bm,pool-long = <3>;
};
i2c@11000 {
status = "okay";
@ -219,6 +228,14 @@ usb@50000 {
usb@51000 {
status = "okay";
};
bm@c0000 {
status = "okay";
};
};
bm-bppi {
status = "okay";
};
};
};

View File

@ -253,6 +253,14 @@ crypto@90000 {
marvell,crypto-sram-size = <0x800>;
};
bm: bm@c0000 {
compatible = "marvell,armada-380-neta-bm";
reg = <0xc0000 0xac>;
clocks = <&gateclk 13>;
internal-mem = <&bm_bppi>;
status = "disabled";
};
xor@f0900 {
compatible = "marvell,orion-xor";
reg = <0xF0900 0x100
@ -291,6 +299,17 @@ crypto_sram1: sa-sram1 {
#size-cells = <1>;
ranges = <0 MBUS_ID(0x09, 0x05) 0 0x800>;
};
bm_bppi: bm-bppi {
compatible = "mmio-sram";
reg = <MBUS_ID(0x0c, 0x04) 0 0x100000>;
ranges = <0 MBUS_ID(0x0c, 0x04) 0 0x100000>;
#address-cells = <1>;
#size-cells = <1>;
clocks = <&gateclk 13>;
no-memory-wc;
status = "disabled";
};
};
clocks {

View File

@ -457,6 +457,18 @@ mdio0: mdio@2d24000 {
reg = <0x0 0x2d24000 0x0 0x4000>;
};
ptp_clock@2d10e00 {
compatible = "fsl,etsec-ptp";
reg = <0x0 0x2d10e00 0x0 0xb0>;
interrupts = <GIC_SPI 173 IRQ_TYPE_LEVEL_HIGH>;
fsl,tclk-period = <5>;
fsl,tmr-prsc = <2>;
fsl,tmr-add = <0xaaaaaaab>;
fsl,tmr-fiper1 = <999999990>;
fsl,tmr-fiper2 = <99990>;
fsl,max-adj = <499999999>;
};
enet0: ethernet@2d10000 {
compatible = "fsl,etsec2";
device_type = "network";

View File

@ -47,6 +47,20 @@ / {
compatible = "rockchip,rk3036-evb", "rockchip,rk3036";
};
&emac {
pinctrl-names = "default";
pinctrl-0 = <&emac_xfer>, <&emac_mdio>;
phy = <&phy0>;
phy-reset-gpios = <&gpio2 22 GPIO_ACTIVE_LOW>; /* PHY_RST */
phy-reset-duration = <10>; /* millisecond */
status = "okay";
phy0: ethernet-phy@0 {
reg = <0>;
};
};
&i2c1 {
status = "okay";

View File

@ -60,6 +60,20 @@ &acodec {
status = "okay";
};
&emac {
pinctrl-names = "default";
pinctrl-0 = <&emac_xfer>, <&emac_mdio>;
phy = <&phy0>;
phy-reset-gpios = <&gpio2 22 GPIO_ACTIVE_LOW>; /* PHY_RST */
phy-reset-duration = <10>; /* millisecond */
status = "okay";
phy0: ethernet-phy@0 {
reg = <0>;
};
};
&emmc {
status = "okay";
};

View File

@ -186,6 +186,27 @@ usb_host: usb@101c0000 {
status = "disabled";
};
emac: ethernet@10200000 {
compatible = "rockchip,rk3036-emac", "snps,arc-emac";
reg = <0x10200000 0x4000>;
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
rockchip,grf = <&grf>;
clocks = <&cru HCLK_MAC>, <&cru SCLK_MACREF>, <&cru SCLK_MAC>;
clock-names = "hclk", "macref", "macclk";
/*
* Fix the emac parent clock is DPLL instead of APLL.
* since that will cause some unstable things if the cpufreq
* is working. (e.g: the accurate 50MHz what mac_ref need)
*/
assigned-clocks = <&cru SCLK_MACPLL>;
assigned-clock-parents = <&cru PLL_DPLL>;
max-speed = <100>;
phy-mode = "rmii";
status = "disabled";
};
sdmmc: dwmmc@10214000 {
compatible = "rockchip,rk3036-dw-mshc", "rockchip,rk3288-dw-mshc";
reg = <0x10214000 0x4000>;
@ -556,6 +577,24 @@ emmc_bus8: emmc-bus8 {
};
};
emac {
emac_xfer: emac-xfer {
rockchip,pins = <2 10 RK_FUNC_1 &pcfg_pull_default>, /* crs_dvalid */
<2 13 RK_FUNC_1 &pcfg_pull_default>, /* tx_en */
<2 14 RK_FUNC_1 &pcfg_pull_default>, /* mac_clk */
<2 15 RK_FUNC_1 &pcfg_pull_default>, /* rx_err */
<2 16 RK_FUNC_1 &pcfg_pull_default>, /* rxd1 */
<2 17 RK_FUNC_1 &pcfg_pull_default>, /* rxd0 */
<2 18 RK_FUNC_1 &pcfg_pull_default>, /* txd1 */
<2 19 RK_FUNC_1 &pcfg_pull_default>; /* txd0 */
};
emac_mdio: emac-mdio {
rockchip,pins = <2 12 RK_FUNC_1 &pcfg_pull_default>, /* mac_md */
<2 25 RK_FUNC_1 &pcfg_pull_default>; /* mac_mdclk */
};
};
i2c0 {
i2c0_xfer: i2c0-xfer {
rockchip,pins = <0 0 RK_FUNC_1 &pcfg_pull_none>,

View File

@ -91,7 +91,7 @@ CONFIG_SATA_MV=y
CONFIG_NETDEVICES=y
CONFIG_NET_DSA_MV88E6060=y
CONFIG_NET_DSA_MV88E6131=y
CONFIG_NET_DSA_MV88E6123_61_65=y
CONFIG_NET_DSA_MV88E6123=y
CONFIG_NET_DSA_MV88E6171=y
CONFIG_NET_DSA_MV88E6352=y
CONFIG_MV643XX_ETH=y

View File

@ -92,7 +92,7 @@ CONFIG_SATA_MV=y
CONFIG_NETDEVICES=y
CONFIG_NET_DSA_MV88E6060=y
CONFIG_NET_DSA_MV88E6131=y
CONFIG_NET_DSA_MV88E6123_61_65=y
CONFIG_NET_DSA_MV88E6123=y
CONFIG_NET_DSA_MV88E6171=y
CONFIG_NET_DSA_MV88E6352=y
CONFIG_MV643XX_ETH=y

View File

@ -86,7 +86,7 @@ CONFIG_SATA_MV=y
CONFIG_NETDEVICES=y
CONFIG_MII=y
CONFIG_NET_DSA_MV88E6131=y
CONFIG_NET_DSA_MV88E6123_61_65=y
CONFIG_NET_DSA_MV88E6123=y
CONFIG_MV643XX_ETH=y
CONFIG_MARVELL_PHY=y
# CONFIG_INPUT_MOUSEDEV is not set

View File

@ -84,10 +84,10 @@ ip_fast_csum(const void *iph, unsigned int ihl)
}
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
u32 lenprot = len | proto << 16;
u32 lenprot = len + proto;
if (__builtin_constant_p(sum) && sum == 0) {
__asm__(
"adds %0, %1, %2 @ csum_tcpudp_nofold0 \n\t"
@ -121,8 +121,8 @@ csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
@ -144,8 +144,8 @@ __csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __
__be32 proto, __wsum sum);
static inline __sum16
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len,
unsigned short proto, __wsum sum)
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr,
__u32 len, __u8 proto, __wsum sum)
{
return csum_fold(__csum_ipv6_magic(saddr, daddr, htonl(len),
htonl(proto), sum));

View File

@ -17,23 +17,25 @@
*
*/
#include <linux/property.h>
#include <linux/gpio/machine.h>
#include <linux/platform_device.h>
#include <linux/rfkill-gpio.h>
#include "board.h"
static struct rfkill_gpio_platform_data wifi_rfkill_platform_data = {
.name = "wifi_rfkill",
.type = RFKILL_TYPE_WLAN,
static struct property_entry __initdata wifi_rfkill_prop[] = {
PROPERTY_ENTRY_STRING("name", "wifi_rfkill"),
PROPERTY_ENTRY_STRING("type", "wlan"),
{ },
};
static struct property_set __initdata wifi_rfkill_pset = {
.properties = wifi_rfkill_prop,
};
static struct platform_device wifi_rfkill_device = {
.name = "rfkill_gpio",
.id = -1,
.dev = {
.platform_data = &wifi_rfkill_platform_data,
},
};
static struct gpiod_lookup_table wifi_gpio_lookup = {
@ -47,6 +49,7 @@ static struct gpiod_lookup_table wifi_gpio_lookup = {
void __init tegra_paz00_wifikill_init(void)
{
platform_device_add_properties(&wifi_rfkill_device, &wifi_rfkill_pset);
gpiod_add_lookup_table(&wifi_gpio_lookup);
platform_device_register(&wifi_rfkill_device);
}

View File

@ -621,7 +621,13 @@ xgenet1: ethernet@1f620000 {
<0x0 0x1f600000 0x0 0Xd100>,
<0x0 0x20000000 0x0 0X220000>;
interrupts = <0 108 4>,
<0 109 4>;
<0 109 4>,
<0 110 4>,
<0 111 4>,
<0 112 4>,
<0 113 4>,
<0 114 4>,
<0 115 4>;
port-id = <1>;
dma-coherent;
clocks = <&xge1clk 0>;

View File

@ -964,7 +964,13 @@ xgenet: ethernet@1f610000 {
<0x0 0x18000000 0x0 0X200>;
reg-names = "enet_csr", "ring_csr", "ring_cmd";
interrupts = <0x0 0x60 0x4>,
<0x0 0x61 0x4>;
<0x0 0x61 0x4>,
<0x0 0x62 0x4>,
<0x0 0x63 0x4>,
<0x0 0x64 0x4>,
<0x0 0x65 0x4>,
<0x0 0x66 0x4>,
<0x0 0x67 0x4>;
dma-coherent;
clocks = <&xge0clk 0>;
/* mac address will be overwritten by the bootloader */

View File

@ -111,9 +111,8 @@ static inline __sum16 csum_fold(__wsum sum)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
asm(" add %0, %1\n"
" adc %0, %0, %2\n"
@ -132,9 +131,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}

View File

@ -88,4 +88,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _UAPI__ASM_AVR32_SOCKET_H */

View File

@ -14,8 +14,8 @@
*/
static inline __wsum
__csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
__csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
unsigned int carry;

View File

@ -10,8 +10,8 @@
#define _ASM_C6X_CHECKSUM_H
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
unsigned long long tmp;

View File

@ -9,8 +9,8 @@
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
__wsum res;
__asm__ ("add.d %2, %0\n\t"

View File

@ -11,7 +11,7 @@
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len, unsigned short proto, __wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
__wsum res;

View File

@ -63,9 +63,8 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}

View File

@ -105,8 +105,8 @@ static inline __sum16 csum_fold(__wsum sum)
* returns a 16-bit checksum, already complemented
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
asm(" addcc %1,%0,%0,icc0 \n"
" addxcc %2,%0,%0,icc0 \n"
@ -120,8 +120,8 @@ csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
}
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}
@ -135,7 +135,7 @@ extern __sum16 ip_compute_csum(const void *buff, int len);
#define _HAVE_ARCH_IPV6_CSUM
static inline __sum16
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr,
__u32 len, unsigned short proto, __wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
unsigned long tmp, tmp2;

View File

@ -88,5 +88,7 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_SOCKET_H */

View File

@ -38,12 +38,12 @@ __wsum csum_partial_copy_nocheck(const void *src, void *dst,
* returns a 16-bit checksum, already complemented
*/
#define csum_tcpudp_nofold csum_tcpudp_nofold
__wsum csum_tcpudp_nofold(unsigned long saddr, unsigned long daddr,
unsigned short len, unsigned short proto, __wsum sum);
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
#define csum_tcpudp_magic csum_tcpudp_magic
__sum16 csum_tcpudp_magic(unsigned long saddr, unsigned long daddr,
unsigned short len, unsigned short proto, __wsum sum);
__sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
#include <asm-generic/checksum.h>

View File

@ -60,18 +60,16 @@ static inline unsigned short from64to16(u64 x)
* computes the checksum of the TCP/UDP pseudo-header
* returns a 16-bit checksum, already complemented.
*/
__sum16 csum_tcpudp_magic(unsigned long saddr, unsigned long daddr,
unsigned short len, unsigned short proto,
__wsum sum)
__sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum)
{
return (__force __sum16)~from64to16(
(__force u64)saddr + (__force u64)daddr +
(__force u64)sum + ((len + proto) << 8));
}
__wsum csum_tcpudp_nofold(unsigned long saddr, unsigned long daddr,
unsigned short len, unsigned short proto,
__wsum sum)
__wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum)
{
u64 result;

View File

@ -16,15 +16,11 @@ extern __sum16 ip_fast_csum(const void *iph, unsigned int ihl);
* Computes the checksum of the TCP/UDP pseudo-header returns a 16-bit
* checksum, already complemented
*/
extern __sum16 csum_tcpudp_magic (__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum);
extern __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
extern __wsum csum_tcpudp_nofold (__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum);
extern __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto, __wsum sum);
/*
* Computes the checksum of a memory block at buff, length len,
@ -73,7 +69,7 @@ static inline __sum16 csum_fold(__wsum csum)
#define _HAVE_ARCH_IPV6_CSUM 1
struct in6_addr;
extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr, __u32 len, unsigned short proto,
__wsum csum);
const struct in6_addr *daddr,
__u32 len, __u8 proto, __wsum csum);
#endif /* _ASM_IA64_CHECKSUM_H */

View File

@ -97,4 +97,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_IA64_SOCKET_H */

View File

@ -34,8 +34,8 @@ from64to16 (unsigned long x)
* returns a 16-bit checksum, already complemented.
*/
__sum16
csum_tcpudp_magic (__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return (__force __sum16)~from64to16(
(__force u64)saddr + (__force u64)daddr +
@ -45,8 +45,8 @@ csum_tcpudp_magic (__be32 saddr, __be32 daddr, unsigned short len,
EXPORT_SYMBOL(csum_tcpudp_magic);
__wsum
csum_tcpudp_nofold (__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
unsigned long result;

View File

@ -114,9 +114,8 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
#if defined(__LITTLE_ENDIAN)
unsigned long len_proto = (proto + len) << 8;
@ -145,9 +144,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}

View File

@ -88,4 +88,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_M32R_SOCKET_H */

View File

@ -117,7 +117,7 @@ static inline __sum16 ip_compute_csum(const void *buff, int len)
#define _HAVE_ARCH_IPV6_CSUM
static __inline__ __sum16
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr,
__u32 len, unsigned short proto, __wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
register unsigned long tmp;
__asm__("addl %2@,%0\n\t"

View File

@ -59,8 +59,7 @@ extern __sum16 ip_fast_csum(const void *iph, unsigned int ihl);
* returns a 16-bit checksum, already complemented
*/
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
unsigned long len_proto = (proto + len) << 8;
@ -78,8 +77,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
}
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}

View File

@ -16,8 +16,8 @@
*/
#define csum_tcpudp_nofold csum_tcpudp_nofold
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
__asm__("add %0, %0, %1\n\t"
"addc %0, %0, %2\n\t"

View File

@ -160,9 +160,9 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
}
#define ip_fast_csum ip_fast_csum
static inline __wsum csum_tcpudp_nofold(__be32 saddr,
__be32 daddr, unsigned short len, unsigned short proto,
__wsum sum)
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto,
__wsum sum)
{
__asm__(
" .set push # csum_tcpudp_nofold\n"
@ -215,7 +215,7 @@ static inline __sum16 ip_compute_csum(const void *buff, int len)
#define _HAVE_ARCH_IPV6_CSUM
static __inline__ __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
__wsum tmp;

View File

@ -106,4 +106,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _UAPI_ASM_SOCKET_H */

View File

@ -320,11 +320,12 @@ void __init tx4939_sio_init(unsigned int sclk, unsigned int cts_mask)
#if IS_ENABLED(CONFIG_TC35815)
static u32 tx4939_get_eth_speed(struct net_device *dev)
{
struct ethtool_cmd cmd;
if (__ethtool_get_settings(dev, &cmd))
struct ethtool_link_ksettings cmd;
if (__ethtool_get_link_ksettings(dev, &cmd))
return 100; /* default 100Mbps */
return ethtool_cmd_speed(&cmd);
return cmd.base.speed;
}
static int tx4939_netdev_event(struct notifier_block *this,

View File

@ -37,16 +37,11 @@ static inline __sum16 csum_fold(__wsum sum)
return (~sum) >> 16;
}
static inline __wsum csum_tcpudp_nofold(unsigned long saddr,
unsigned long daddr,
unsigned short len,
unsigned short proto,
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto,
__wsum sum)
{
__wsum tmp;
tmp = (__wsum) ntohs(len) << 16;
tmp += (__wsum) proto << 8;
__wsum tmp = (__wsum)((len + proto) << 8);
asm(
" add %1,%0 \n"
@ -64,10 +59,8 @@ static inline __wsum csum_tcpudp_nofold(unsigned long saddr,
* computes the checksum of the TCP/UDP pseudo-header
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(unsigned long saddr,
unsigned long daddr,
unsigned short len,
unsigned short proto,
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));

View File

@ -88,4 +88,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_SOCKET_H */

View File

@ -45,8 +45,7 @@ static inline __sum16 csum_fold(__wsum sum)
*/
#define csum_tcpudp_nofold csum_tcpudp_nofold
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
__asm__ __volatile__(
@ -60,7 +59,7 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
"cmpltu r8, %0, %3\n"
"add %0, %0, r8\n" /* add carry */
: "=r" (sum), "=r" (saddr)
: "r" (daddr), "r" ((ntohs(len) << 16) + (proto * 256)),
: "r" (daddr), "r" ((len + proto) << 8),
"0" (sum),
"1" (saddr)
: "r8");
@ -69,8 +68,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
}
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto, __wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}

View File

@ -85,9 +85,8 @@ static inline __sum16 csum_fold(__wsum csum)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
__asm__(
" add %1, %0, %0\n"
@ -104,9 +103,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}
@ -124,7 +122,7 @@ static inline __sum16 ip_compute_csum(const void *buf, int len)
#define _HAVE_ARCH_IPV6_CSUM
static __inline__ __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
__asm__ __volatile__ (

View File

@ -87,4 +87,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 0x402C
#define SO_ATTACH_REUSEPORT_EBPF 0x402D
#define SO_CNX_ADVICE 0x402E
#endif /* _UAPI_ASM_SOCKET_H */

View File

@ -95,4 +95,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_POWERPC_SOCKET_H */

View File

@ -91,8 +91,7 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
* returns a 32-bit checksum
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len, unsigned short proto,
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto,
__wsum sum)
{
__u32 csum = (__force __u32)sum;
@ -118,8 +117,7 @@ csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
*/
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len, unsigned short proto,
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));

View File

@ -94,4 +94,6 @@
#define SO_ATTACH_REUSEPORT_CBPF 51
#define SO_ATTACH_REUSEPORT_EBPF 52
#define SO_CNX_ADVICE 53
#endif /* _ASM_SOCKET_H */

View File

@ -127,10 +127,10 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
}
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
unsigned long tmp = (ntohs(len) << 16) + proto * 256;
unsigned long tmp = (len + proto) << 8;
__asm__ __volatile__(
".set volatile\n\t"
"add\t%0, %0, %2\n\t"
@ -161,8 +161,8 @@ csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
@ -179,9 +179,8 @@ static inline unsigned short ip_compute_csum(const void *buff, int len)
#define _HAVE_ARCH_IPV6_CSUM
static inline __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum)
const struct in6_addr *daddr,
__u32 len, __u8 proto, __wsum sum)
{
__asm__ __volatile__(
".set\tvolatile\t\t\t# csum_ipv6_magic\n\t"

View File

@ -115,8 +115,7 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
#ifdef __LITTLE_ENDIAN__
@ -142,8 +141,7 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
@ -161,8 +159,7 @@ static inline __sum16 ip_compute_csum(const void *buff, int len)
#define _HAVE_ARCH_IPV6_CSUM
static inline __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
unsigned int __dummy;
__asm__("clrt\n\t"

View File

@ -102,6 +102,7 @@ CONFIG_SUNLANCE=m
CONFIG_HAPPYMEAL=m
CONFIG_SUNGEM=m
CONFIG_SUNVNET=m
CONFIG_LDMVSW=m
CONFIG_NET_PCI=y
CONFIG_E1000=m
CONFIG_E1000E=m

View File

@ -170,9 +170,8 @@ static inline __sum16 csum_fold(__wsum sum)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
__asm__ __volatile__("addcc\t%1, %0, %0\n\t"
"addxcc\t%2, %0, %0\n\t"
@ -190,9 +189,8 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
}
@ -201,8 +199,7 @@ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
static inline __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
__asm__ __volatile__ (
"addcc %3, %4, %%g4\n\t"

View File

@ -96,8 +96,7 @@ static inline __sum16 csum_fold(__wsum sum)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned int len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
__asm__ __volatile__(
@ -116,8 +115,7 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr,daddr,len,proto,sum));
@ -127,8 +125,7 @@ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
static inline __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
__asm__ __volatile__ (
" addcc %3, %4, %%g7\n"

View File

@ -84,6 +84,8 @@
#define SO_ATTACH_REUSEPORT_CBPF 0x0035
#define SO_ATTACH_REUSEPORT_EBPF 0x0036
#define SO_CNX_ADVICE 0x0037
/* Security levels - as per NRL IPv6 - don't actually do anything */
#define SO_SECURITY_AUTHENTICATION 0x5001
#define SO_SECURITY_ENCRYPTION_TRANSPORT 0x5002

View File

@ -222,7 +222,7 @@ CONFIG_TUN=y
CONFIG_VETH=m
CONFIG_NET_DSA_MV88E6060=y
CONFIG_NET_DSA_MV88E6131=y
CONFIG_NET_DSA_MV88E6123_61_65=y
CONFIG_NET_DSA_MV88E6123=y
CONFIG_SKY2=y
CONFIG_PTP_1588_CLOCK_TILEGX=y
# CONFIG_WLAN is not set

View File

@ -341,7 +341,7 @@ CONFIG_TUN=y
CONFIG_VETH=m
CONFIG_NET_DSA_MV88E6060=y
CONFIG_NET_DSA_MV88E6131=y
CONFIG_NET_DSA_MV88E6123_61_65=y
CONFIG_NET_DSA_MV88E6123=y
# CONFIG_NET_VENDOR_3COM is not set
CONFIG_E1000E=y
# CONFIG_WLAN is not set

View File

@ -20,8 +20,8 @@
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
__asm__(
"add.a %0, %1, %2\n"

View File

@ -2194,11 +2194,11 @@ static int backtrace_stack(void *data, char *name)
return 0;
}
static void backtrace_address(void *data, unsigned long addr, int reliable)
static int backtrace_address(void *data, unsigned long addr, int reliable)
{
struct perf_callchain_entry *entry = data;
perf_callchain_store(entry, addr);
return perf_callchain_store(entry, addr);
}
static const struct stacktrace_ops backtrace_ops = {

View File

@ -112,8 +112,7 @@ static inline __sum16 csum_fold(__wsum sum)
}
static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
asm("addl %1, %0 ;\n"
@ -131,8 +130,7 @@ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr,
* returns a 16-bit checksum, already complemented
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto,
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
@ -151,8 +149,7 @@ static inline __sum16 ip_compute_csum(const void *buff, int len)
#define _HAVE_ARCH_IPV6_CSUM
static inline __sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr,
__u32 len, unsigned short proto,
__wsum sum)
__u32 len, __u8 proto, __wsum sum)
{
asm("addl 0(%1), %0 ;\n"
"adcl 4(%1), %0 ;\n"

View File

@ -84,8 +84,8 @@ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl)
* 32bit unfolded.
*/
static inline __wsum
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
unsigned short proto, __wsum sum)
csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len,
__u8 proto, __wsum sum)
{
asm(" addl %1, %0\n"
" adcl %2, %0\n"
@ -110,8 +110,8 @@ csum_tcpudp_nofold(__be32 saddr, __be32 daddr, unsigned short len,
* complemented and ready to be filled in.
*/
static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr,
unsigned short len,
unsigned short proto, __wsum sum)
__u32 len, __u8 proto,
__wsum sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
@ -177,7 +177,7 @@ struct in6_addr;
#define _HAVE_ARCH_IPV6_CSUM 1
extern __sum16
csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr,
__u32 len, unsigned short proto, __wsum sum);
__u32 len, __u8 proto, __wsum sum);
static inline unsigned add32_with_carry(unsigned a, unsigned b)
{

Some files were not shown because too many files have changed in this diff Show More