mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-01 10:43:43 +00:00
arm64 updates for 5.19:
- Initial support for the ARMv9 Scalable Matrix Extension (SME). SME takes the approach used for vectors in SVE and extends this to provide architectural support for matrix operations. No KVM support yet, SME is disabled in guests. - Support for crashkernel reservations above ZONE_DMA via the 'crashkernel=X,high' command line option. - btrfs search_ioctl() fix for live-lock with sub-page faults. - arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring coherent I/O traffic, support for Arm's CMN-650 and CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup. - Kselftest updates for SME, BTI, MTE. - Automatic generation of the system register macros from a 'sysreg' file describing the register bitfields. - Update the type of the function argument holding the ESR_ELx register value to unsigned long to match the architecture register size (originally 32-bit but extended since ARMv8.0). - stacktrace cleanups. - ftrace cleanups. - Miscellaneous updates, most notably: arm64-specific huge_ptep_get(), avoid executable mappings in kexec/hibernate code, drop TLB flushing from get_clear_flush() (and rename it to get_clear_contig()), ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmKH19IACgkQa9axLQDI XvEFWg//bf0p6zjeNaOJmBbyVFsXsVyYiEaLUpFPUs3oB+81s2YZ+9i1rgMrNCft EIDQ9+/HgScKxJxnzWf68heMdcBDbk76VJtLALExbge6owFsjByQDyfb/b3v/bLd ezAcGzc6G5/FlI1IP7ct4Z9MnQry4v5AG8lMNAHjnf6GlBS/tYNAqpmj8HpQfgRQ ZbhfZ8Ayu3TRSLWL39NHVevpmxQm/bGcpP3Q9TtjUqg0r1FQ5sK/LCqOksueIAzT UOgUVYWSFwTpLEqbYitVqgERQp9LiLoK5RmNYCIEydfGM7+qmgoxofSq5e2hQtH2 SZM1XilzsZctRbBbhMit1qDBqMlr/XAy/R5FO0GauETVKTaBhgtj6mZGyeC9nU/+ RGDljaArbrOzRwMtSuXF+Fp6uVo5spyRn1m8UT/k19lUTdrV9z6EX5Fzuc4Mnhed oz4iokbl/n8pDObXKauQspPA46QpxUYhrAs10B/ELc3yyp/Qj3jOfzYHKDNFCUOq HC9mU+YiO9g2TbYgCrrFM6Dah2E8fU6/cR0ZPMeMgWK4tKa+6JMEINYEwak9e7M+ 8lZnvu3ntxiJLN+PrPkiPyG+XBh2sux1UfvNQ+nw4Oi9xaydeX7PCbQVWmzTFmHD q7UPQ8220e2JNCha9pULS8cxDLxiSksce06DQrGXwnHc1Ir7T04= =0DjE -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Initial support for the ARMv9 Scalable Matrix Extension (SME). SME takes the approach used for vectors in SVE and extends this to provide architectural support for matrix operations. No KVM support yet, SME is disabled in guests. - Support for crashkernel reservations above ZONE_DMA via the 'crashkernel=X,high' command line option. - btrfs search_ioctl() fix for live-lock with sub-page faults. - arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring coherent I/O traffic, support for Arm's CMN-650 and CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup. - Kselftest updates for SME, BTI, MTE. - Automatic generation of the system register macros from a 'sysreg' file describing the register bitfields. - Update the type of the function argument holding the ESR_ELx register value to unsigned long to match the architecture register size (originally 32-bit but extended since ARMv8.0). - stacktrace cleanups. - ftrace cleanups. - Miscellaneous updates, most notably: arm64-specific huge_ptep_get(), avoid executable mappings in kexec/hibernate code, drop TLB flushing from get_clear_flush() (and rename it to get_clear_contig()), ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits) arm64/sysreg: Generate definitions for FAR_ELx arm64/sysreg: Generate definitions for DACR32_EL2 arm64/sysreg: Generate definitions for CSSELR_EL1 arm64/sysreg: Generate definitions for CPACR_ELx arm64/sysreg: Generate definitions for CONTEXTIDR_ELx arm64/sysreg: Generate definitions for CLIDR_EL1 arm64/sve: Move sve_free() into SVE code section arm64: Kconfig.platforms: Add comments arm64: Kconfig: Fix indentation and add comments arm64: mm: avoid writable executable mappings in kexec/hibernate code arm64: lds: move special code sections out of kernel exec segment arm64/hugetlb: Implement arm64 specific huge_ptep_get() arm64/hugetlb: Use ptep_get() to get the pte value of a huge page arm64: kdump: Do not allocate crash low memory if not needed arm64/sve: Generate ZCR definitions arm64/sme: Generate defintions for SVCR arm64/sme: Generate SMPRI_EL1 definitions arm64/sme: Automatically generate SMPRIMAP_EL2 definitions arm64/sme: Automatically generate SMIDR_EL1 defines arm64/sme: Automatically generate defines for SMCR ...
This commit is contained in:
commit
143a6252e1
@ -813,7 +813,7 @@
|
||||
Documentation/admin-guide/kdump/kdump.rst for an example.
|
||||
|
||||
crashkernel=size[KMG],high
|
||||
[KNL, X86-64] range could be above 4G. Allow kernel
|
||||
[KNL, X86-64, ARM64] range could be above 4G. Allow kernel
|
||||
to allocate physical memory region from top, so could
|
||||
be above 4G if system have more than 4G ram installed.
|
||||
Otherwise memory region will be allocated below 4G, if
|
||||
@ -826,14 +826,20 @@
|
||||
that require some amount of low memory, e.g. swiotlb
|
||||
requires at least 64M+32K low memory, also enough extra
|
||||
low memory is needed to make sure DMA buffers for 32-bit
|
||||
devices won't run out. Kernel would try to allocate at
|
||||
devices won't run out. Kernel would try to allocate
|
||||
at least 256M below 4G automatically.
|
||||
This one let user to specify own low range under 4G
|
||||
This one lets the user specify own low range under 4G
|
||||
for second kernel instead.
|
||||
0: to disable low allocation.
|
||||
It will be ignored when crashkernel=X,high is not used
|
||||
or memory reserved is below 4G.
|
||||
|
||||
[KNL, ARM64] range in low memory.
|
||||
This one lets the user specify a low range in the
|
||||
DMA zone for the crash dump kernel.
|
||||
It will be ignored when crashkernel=X,high is not used
|
||||
or memory reserved is located in the DMA zones.
|
||||
|
||||
cryptomgr.notests
|
||||
[KNL] Disable crypto self-tests
|
||||
|
||||
|
@ -350,6 +350,16 @@ Before jumping into the kernel, the following conditions must be met:
|
||||
|
||||
- SMCR_EL2.FA64 (bit 31) must be initialised to 0b1.
|
||||
|
||||
For CPUs with the Memory Tagging Extension feature (FEAT_MTE2):
|
||||
|
||||
- If EL3 is present:
|
||||
|
||||
- SCR_EL3.ATA (bit 26) must be initialised to 0b1.
|
||||
|
||||
- If the kernel is entered at EL1 and EL2 is present:
|
||||
|
||||
- HCR_EL2.ATA (bit 56) must be initialised to 0b1.
|
||||
|
||||
The requirements described above for CPU mode, caches, MMUs, architected
|
||||
timers, coherency and system registers apply to all CPUs. All CPUs must
|
||||
enter the kernel in the same exception level. Where the values documented
|
||||
|
@ -264,6 +264,39 @@ HWCAP2_MTE3
|
||||
Functionality implied by ID_AA64PFR1_EL1.MTE == 0b0011, as described
|
||||
by Documentation/arm64/memory-tagging-extension.rst.
|
||||
|
||||
HWCAP2_SME
|
||||
|
||||
Functionality implied by ID_AA64PFR1_EL1.SME == 0b0001, as described
|
||||
by Documentation/arm64/sme.rst.
|
||||
|
||||
HWCAP2_SME_I16I64
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.I16I64 == 0b1111.
|
||||
|
||||
HWCAP2_SME_F64F64
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.F64F64 == 0b1.
|
||||
|
||||
HWCAP2_SME_I8I32
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.I8I32 == 0b1111.
|
||||
|
||||
HWCAP2_SME_F16F32
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.F16F32 == 0b1.
|
||||
|
||||
HWCAP2_SME_B16F32
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.B16F32 == 0b1.
|
||||
|
||||
HWCAP2_SME_F32F32
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.F32F32 == 0b1.
|
||||
|
||||
HWCAP2_SME_FA64
|
||||
|
||||
Functionality implied by ID_AA64SMFR0_EL1.FA64 == 0b1.
|
||||
|
||||
4. Unused AT_HWCAP bits
|
||||
-----------------------
|
||||
|
||||
|
@ -21,6 +21,7 @@ ARM64 Architecture
|
||||
perf
|
||||
pointer-authentication
|
||||
silicon-errata
|
||||
sme
|
||||
sve
|
||||
tagged-address-abi
|
||||
tagged-pointers
|
||||
|
428
Documentation/arm64/sme.rst
Normal file
428
Documentation/arm64/sme.rst
Normal file
@ -0,0 +1,428 @@
|
||||
===================================================
|
||||
Scalable Matrix Extension support for AArch64 Linux
|
||||
===================================================
|
||||
|
||||
This document outlines briefly the interface provided to userspace by Linux in
|
||||
order to support use of the ARM Scalable Matrix Extension (SME).
|
||||
|
||||
This is an outline of the most important features and issues only and not
|
||||
intended to be exhaustive. It should be read in conjunction with the SVE
|
||||
documentation in sve.rst which provides details on the Streaming SVE mode
|
||||
included in SME.
|
||||
|
||||
This document does not aim to describe the SME architecture or programmer's
|
||||
model. To aid understanding, a minimal description of relevant programmer's
|
||||
model features for SME is included in Appendix A.
|
||||
|
||||
|
||||
1. General
|
||||
-----------
|
||||
|
||||
* PSTATE.SM, PSTATE.ZA, the streaming mode vector length, the ZA
|
||||
register state and TPIDR2_EL0 are tracked per thread.
|
||||
|
||||
* The presence of SME is reported to userspace via HWCAP2_SME in the aux vector
|
||||
AT_HWCAP2 entry. Presence of this flag implies the presence of the SME
|
||||
instructions and registers, and the Linux-specific system interfaces
|
||||
described in this document. SME is reported in /proc/cpuinfo as "sme".
|
||||
|
||||
* Support for the execution of SME instructions in userspace can also be
|
||||
detected by reading the CPU ID register ID_AA64PFR1_EL1 using an MRS
|
||||
instruction, and checking that the value of the SME field is nonzero. [3]
|
||||
|
||||
It does not guarantee the presence of the system interfaces described in the
|
||||
following sections: software that needs to verify that those interfaces are
|
||||
present must check for HWCAP2_SME instead.
|
||||
|
||||
* There are a number of optional SME features, presence of these is reported
|
||||
through AT_HWCAP2 through:
|
||||
|
||||
HWCAP2_SME_I16I64
|
||||
HWCAP2_SME_F64F64
|
||||
HWCAP2_SME_I8I32
|
||||
HWCAP2_SME_F16F32
|
||||
HWCAP2_SME_B16F32
|
||||
HWCAP2_SME_F32F32
|
||||
HWCAP2_SME_FA64
|
||||
|
||||
This list may be extended over time as the SME architecture evolves.
|
||||
|
||||
These extensions are also reported via the CPU ID register ID_AA64SMFR0_EL1,
|
||||
which userspace can read using an MRS instruction. See elf_hwcaps.txt and
|
||||
cpu-feature-registers.txt for details.
|
||||
|
||||
* Debuggers should restrict themselves to interacting with the target via the
|
||||
NT_ARM_SVE, NT_ARM_SSVE and NT_ARM_ZA regsets. The recommended way
|
||||
of detecting support for these regsets is to connect to a target process
|
||||
first and then attempt a
|
||||
|
||||
ptrace(PTRACE_GETREGSET, pid, NT_ARM_<regset>, &iov).
|
||||
|
||||
* Whenever ZA register values are exchanged in memory between userspace and
|
||||
the kernel, the register value is encoded in memory as a series of horizontal
|
||||
vectors from 0 to VL/8-1 stored in the same endianness invariant format as is
|
||||
used for SVE vectors.
|
||||
|
||||
* On thread creation TPIDR2_EL0 is preserved unless CLONE_SETTLS is specified,
|
||||
in which case it is set to 0.
|
||||
|
||||
2. Vector lengths
|
||||
------------------
|
||||
|
||||
SME defines a second vector length similar to the SVE vector length which is
|
||||
controls the size of the streaming mode SVE vectors and the ZA matrix array.
|
||||
The ZA matrix is square with each side having as many bytes as a streaming
|
||||
mode SVE vector.
|
||||
|
||||
|
||||
3. Sharing of streaming and non-streaming mode SVE state
|
||||
---------------------------------------------------------
|
||||
|
||||
It is implementation defined which if any parts of the SVE state are shared
|
||||
between streaming and non-streaming modes. When switching between modes
|
||||
via software interfaces such as ptrace if no register content is provided as
|
||||
part of switching no state will be assumed to be shared and everything will
|
||||
be zeroed.
|
||||
|
||||
|
||||
4. System call behaviour
|
||||
-------------------------
|
||||
|
||||
* On syscall PSTATE.ZA is preserved, if PSTATE.ZA==1 then the contents of the
|
||||
ZA matrix are preserved.
|
||||
|
||||
* On syscall PSTATE.SM will be cleared and the SVE registers will be handled
|
||||
as per the standard SVE ABI.
|
||||
|
||||
* Neither the SVE registers nor ZA are used to pass arguments to or receive
|
||||
results from any syscall.
|
||||
|
||||
* On process creation (eg, clone()) the newly created process will have
|
||||
PSTATE.SM cleared.
|
||||
|
||||
* All other SME state of a thread, including the currently configured vector
|
||||
length, the state of the PR_SME_VL_INHERIT flag, and the deferred vector
|
||||
length (if any), is preserved across all syscalls, subject to the specific
|
||||
exceptions for execve() described in section 6.
|
||||
|
||||
|
||||
5. Signal handling
|
||||
-------------------
|
||||
|
||||
* Signal handlers are invoked with streaming mode and ZA disabled.
|
||||
|
||||
* A new signal frame record za_context encodes the ZA register contents on
|
||||
signal delivery. [1]
|
||||
|
||||
* The signal frame record for ZA always contains basic metadata, in particular
|
||||
the thread's vector length (in za_context.vl).
|
||||
|
||||
* The ZA matrix may or may not be included in the record, depending on
|
||||
the value of PSTATE.ZA. The registers are present if and only if:
|
||||
za_context.head.size >= ZA_SIG_CONTEXT_SIZE(sve_vq_from_vl(za_context.vl))
|
||||
in which case PSTATE.ZA == 1.
|
||||
|
||||
* If matrix data is present, the remainder of the record has a vl-dependent
|
||||
size and layout. Macros ZA_SIG_* are defined [1] to facilitate access to
|
||||
them.
|
||||
|
||||
* The matrix is stored as a series of horizontal vectors in the same format as
|
||||
is used for SVE vectors.
|
||||
|
||||
* If the ZA context is too big to fit in sigcontext.__reserved[], then extra
|
||||
space is allocated on the stack, an extra_context record is written in
|
||||
__reserved[] referencing this space. za_context is then written in the
|
||||
extra space. Refer to [1] for further details about this mechanism.
|
||||
|
||||
|
||||
5. Signal return
|
||||
-----------------
|
||||
|
||||
When returning from a signal handler:
|
||||
|
||||
* If there is no za_context record in the signal frame, or if the record is
|
||||
present but contains no register data as described in the previous section,
|
||||
then ZA is disabled.
|
||||
|
||||
* If za_context is present in the signal frame and contains matrix data then
|
||||
PSTATE.ZA is set to 1 and ZA is populated with the specified data.
|
||||
|
||||
* The vector length cannot be changed via signal return. If za_context.vl in
|
||||
the signal frame does not match the current vector length, the signal return
|
||||
attempt is treated as illegal, resulting in a forced SIGSEGV.
|
||||
|
||||
|
||||
6. prctl extensions
|
||||
--------------------
|
||||
|
||||
Some new prctl() calls are added to allow programs to manage the SME vector
|
||||
length:
|
||||
|
||||
prctl(PR_SME_SET_VL, unsigned long arg)
|
||||
|
||||
Sets the vector length of the calling thread and related flags, where
|
||||
arg == vl | flags. Other threads of the calling process are unaffected.
|
||||
|
||||
vl is the desired vector length, where sve_vl_valid(vl) must be true.
|
||||
|
||||
flags:
|
||||
|
||||
PR_SME_VL_INHERIT
|
||||
|
||||
Inherit the current vector length across execve(). Otherwise, the
|
||||
vector length is reset to the system default at execve(). (See
|
||||
Section 9.)
|
||||
|
||||
PR_SME_SET_VL_ONEXEC
|
||||
|
||||
Defer the requested vector length change until the next execve()
|
||||
performed by this thread.
|
||||
|
||||
The effect is equivalent to implicit execution of the following
|
||||
call immediately after the next execve() (if any) by the thread:
|
||||
|
||||
prctl(PR_SME_SET_VL, arg & ~PR_SME_SET_VL_ONEXEC)
|
||||
|
||||
This allows launching of a new program with a different vector
|
||||
length, while avoiding runtime side effects in the caller.
|
||||
|
||||
Without PR_SME_SET_VL_ONEXEC, the requested change takes effect
|
||||
immediately.
|
||||
|
||||
|
||||
Return value: a nonnegative on success, or a negative value on error:
|
||||
EINVAL: SME not supported, invalid vector length requested, or
|
||||
invalid flags.
|
||||
|
||||
|
||||
On success:
|
||||
|
||||
* Either the calling thread's vector length or the deferred vector length
|
||||
to be applied at the next execve() by the thread (dependent on whether
|
||||
PR_SME_SET_VL_ONEXEC is present in arg), is set to the largest value
|
||||
supported by the system that is less than or equal to vl. If vl ==
|
||||
SVE_VL_MAX, the value set will be the largest value supported by the
|
||||
system.
|
||||
|
||||
* Any previously outstanding deferred vector length change in the calling
|
||||
thread is cancelled.
|
||||
|
||||
* The returned value describes the resulting configuration, encoded as for
|
||||
PR_SME_GET_VL. The vector length reported in this value is the new
|
||||
current vector length for this thread if PR_SME_SET_VL_ONEXEC was not
|
||||
present in arg; otherwise, the reported vector length is the deferred
|
||||
vector length that will be applied at the next execve() by the calling
|
||||
thread.
|
||||
|
||||
* Changing the vector length causes all of ZA, P0..P15, FFR and all bits of
|
||||
Z0..Z31 except for Z0 bits [127:0] .. Z31 bits [127:0] to become
|
||||
unspecified, including both streaming and non-streaming SVE state.
|
||||
Calling PR_SME_SET_VL with vl equal to the thread's current vector
|
||||
length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag,
|
||||
does not constitute a change to the vector length for this purpose.
|
||||
|
||||
* Changing the vector length causes PSTATE.ZA and PSTATE.SM to be cleared.
|
||||
Calling PR_SME_SET_VL with vl equal to the thread's current vector
|
||||
length, or calling PR_SME_SET_VL with the PR_SVE_SET_VL_ONEXEC flag,
|
||||
does not constitute a change to the vector length for this purpose.
|
||||
|
||||
|
||||
prctl(PR_SME_GET_VL)
|
||||
|
||||
Gets the vector length of the calling thread.
|
||||
|
||||
The following flag may be OR-ed into the result:
|
||||
|
||||
PR_SME_VL_INHERIT
|
||||
|
||||
Vector length will be inherited across execve().
|
||||
|
||||
There is no way to determine whether there is an outstanding deferred
|
||||
vector length change (which would only normally be the case between a
|
||||
fork() or vfork() and the corresponding execve() in typical use).
|
||||
|
||||
To extract the vector length from the result, bitwise and it with
|
||||
PR_SME_VL_LEN_MASK.
|
||||
|
||||
Return value: a nonnegative value on success, or a negative value on error:
|
||||
EINVAL: SME not supported.
|
||||
|
||||
|
||||
7. ptrace extensions
|
||||
---------------------
|
||||
|
||||
* A new regset NT_ARM_SSVE is defined for access to streaming mode SVE
|
||||
state via PTRACE_GETREGSET and PTRACE_SETREGSET, this is documented in
|
||||
sve.rst.
|
||||
|
||||
* A new regset NT_ARM_ZA is defined for ZA state for access to ZA state via
|
||||
PTRACE_GETREGSET and PTRACE_SETREGSET.
|
||||
|
||||
Refer to [2] for definitions.
|
||||
|
||||
The regset data starts with struct user_za_header, containing:
|
||||
|
||||
size
|
||||
|
||||
Size of the complete regset, in bytes.
|
||||
This depends on vl and possibly on other things in the future.
|
||||
|
||||
If a call to PTRACE_GETREGSET requests less data than the value of
|
||||
size, the caller can allocate a larger buffer and retry in order to
|
||||
read the complete regset.
|
||||
|
||||
max_size
|
||||
|
||||
Maximum size in bytes that the regset can grow to for the target
|
||||
thread. The regset won't grow bigger than this even if the target
|
||||
thread changes its vector length etc.
|
||||
|
||||
vl
|
||||
|
||||
Target thread's current streaming vector length, in bytes.
|
||||
|
||||
max_vl
|
||||
|
||||
Maximum possible streaming vector length for the target thread.
|
||||
|
||||
flags
|
||||
|
||||
Zero or more of the following flags, which have the same
|
||||
meaning and behaviour as the corresponding PR_SET_VL_* flags:
|
||||
|
||||
SME_PT_VL_INHERIT
|
||||
|
||||
SME_PT_VL_ONEXEC (SETREGSET only).
|
||||
|
||||
* The effects of changing the vector length and/or flags are equivalent to
|
||||
those documented for PR_SME_SET_VL.
|
||||
|
||||
The caller must make a further GETREGSET call if it needs to know what VL is
|
||||
actually set by SETREGSET, unless is it known in advance that the requested
|
||||
VL is supported.
|
||||
|
||||
* The size and layout of the payload depends on the header fields. The
|
||||
SME_PT_ZA_*() macros are provided to facilitate access to the data.
|
||||
|
||||
* In either case, for SETREGSET it is permissible to omit the payload, in which
|
||||
case the vector length and flags are changed and PSTATE.ZA is set to 0
|
||||
(along with any consequences of those changes). If a payload is provided
|
||||
then PSTATE.ZA will be set to 1.
|
||||
|
||||
* For SETREGSET, if the requested VL is not supported, the effect will be the
|
||||
same as if the payload were omitted, except that an EIO error is reported.
|
||||
No attempt is made to translate the payload data to the correct layout
|
||||
for the vector length actually set. It is up to the caller to translate the
|
||||
payload layout for the actual VL and retry.
|
||||
|
||||
* The effect of writing a partial, incomplete payload is unspecified.
|
||||
|
||||
|
||||
8. ELF coredump extensions
|
||||
---------------------------
|
||||
|
||||
* NT_ARM_SSVE notes will be added to each coredump for
|
||||
each thread of the dumped process. The contents will be equivalent to the
|
||||
data that would have been read if a PTRACE_GETREGSET of the corresponding
|
||||
type were executed for each thread when the coredump was generated.
|
||||
|
||||
* A NT_ARM_ZA note will be added to each coredump for each thread of the
|
||||
dumped process. The contents will be equivalent to the data that would have
|
||||
been read if a PTRACE_GETREGSET of NT_ARM_ZA were executed for each thread
|
||||
when the coredump was generated.
|
||||
|
||||
|
||||
9. System runtime configuration
|
||||
--------------------------------
|
||||
|
||||
* To mitigate the ABI impact of expansion of the signal frame, a policy
|
||||
mechanism is provided for administrators, distro maintainers and developers
|
||||
to set the default vector length for userspace processes:
|
||||
|
||||
/proc/sys/abi/sme_default_vector_length
|
||||
|
||||
Writing the text representation of an integer to this file sets the system
|
||||
default vector length to the specified value, unless the value is greater
|
||||
than the maximum vector length supported by the system in which case the
|
||||
default vector length is set to that maximum.
|
||||
|
||||
The result can be determined by reopening the file and reading its
|
||||
contents.
|
||||
|
||||
At boot, the default vector length is initially set to 32 or the maximum
|
||||
supported vector length, whichever is smaller and supported. This
|
||||
determines the initial vector length of the init process (PID 1).
|
||||
|
||||
Reading this file returns the current system default vector length.
|
||||
|
||||
* At every execve() call, the new vector length of the new process is set to
|
||||
the system default vector length, unless
|
||||
|
||||
* PR_SME_VL_INHERIT (or equivalently SME_PT_VL_INHERIT) is set for the
|
||||
calling thread, or
|
||||
|
||||
* a deferred vector length change is pending, established via the
|
||||
PR_SME_SET_VL_ONEXEC flag (or SME_PT_VL_ONEXEC).
|
||||
|
||||
* Modifying the system default vector length does not affect the vector length
|
||||
of any existing process or thread that does not make an execve() call.
|
||||
|
||||
|
||||
Appendix A. SME programmer's model (informative)
|
||||
=================================================
|
||||
|
||||
This section provides a minimal description of the additions made by SVE to the
|
||||
ARMv8-A programmer's model that are relevant to this document.
|
||||
|
||||
Note: This section is for information only and not intended to be complete or
|
||||
to replace any architectural specification.
|
||||
|
||||
A.1. Registers
|
||||
---------------
|
||||
|
||||
In A64 state, SME adds the following:
|
||||
|
||||
* A new mode, streaming mode, in which a subset of the normal FPSIMD and SVE
|
||||
features are available. When supported EL0 software may enter and leave
|
||||
streaming mode at any time.
|
||||
|
||||
For best system performance it is strongly encouraged for software to enable
|
||||
streaming mode only when it is actively being used.
|
||||
|
||||
* A new vector length controlling the size of ZA and the Z registers when in
|
||||
streaming mode, separately to the vector length used for SVE when not in
|
||||
streaming mode. There is no requirement that either the currently selected
|
||||
vector length or the set of vector lengths supported for the two modes in
|
||||
a given system have any relationship. The streaming mode vector length
|
||||
is referred to as SVL.
|
||||
|
||||
* A new ZA matrix register. This is a square matrix of SVLxSVL bits. Most
|
||||
operations on ZA require that streaming mode be enabled but ZA can be
|
||||
enabled without streaming mode in order to load, save and retain data.
|
||||
|
||||
For best system performance it is strongly encouraged for software to enable
|
||||
ZA only when it is actively being used.
|
||||
|
||||
* Two new 1 bit fields in PSTATE which may be controlled via the SMSTART and
|
||||
SMSTOP instructions or by access to the SVCR system register:
|
||||
|
||||
* PSTATE.ZA, if this is 1 then the ZA matrix is accessible and has valid
|
||||
data while if it is 0 then ZA can not be accessed. When PSTATE.ZA is
|
||||
changed from 0 to 1 all bits in ZA are cleared.
|
||||
|
||||
* PSTATE.SM, if this is 1 then the PE is in streaming mode. When the value
|
||||
of PSTATE.SM is changed then it is implementation defined if the subset
|
||||
of the floating point register bits valid in both modes may be retained.
|
||||
Any other bits will be cleared.
|
||||
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
[1] arch/arm64/include/uapi/asm/sigcontext.h
|
||||
AArch64 Linux signal ABI definitions
|
||||
|
||||
[2] arch/arm64/include/uapi/asm/ptrace.h
|
||||
AArch64 Linux ptrace ABI definitions
|
||||
|
||||
[3] Documentation/arm64/cpu-feature-registers.rst
|
@ -7,7 +7,9 @@ Author: Dave Martin <Dave.Martin@arm.com>
|
||||
Date: 4 August 2017
|
||||
|
||||
This document outlines briefly the interface provided to userspace by Linux in
|
||||
order to support use of the ARM Scalable Vector Extension (SVE).
|
||||
order to support use of the ARM Scalable Vector Extension (SVE), including
|
||||
interactions with Streaming SVE mode added by the Scalable Matrix Extension
|
||||
(SME).
|
||||
|
||||
This is an outline of the most important features and issues only and not
|
||||
intended to be exhaustive.
|
||||
@ -23,6 +25,10 @@ model features for SVE is included in Appendix A.
|
||||
* SVE registers Z0..Z31, P0..P15 and FFR and the current vector length VL, are
|
||||
tracked per-thread.
|
||||
|
||||
* In streaming mode FFR is not accessible unless HWCAP2_SME_FA64 is present
|
||||
in the system, when it is not supported and these interfaces are used to
|
||||
access streaming mode FFR is read and written as zero.
|
||||
|
||||
* The presence of SVE is reported to userspace via HWCAP_SVE in the aux vector
|
||||
AT_HWCAP entry. Presence of this flag implies the presence of the SVE
|
||||
instructions and registers, and the Linux-specific system interfaces
|
||||
@ -53,10 +59,19 @@ model features for SVE is included in Appendix A.
|
||||
which userspace can read using an MRS instruction. See elf_hwcaps.txt and
|
||||
cpu-feature-registers.txt for details.
|
||||
|
||||
* On hardware that supports the SME extensions, HWCAP2_SME will also be
|
||||
reported in the AT_HWCAP2 aux vector entry. Among other things SME adds
|
||||
streaming mode which provides a subset of the SVE feature set using a
|
||||
separate SME vector length and the same Z/V registers. See sme.rst
|
||||
for more details.
|
||||
|
||||
* Debuggers should restrict themselves to interacting with the target via the
|
||||
NT_ARM_SVE regset. The recommended way of detecting support for this regset
|
||||
is to connect to a target process first and then attempt a
|
||||
ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov).
|
||||
ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov). Note that when SME is
|
||||
present and streaming SVE mode is in use the FPSIMD subset of registers
|
||||
will be read via NT_ARM_SVE and NT_ARM_SVE writes will exit streaming mode
|
||||
in the target.
|
||||
|
||||
* Whenever SVE scalable register values (Zn, Pn, FFR) are exchanged in memory
|
||||
between userspace and the kernel, the register value is encoded in memory in
|
||||
@ -126,6 +141,11 @@ the SVE instruction set architecture.
|
||||
are only present in fpsimd_context. For convenience, the content of V0..V31
|
||||
is duplicated between sve_context and fpsimd_context.
|
||||
|
||||
* The record contains a flag field which includes a flag SVE_SIG_FLAG_SM which
|
||||
if set indicates that the thread is in streaming mode and the vector length
|
||||
and register data (if present) describe the streaming SVE data and vector
|
||||
length.
|
||||
|
||||
* The signal frame record for SVE always contains basic metadata, in particular
|
||||
the thread's vector length (in sve_context.vl).
|
||||
|
||||
@ -170,6 +190,11 @@ When returning from a signal handler:
|
||||
the signal frame does not match the current vector length, the signal return
|
||||
attempt is treated as illegal, resulting in a forced SIGSEGV.
|
||||
|
||||
* It is permitted to enter or leave streaming mode by setting or clearing
|
||||
the SVE_SIG_FLAG_SM flag but applications should take care to ensure that
|
||||
when doing so sve_context.vl and any register data are appropriate for the
|
||||
vector length in the new mode.
|
||||
|
||||
|
||||
6. prctl extensions
|
||||
--------------------
|
||||
@ -265,8 +290,14 @@ prctl(PR_SVE_GET_VL)
|
||||
7. ptrace extensions
|
||||
---------------------
|
||||
|
||||
* A new regset NT_ARM_SVE is defined for use with PTRACE_GETREGSET and
|
||||
PTRACE_SETREGSET.
|
||||
* New regsets NT_ARM_SVE and NT_ARM_SSVE are defined for use with
|
||||
PTRACE_GETREGSET and PTRACE_SETREGSET. NT_ARM_SSVE describes the
|
||||
streaming mode SVE registers and NT_ARM_SVE describes the
|
||||
non-streaming mode SVE registers.
|
||||
|
||||
In this description a register set is referred to as being "live" when
|
||||
the target is in the appropriate streaming or non-streaming mode and is
|
||||
using data beyond the subset shared with the FPSIMD Vn registers.
|
||||
|
||||
Refer to [2] for definitions.
|
||||
|
||||
@ -297,7 +328,7 @@ The regset data starts with struct user_sve_header, containing:
|
||||
|
||||
flags
|
||||
|
||||
either
|
||||
at most one of
|
||||
|
||||
SVE_PT_REGS_FPSIMD
|
||||
|
||||
@ -331,6 +362,10 @@ The regset data starts with struct user_sve_header, containing:
|
||||
|
||||
SVE_PT_VL_ONEXEC (SETREGSET only).
|
||||
|
||||
If neither FPSIMD nor SVE flags are provided then no register
|
||||
payload is available, this is only possible when SME is implemented.
|
||||
|
||||
|
||||
* The effects of changing the vector length and/or flags are equivalent to
|
||||
those documented for PR_SVE_SET_VL.
|
||||
|
||||
@ -346,6 +381,13 @@ The regset data starts with struct user_sve_header, containing:
|
||||
case only the vector length and flags are changed (along with any
|
||||
consequences of those changes).
|
||||
|
||||
* In systems supporting SME when in streaming mode a GETREGSET for
|
||||
NT_REG_SVE will return only the user_sve_header with no register data,
|
||||
similarly a GETREGSET for NT_REG_SSVE will not return any register data
|
||||
when not in streaming mode.
|
||||
|
||||
* A GETREGSET for NT_ARM_SSVE will never return SVE_PT_REGS_FPSIMD.
|
||||
|
||||
* For SETREGSET, if an SVE_PT_REGS_SVE payload is present and the
|
||||
requested VL is not supported, the effect will be the same as if the
|
||||
payload were omitted, except that an EIO error is reported. No
|
||||
@ -355,17 +397,25 @@ The regset data starts with struct user_sve_header, containing:
|
||||
unspecified. It is up to the caller to translate the payload layout
|
||||
for the actual VL and retry.
|
||||
|
||||
* Where SME is implemented it is not possible to GETREGSET the register
|
||||
state for normal SVE when in streaming mode, nor the streaming mode
|
||||
register state when in normal mode, regardless of the implementation defined
|
||||
behaviour of the hardware for sharing data between the two modes.
|
||||
|
||||
* Any SETREGSET of NT_ARM_SVE will exit streaming mode if the target was in
|
||||
streaming mode and any SETREGSET of NT_ARM_SSVE will enter streaming mode
|
||||
if the target was not in streaming mode.
|
||||
|
||||
* The effect of writing a partial, incomplete payload is unspecified.
|
||||
|
||||
|
||||
8. ELF coredump extensions
|
||||
---------------------------
|
||||
|
||||
* A NT_ARM_SVE note will be added to each coredump for each thread of the
|
||||
dumped process. The contents will be equivalent to the data that would have
|
||||
been read if a PTRACE_GETREGSET of NT_ARM_SVE were executed for each thread
|
||||
when the coredump was generated.
|
||||
|
||||
* NT_ARM_SVE and NT_ARM_SSVE notes will be added to each coredump for
|
||||
each thread of the dumped process. The contents will be equivalent to the
|
||||
data that would have been read if a PTRACE_GETREGSET of the corresponding
|
||||
type were executed for each thread when the coredump was generated.
|
||||
|
||||
9. System runtime configuration
|
||||
--------------------------------
|
||||
|
@ -14,6 +14,8 @@ properties:
|
||||
compatible:
|
||||
enum:
|
||||
- arm,cmn-600
|
||||
- arm,cmn-650
|
||||
- arm,cmn-700
|
||||
- arm,ci-700
|
||||
|
||||
reg:
|
||||
|
@ -5713,6 +5713,8 @@ affect the device's behavior. Current defined flags::
|
||||
#define KVM_RUN_X86_SMM (1 << 0)
|
||||
/* x86, set if bus lock detected in VM */
|
||||
#define KVM_RUN_BUS_LOCK (1 << 1)
|
||||
/* arm64, set for KVM_EXIT_DEBUG */
|
||||
#define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0)
|
||||
|
||||
::
|
||||
|
||||
|
@ -24,6 +24,13 @@ config KEXEC_ELF
|
||||
config HAVE_IMA_KEXEC
|
||||
bool
|
||||
|
||||
config ARCH_HAS_SUBPAGE_FAULTS
|
||||
bool
|
||||
help
|
||||
Select if the architecture can check permissions at sub-page
|
||||
granularity (e.g. arm64 MTE). The probe_user_*() functions
|
||||
must be implemented.
|
||||
|
||||
config HOTPLUG_SMT
|
||||
bool
|
||||
|
||||
|
@ -262,31 +262,31 @@ config ARM64_CONT_PMD_SHIFT
|
||||
default 4
|
||||
|
||||
config ARCH_MMAP_RND_BITS_MIN
|
||||
default 14 if ARM64_64K_PAGES
|
||||
default 16 if ARM64_16K_PAGES
|
||||
default 18
|
||||
default 14 if ARM64_64K_PAGES
|
||||
default 16 if ARM64_16K_PAGES
|
||||
default 18
|
||||
|
||||
# max bits determined by the following formula:
|
||||
# VA_BITS - PAGE_SHIFT - 3
|
||||
config ARCH_MMAP_RND_BITS_MAX
|
||||
default 19 if ARM64_VA_BITS=36
|
||||
default 24 if ARM64_VA_BITS=39
|
||||
default 27 if ARM64_VA_BITS=42
|
||||
default 30 if ARM64_VA_BITS=47
|
||||
default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
|
||||
default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
|
||||
default 33 if ARM64_VA_BITS=48
|
||||
default 14 if ARM64_64K_PAGES
|
||||
default 16 if ARM64_16K_PAGES
|
||||
default 18
|
||||
default 19 if ARM64_VA_BITS=36
|
||||
default 24 if ARM64_VA_BITS=39
|
||||
default 27 if ARM64_VA_BITS=42
|
||||
default 30 if ARM64_VA_BITS=47
|
||||
default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
|
||||
default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
|
||||
default 33 if ARM64_VA_BITS=48
|
||||
default 14 if ARM64_64K_PAGES
|
||||
default 16 if ARM64_16K_PAGES
|
||||
default 18
|
||||
|
||||
config ARCH_MMAP_RND_COMPAT_BITS_MIN
|
||||
default 7 if ARM64_64K_PAGES
|
||||
default 9 if ARM64_16K_PAGES
|
||||
default 11
|
||||
default 7 if ARM64_64K_PAGES
|
||||
default 9 if ARM64_16K_PAGES
|
||||
default 11
|
||||
|
||||
config ARCH_MMAP_RND_COMPAT_BITS_MAX
|
||||
default 16
|
||||
default 16
|
||||
|
||||
config NO_IOPORT_MAP
|
||||
def_bool y if !PCI
|
||||
@ -313,7 +313,7 @@ config GENERIC_HWEIGHT
|
||||
def_bool y
|
||||
|
||||
config GENERIC_CSUM
|
||||
def_bool y
|
||||
def_bool y
|
||||
|
||||
config GENERIC_CALIBRATE_DELAY
|
||||
def_bool y
|
||||
@ -1046,8 +1046,7 @@ config SOCIONEXT_SYNQUACER_PREITS
|
||||
|
||||
If unsure, say Y.
|
||||
|
||||
endmenu
|
||||
|
||||
endmenu # "ARM errata workarounds via the alternatives framework"
|
||||
|
||||
choice
|
||||
prompt "Page size"
|
||||
@ -1575,9 +1574,9 @@ config SETEND_EMULATION
|
||||
be unexpected results in the applications.
|
||||
|
||||
If unsure, say Y
|
||||
endif
|
||||
endif # ARMV8_DEPRECATED
|
||||
|
||||
endif
|
||||
endif # COMPAT
|
||||
|
||||
menu "ARMv8.1 architectural features"
|
||||
|
||||
@ -1602,15 +1601,15 @@ config ARM64_PAN
|
||||
bool "Enable support for Privileged Access Never (PAN)"
|
||||
default y
|
||||
help
|
||||
Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
|
||||
prevents the kernel or hypervisor from accessing user-space (EL0)
|
||||
memory directly.
|
||||
Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
|
||||
prevents the kernel or hypervisor from accessing user-space (EL0)
|
||||
memory directly.
|
||||
|
||||
Choosing this option will cause any unprotected (not using
|
||||
copy_to_user et al) memory access to fail with a permission fault.
|
||||
Choosing this option will cause any unprotected (not using
|
||||
copy_to_user et al) memory access to fail with a permission fault.
|
||||
|
||||
The feature is detected at runtime, and will remain as a 'nop'
|
||||
instruction if the cpu does not implement the feature.
|
||||
The feature is detected at runtime, and will remain as a 'nop'
|
||||
instruction if the cpu does not implement the feature.
|
||||
|
||||
config AS_HAS_LDAPR
|
||||
def_bool $(as-instr,.arch_extension rcpc)
|
||||
@ -1638,15 +1637,15 @@ config ARM64_USE_LSE_ATOMICS
|
||||
built with binutils >= 2.25 in order for the new instructions
|
||||
to be used.
|
||||
|
||||
endmenu
|
||||
endmenu # "ARMv8.1 architectural features"
|
||||
|
||||
menu "ARMv8.2 architectural features"
|
||||
|
||||
config AS_HAS_ARMV8_2
|
||||
def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
|
||||
def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
|
||||
|
||||
config AS_HAS_SHA3
|
||||
def_bool $(as-instr,.arch armv8.2-a+sha3)
|
||||
def_bool $(as-instr,.arch armv8.2-a+sha3)
|
||||
|
||||
config ARM64_PMEM
|
||||
bool "Enable support for persistent memory"
|
||||
@ -1690,7 +1689,7 @@ config ARM64_CNP
|
||||
at runtime, and does not affect PEs that do not implement
|
||||
this feature.
|
||||
|
||||
endmenu
|
||||
endmenu # "ARMv8.2 architectural features"
|
||||
|
||||
menu "ARMv8.3 architectural features"
|
||||
|
||||
@ -1753,7 +1752,7 @@ config AS_HAS_PAC
|
||||
config AS_HAS_CFI_NEGATE_RA_STATE
|
||||
def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
|
||||
|
||||
endmenu
|
||||
endmenu # "ARMv8.3 architectural features"
|
||||
|
||||
menu "ARMv8.4 architectural features"
|
||||
|
||||
@ -1794,7 +1793,7 @@ config ARM64_TLB_RANGE
|
||||
The feature introduces new assembly instructions, and they were
|
||||
support when binutils >= 2.30.
|
||||
|
||||
endmenu
|
||||
endmenu # "ARMv8.4 architectural features"
|
||||
|
||||
menu "ARMv8.5 architectural features"
|
||||
|
||||
@ -1880,6 +1879,7 @@ config ARM64_MTE
|
||||
depends on AS_HAS_LSE_ATOMICS
|
||||
# Required for tag checking in the uaccess routines
|
||||
depends on ARM64_PAN
|
||||
select ARCH_HAS_SUBPAGE_FAULTS
|
||||
select ARCH_USES_HIGH_VMA_FLAGS
|
||||
help
|
||||
Memory Tagging (part of the ARMv8.5 Extensions) provides
|
||||
@ -1901,7 +1901,7 @@ config ARM64_MTE
|
||||
|
||||
Documentation/arm64/memory-tagging-extension.rst.
|
||||
|
||||
endmenu
|
||||
endmenu # "ARMv8.5 architectural features"
|
||||
|
||||
menu "ARMv8.7 architectural features"
|
||||
|
||||
@ -1910,12 +1910,12 @@ config ARM64_EPAN
|
||||
default y
|
||||
depends on ARM64_PAN
|
||||
help
|
||||
Enhanced Privileged Access Never (EPAN) allows Privileged
|
||||
Access Never to be used with Execute-only mappings.
|
||||
Enhanced Privileged Access Never (EPAN) allows Privileged
|
||||
Access Never to be used with Execute-only mappings.
|
||||
|
||||
The feature is detected at runtime, and will remain disabled
|
||||
if the cpu does not implement the feature.
|
||||
endmenu
|
||||
The feature is detected at runtime, and will remain disabled
|
||||
if the cpu does not implement the feature.
|
||||
endmenu # "ARMv8.7 architectural features"
|
||||
|
||||
config ARM64_SVE
|
||||
bool "ARM Scalable Vector Extension support"
|
||||
@ -1948,6 +1948,17 @@ config ARM64_SVE
|
||||
booting the kernel. If unsure and you are not observing these
|
||||
symptoms, you should assume that it is safe to say Y.
|
||||
|
||||
config ARM64_SME
|
||||
bool "ARM Scalable Matrix Extension support"
|
||||
default y
|
||||
depends on ARM64_SVE
|
||||
help
|
||||
The Scalable Matrix Extension (SME) is an extension to the AArch64
|
||||
execution state which utilises a substantial subset of the SVE
|
||||
instruction set, together with the addition of new architectural
|
||||
register state capable of holding two dimensional matrix tiles to
|
||||
enable various matrix operations.
|
||||
|
||||
config ARM64_MODULE_PLTS
|
||||
bool "Use PLTs to allow module memory to spill over into vmalloc area"
|
||||
depends on MODULES
|
||||
@ -1991,7 +2002,7 @@ config ARM64_DEBUG_PRIORITY_MASKING
|
||||
the validity of ICC_PMR_EL1 when calling concerned functions.
|
||||
|
||||
If unsure, say N
|
||||
endif
|
||||
endif # ARM64_PSEUDO_NMI
|
||||
|
||||
config RELOCATABLE
|
||||
bool "Build a relocatable kernel image" if EXPERT
|
||||
@ -2050,7 +2061,19 @@ config STACKPROTECTOR_PER_TASK
|
||||
def_bool y
|
||||
depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
|
||||
|
||||
endmenu
|
||||
# The GPIO number here must be sorted by descending number. In case of
|
||||
# a multiplatform kernel, we just want the highest value required by the
|
||||
# selected platforms.
|
||||
config ARCH_NR_GPIO
|
||||
int
|
||||
default 2048 if ARCH_APPLE
|
||||
default 0
|
||||
help
|
||||
Maximum number of GPIOs in the system.
|
||||
|
||||
If unsure, leave the default value.
|
||||
|
||||
endmenu # "Kernel Features"
|
||||
|
||||
menu "Boot options"
|
||||
|
||||
@ -2114,7 +2137,7 @@ config EFI
|
||||
help
|
||||
This option provides support for runtime services provided
|
||||
by UEFI firmware (such as non-volatile variables, realtime
|
||||
clock, and platform reset). A UEFI stub is also provided to
|
||||
clock, and platform reset). A UEFI stub is also provided to
|
||||
allow the kernel to be booted as an EFI application. This
|
||||
is only useful on systems that have UEFI firmware.
|
||||
|
||||
@ -2129,7 +2152,7 @@ config DMI
|
||||
However, even with this option, the resultant kernel should
|
||||
continue to boot on existing non-UEFI platforms.
|
||||
|
||||
endmenu
|
||||
endmenu # "Boot options"
|
||||
|
||||
config SYSVIPC_COMPAT
|
||||
def_bool y
|
||||
@ -2150,7 +2173,7 @@ config ARCH_HIBERNATION_HEADER
|
||||
config ARCH_SUSPEND_POSSIBLE
|
||||
def_bool y
|
||||
|
||||
endmenu
|
||||
endmenu # "Power management options"
|
||||
|
||||
menu "CPU Power Management"
|
||||
|
||||
@ -2158,7 +2181,7 @@ source "drivers/cpuidle/Kconfig"
|
||||
|
||||
source "drivers/cpufreq/Kconfig"
|
||||
|
||||
endmenu
|
||||
endmenu # "CPU Power Management"
|
||||
|
||||
source "drivers/acpi/Kconfig"
|
||||
|
||||
@ -2166,4 +2189,4 @@ source "arch/arm64/kvm/Kconfig"
|
||||
|
||||
if CRYPTO
|
||||
source "arch/arm64/crypto/Kconfig"
|
||||
endif
|
||||
endif # CRYPTO
|
||||
|
@ -325,4 +325,4 @@ config ARCH_ZYNQMP
|
||||
help
|
||||
This enables support for Xilinx ZynqMP Family
|
||||
|
||||
endmenu
|
||||
endmenu # "Platform selection"
|
||||
|
@ -7,3 +7,4 @@ generic-y += parport.h
|
||||
generic-y += user.h
|
||||
|
||||
generated-y += cpucaps.h
|
||||
generated-y += sysreg-defs.h
|
||||
|
@ -142,7 +142,7 @@ static inline bool __init __early_cpu_has_rndr(void)
|
||||
{
|
||||
/* Open code as we run prior to the first call to cpufeature. */
|
||||
unsigned long ftr = read_sysreg_s(SYS_ID_AA64ISAR0_EL1);
|
||||
return (ftr >> ID_AA64ISAR0_RNDR_SHIFT) & 0xf;
|
||||
return (ftr >> ID_AA64ISAR0_EL1_RNDR_SHIFT) & 0xf;
|
||||
}
|
||||
|
||||
static inline bool __init __must_check
|
||||
|
@ -58,11 +58,15 @@ struct cpuinfo_arm64 {
|
||||
u64 reg_id_aa64pfr0;
|
||||
u64 reg_id_aa64pfr1;
|
||||
u64 reg_id_aa64zfr0;
|
||||
u64 reg_id_aa64smfr0;
|
||||
|
||||
struct cpuinfo_32bit aarch32;
|
||||
|
||||
/* pseudo-ZCR for recording maximum ZCR_EL1 LEN value: */
|
||||
u64 reg_zcr;
|
||||
|
||||
/* pseudo-SMCR for recording maximum SMCR_EL1 LEN value: */
|
||||
u64 reg_smcr;
|
||||
};
|
||||
|
||||
DECLARE_PER_CPU(struct cpuinfo_arm64, cpu_data);
|
||||
|
@ -622,6 +622,13 @@ static inline bool id_aa64pfr0_sve(u64 pfr0)
|
||||
return val > 0;
|
||||
}
|
||||
|
||||
static inline bool id_aa64pfr1_sme(u64 pfr1)
|
||||
{
|
||||
u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_SME_SHIFT);
|
||||
|
||||
return val > 0;
|
||||
}
|
||||
|
||||
static inline bool id_aa64pfr1_mte(u64 pfr1)
|
||||
{
|
||||
u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_MTE_SHIFT);
|
||||
@ -759,6 +766,23 @@ static __always_inline bool system_supports_sve(void)
|
||||
cpus_have_const_cap(ARM64_SVE);
|
||||
}
|
||||
|
||||
static __always_inline bool system_supports_sme(void)
|
||||
{
|
||||
return IS_ENABLED(CONFIG_ARM64_SME) &&
|
||||
cpus_have_const_cap(ARM64_SME);
|
||||
}
|
||||
|
||||
static __always_inline bool system_supports_fa64(void)
|
||||
{
|
||||
return IS_ENABLED(CONFIG_ARM64_SME) &&
|
||||
cpus_have_const_cap(ARM64_SME_FA64);
|
||||
}
|
||||
|
||||
static __always_inline bool system_supports_tpidr2(void)
|
||||
{
|
||||
return system_supports_sme();
|
||||
}
|
||||
|
||||
static __always_inline bool system_supports_cnp(void)
|
||||
{
|
||||
return IS_ENABLED(CONFIG_ARM64_CNP) &&
|
||||
|
@ -36,7 +36,7 @@
|
||||
#define MIDR_VARIANT(midr) \
|
||||
(((midr) & MIDR_VARIANT_MASK) >> MIDR_VARIANT_SHIFT)
|
||||
#define MIDR_IMPLEMENTOR_SHIFT 24
|
||||
#define MIDR_IMPLEMENTOR_MASK (0xff << MIDR_IMPLEMENTOR_SHIFT)
|
||||
#define MIDR_IMPLEMENTOR_MASK (0xffU << MIDR_IMPLEMENTOR_SHIFT)
|
||||
#define MIDR_IMPLEMENTOR(midr) \
|
||||
(((midr) & MIDR_IMPLEMENTOR_MASK) >> MIDR_IMPLEMENTOR_SHIFT)
|
||||
|
||||
|
@ -64,7 +64,7 @@ struct task_struct;
|
||||
|
||||
struct step_hook {
|
||||
struct list_head node;
|
||||
int (*fn)(struct pt_regs *regs, unsigned int esr);
|
||||
int (*fn)(struct pt_regs *regs, unsigned long esr);
|
||||
};
|
||||
|
||||
void register_user_step_hook(struct step_hook *hook);
|
||||
@ -75,7 +75,7 @@ void unregister_kernel_step_hook(struct step_hook *hook);
|
||||
|
||||
struct break_hook {
|
||||
struct list_head node;
|
||||
int (*fn)(struct pt_regs *regs, unsigned int esr);
|
||||
int (*fn)(struct pt_regs *regs, unsigned long esr);
|
||||
u16 imm;
|
||||
u16 mask; /* These bits are ignored when comparing with imm */
|
||||
};
|
||||
|
@ -143,6 +143,50 @@
|
||||
.Lskip_sve_\@:
|
||||
.endm
|
||||
|
||||
/* SME register access and priority mapping */
|
||||
.macro __init_el2_nvhe_sme
|
||||
mrs x1, id_aa64pfr1_el1
|
||||
ubfx x1, x1, #ID_AA64PFR1_SME_SHIFT, #4
|
||||
cbz x1, .Lskip_sme_\@
|
||||
|
||||
bic x0, x0, #CPTR_EL2_TSM // Also disable SME traps
|
||||
msr cptr_el2, x0 // Disable copro. traps to EL2
|
||||
isb
|
||||
|
||||
mrs x1, sctlr_el2
|
||||
orr x1, x1, #SCTLR_ELx_ENTP2 // Disable TPIDR2 traps
|
||||
msr sctlr_el2, x1
|
||||
isb
|
||||
|
||||
mov x1, #0 // SMCR controls
|
||||
|
||||
mrs_s x2, SYS_ID_AA64SMFR0_EL1
|
||||
ubfx x2, x2, #ID_AA64SMFR0_FA64_SHIFT, #1 // Full FP in SM?
|
||||
cbz x2, .Lskip_sme_fa64_\@
|
||||
|
||||
orr x1, x1, SMCR_ELx_FA64_MASK
|
||||
.Lskip_sme_fa64_\@:
|
||||
|
||||
orr x1, x1, #SMCR_ELx_LEN_MASK // Enable full SME vector
|
||||
msr_s SYS_SMCR_EL2, x1 // length for EL1.
|
||||
|
||||
mrs_s x1, SYS_SMIDR_EL1 // Priority mapping supported?
|
||||
ubfx x1, x1, #SMIDR_EL1_SMPS_SHIFT, #1
|
||||
cbz x1, .Lskip_sme_\@
|
||||
|
||||
msr_s SYS_SMPRIMAP_EL2, xzr // Make all priorities equal
|
||||
|
||||
mrs x1, id_aa64mmfr1_el1 // HCRX_EL2 present?
|
||||
ubfx x1, x1, #ID_AA64MMFR1_HCX_SHIFT, #4
|
||||
cbz x1, .Lskip_sme_\@
|
||||
|
||||
mrs_s x1, SYS_HCRX_EL2
|
||||
orr x1, x1, #HCRX_EL2_SMPME_MASK // Enable priority mapping
|
||||
msr_s SYS_HCRX_EL2, x1
|
||||
|
||||
.Lskip_sme_\@:
|
||||
.endm
|
||||
|
||||
/* Disable any fine grained traps */
|
||||
.macro __init_el2_fgt
|
||||
mrs x1, id_aa64mmfr0_el1
|
||||
@ -153,15 +197,26 @@
|
||||
mrs x1, id_aa64dfr0_el1
|
||||
ubfx x1, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
|
||||
cmp x1, #3
|
||||
b.lt .Lset_fgt_\@
|
||||
b.lt .Lset_debug_fgt_\@
|
||||
/* Disable PMSNEVFR_EL1 read and write traps */
|
||||
orr x0, x0, #(1 << 62)
|
||||
|
||||
.Lset_fgt_\@:
|
||||
.Lset_debug_fgt_\@:
|
||||
msr_s SYS_HDFGRTR_EL2, x0
|
||||
msr_s SYS_HDFGWTR_EL2, x0
|
||||
msr_s SYS_HFGRTR_EL2, xzr
|
||||
msr_s SYS_HFGWTR_EL2, xzr
|
||||
|
||||
mov x0, xzr
|
||||
mrs x1, id_aa64pfr1_el1
|
||||
ubfx x1, x1, #ID_AA64PFR1_SME_SHIFT, #4
|
||||
cbz x1, .Lset_fgt_\@
|
||||
|
||||
/* Disable nVHE traps of TPIDR2 and SMPRI */
|
||||
orr x0, x0, #HFGxTR_EL2_nSMPRI_EL1_MASK
|
||||
orr x0, x0, #HFGxTR_EL2_nTPIDR2_EL0_MASK
|
||||
|
||||
.Lset_fgt_\@:
|
||||
msr_s SYS_HFGRTR_EL2, x0
|
||||
msr_s SYS_HFGWTR_EL2, x0
|
||||
msr_s SYS_HFGITR_EL2, xzr
|
||||
|
||||
mrs x1, id_aa64pfr0_el1 // AMU traps UNDEF without AMU
|
||||
@ -196,6 +251,7 @@
|
||||
__init_el2_nvhe_idregs
|
||||
__init_el2_nvhe_cptr
|
||||
__init_el2_nvhe_sve
|
||||
__init_el2_nvhe_sme
|
||||
__init_el2_fgt
|
||||
__init_el2_nvhe_prepare_eret
|
||||
.endm
|
||||
|
@ -37,7 +37,8 @@
|
||||
#define ESR_ELx_EC_ERET (0x1a) /* EL2 only */
|
||||
/* Unallocated EC: 0x1B */
|
||||
#define ESR_ELx_EC_FPAC (0x1C) /* EL1 and above */
|
||||
/* Unallocated EC: 0x1D - 0x1E */
|
||||
#define ESR_ELx_EC_SME (0x1D)
|
||||
/* Unallocated EC: 0x1E */
|
||||
#define ESR_ELx_EC_IMP_DEF (0x1f) /* EL3 only */
|
||||
#define ESR_ELx_EC_IABT_LOW (0x20)
|
||||
#define ESR_ELx_EC_IABT_CUR (0x21)
|
||||
@ -75,6 +76,7 @@
|
||||
#define ESR_ELx_IL_SHIFT (25)
|
||||
#define ESR_ELx_IL (UL(1) << ESR_ELx_IL_SHIFT)
|
||||
#define ESR_ELx_ISS_MASK (ESR_ELx_IL - 1)
|
||||
#define ESR_ELx_ISS(esr) ((esr) & ESR_ELx_ISS_MASK)
|
||||
|
||||
/* ISS field definitions shared by different classes */
|
||||
#define ESR_ELx_WNR_SHIFT (6)
|
||||
@ -136,7 +138,7 @@
|
||||
#define ESR_ELx_WFx_ISS_TI (UL(1) << 0)
|
||||
#define ESR_ELx_WFx_ISS_WFI (UL(0) << 0)
|
||||
#define ESR_ELx_WFx_ISS_WFE (UL(1) << 0)
|
||||
#define ESR_ELx_xVC_IMM_MASK ((1UL << 16) - 1)
|
||||
#define ESR_ELx_xVC_IMM_MASK ((UL(1) << 16) - 1)
|
||||
|
||||
#define DISR_EL1_IDS (UL(1) << 24)
|
||||
/*
|
||||
@ -327,17 +329,26 @@
|
||||
#define ESR_ELx_CP15_32_ISS_SYS_CNTFRQ (ESR_ELx_CP15_32_ISS_SYS_VAL(0, 0, 14, 0) |\
|
||||
ESR_ELx_CP15_32_ISS_DIR_READ)
|
||||
|
||||
/*
|
||||
* ISS values for SME traps
|
||||
*/
|
||||
|
||||
#define ESR_ELx_SME_ISS_SME_DISABLED 0
|
||||
#define ESR_ELx_SME_ISS_ILL 1
|
||||
#define ESR_ELx_SME_ISS_SM_DISABLED 2
|
||||
#define ESR_ELx_SME_ISS_ZA_DISABLED 3
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <asm/types.h>
|
||||
|
||||
static inline bool esr_is_data_abort(u32 esr)
|
||||
static inline bool esr_is_data_abort(unsigned long esr)
|
||||
{
|
||||
const u32 ec = ESR_ELx_EC(esr);
|
||||
const unsigned long ec = ESR_ELx_EC(esr);
|
||||
|
||||
return ec == ESR_ELx_EC_DABT_LOW || ec == ESR_ELx_EC_DABT_CUR;
|
||||
}
|
||||
|
||||
const char *esr_get_class_string(u32 esr);
|
||||
const char *esr_get_class_string(unsigned long esr);
|
||||
#endif /* __ASSEMBLY */
|
||||
|
||||
#endif /* __ASM_ESR_H */
|
||||
|
@ -19,9 +19,9 @@
|
||||
#define __exception_irq_entry __kprobes
|
||||
#endif
|
||||
|
||||
static inline u32 disr_to_esr(u64 disr)
|
||||
static inline unsigned long disr_to_esr(u64 disr)
|
||||
{
|
||||
unsigned int esr = ESR_ELx_EC_SERROR << ESR_ELx_EC_SHIFT;
|
||||
unsigned long esr = ESR_ELx_EC_SERROR << ESR_ELx_EC_SHIFT;
|
||||
|
||||
if ((disr & DISR_EL1_IDS) == 0)
|
||||
esr |= (disr & DISR_EL1_ESR_MASK);
|
||||
@ -57,23 +57,24 @@ asmlinkage void call_on_irq_stack(struct pt_regs *regs,
|
||||
void (*func)(struct pt_regs *));
|
||||
asmlinkage void asm_exit_to_user_mode(struct pt_regs *regs);
|
||||
|
||||
void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs);
|
||||
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs);
|
||||
void do_undefinstr(struct pt_regs *regs);
|
||||
void do_bti(struct pt_regs *regs);
|
||||
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
|
||||
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
|
||||
struct pt_regs *regs);
|
||||
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs);
|
||||
void do_sve_acc(unsigned int esr, struct pt_regs *regs);
|
||||
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs);
|
||||
void do_sysinstr(unsigned int esr, struct pt_regs *regs);
|
||||
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs);
|
||||
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr);
|
||||
void do_cp15instr(unsigned int esr, struct pt_regs *regs);
|
||||
void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs);
|
||||
void do_sve_acc(unsigned long esr, struct pt_regs *regs);
|
||||
void do_sme_acc(unsigned long esr, struct pt_regs *regs);
|
||||
void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs);
|
||||
void do_sysinstr(unsigned long esr, struct pt_regs *regs);
|
||||
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs);
|
||||
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr);
|
||||
void do_cp15instr(unsigned long esr, struct pt_regs *regs);
|
||||
void do_el0_svc(struct pt_regs *regs);
|
||||
void do_el0_svc_compat(struct pt_regs *regs);
|
||||
void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr);
|
||||
void do_serror(struct pt_regs *regs, unsigned int esr);
|
||||
void do_ptrauth_fault(struct pt_regs *regs, unsigned long esr);
|
||||
void do_serror(struct pt_regs *regs, unsigned long esr);
|
||||
void do_notify_resume(struct pt_regs *regs, unsigned long thread_flags);
|
||||
|
||||
void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far);
|
||||
void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far);
|
||||
#endif /* __ASM_EXCEPTION_H */
|
||||
|
@ -32,6 +32,18 @@
|
||||
#define VFP_STATE_SIZE ((32 * 8) + 4)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* When we defined the maximum SVE vector length we defined the ABI so
|
||||
* that the maximum vector length included all the reserved for future
|
||||
* expansion bits in ZCR rather than those just currently defined by
|
||||
* the architecture. While SME follows a similar pattern the fact that
|
||||
* it includes a square matrix means that any allocations that attempt
|
||||
* to cover the maximum potential vector length (such as happen with
|
||||
* the regset used for ptrace) end up being extremely large. Define
|
||||
* the much lower actual limit for use in such situations.
|
||||
*/
|
||||
#define SME_VQ_MAX 16
|
||||
|
||||
struct task_struct;
|
||||
|
||||
extern void fpsimd_save_state(struct user_fpsimd_state *state);
|
||||
@ -46,11 +58,23 @@ extern void fpsimd_restore_current_state(void);
|
||||
extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
|
||||
|
||||
extern void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *state,
|
||||
void *sve_state, unsigned int sve_vl);
|
||||
void *sve_state, unsigned int sve_vl,
|
||||
void *za_state, unsigned int sme_vl,
|
||||
u64 *svcr);
|
||||
|
||||
extern void fpsimd_flush_task_state(struct task_struct *target);
|
||||
extern void fpsimd_save_and_flush_cpu_state(void);
|
||||
|
||||
static inline bool thread_sm_enabled(struct thread_struct *thread)
|
||||
{
|
||||
return system_supports_sme() && (thread->svcr & SVCR_SM_MASK);
|
||||
}
|
||||
|
||||
static inline bool thread_za_enabled(struct thread_struct *thread)
|
||||
{
|
||||
return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK);
|
||||
}
|
||||
|
||||
/* Maximum VL that SVE/SME VL-agnostic software can transparently support */
|
||||
#define VL_ARCH_MAX 0x100
|
||||
|
||||
@ -62,7 +86,14 @@ static inline size_t sve_ffr_offset(int vl)
|
||||
|
||||
static inline void *sve_pffr(struct thread_struct *thread)
|
||||
{
|
||||
return (char *)thread->sve_state + sve_ffr_offset(thread_get_sve_vl(thread));
|
||||
unsigned int vl;
|
||||
|
||||
if (system_supports_sme() && thread_sm_enabled(thread))
|
||||
vl = thread_get_sme_vl(thread);
|
||||
else
|
||||
vl = thread_get_sve_vl(thread);
|
||||
|
||||
return (char *)thread->sve_state + sve_ffr_offset(vl);
|
||||
}
|
||||
|
||||
extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr);
|
||||
@ -71,11 +102,17 @@ extern void sve_load_state(void const *state, u32 const *pfpsr,
|
||||
extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1);
|
||||
extern unsigned int sve_get_vl(void);
|
||||
extern void sve_set_vq(unsigned long vq_minus_1);
|
||||
extern void sme_set_vq(unsigned long vq_minus_1);
|
||||
extern void za_save_state(void *state);
|
||||
extern void za_load_state(void const *state);
|
||||
|
||||
struct arm64_cpu_capabilities;
|
||||
extern void sve_kernel_enable(const struct arm64_cpu_capabilities *__unused);
|
||||
extern void sme_kernel_enable(const struct arm64_cpu_capabilities *__unused);
|
||||
extern void fa64_kernel_enable(const struct arm64_cpu_capabilities *__unused);
|
||||
|
||||
extern u64 read_zcr_features(void);
|
||||
extern u64 read_smcr_features(void);
|
||||
|
||||
/*
|
||||
* Helpers to translate bit indices in sve_vq_map to VQ values (and
|
||||
@ -119,6 +156,7 @@ struct vl_info {
|
||||
extern void sve_alloc(struct task_struct *task);
|
||||
extern void fpsimd_release_task(struct task_struct *task);
|
||||
extern void fpsimd_sync_to_sve(struct task_struct *task);
|
||||
extern void fpsimd_force_sync_to_sve(struct task_struct *task);
|
||||
extern void sve_sync_to_fpsimd(struct task_struct *task);
|
||||
extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task);
|
||||
|
||||
@ -170,6 +208,12 @@ static inline void write_vl(enum vec_type type, u64 val)
|
||||
tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK;
|
||||
write_sysreg_s(tmp | val, SYS_ZCR_EL1);
|
||||
break;
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
case ARM64_VEC_SME:
|
||||
tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK;
|
||||
write_sysreg_s(tmp | val, SYS_SMCR_EL1);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
@ -208,6 +252,8 @@ static inline bool sve_vq_available(unsigned int vq)
|
||||
return vq_available(ARM64_VEC_SVE, vq);
|
||||
}
|
||||
|
||||
size_t sve_state_size(struct task_struct const *task);
|
||||
|
||||
#else /* ! CONFIG_ARM64_SVE */
|
||||
|
||||
static inline void sve_alloc(struct task_struct *task) { }
|
||||
@ -247,8 +293,93 @@ static inline void vec_update_vq_map(enum vec_type t) { }
|
||||
static inline int vec_verify_vq_map(enum vec_type t) { return 0; }
|
||||
static inline void sve_setup(void) { }
|
||||
|
||||
static inline size_t sve_state_size(struct task_struct const *task)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* ! CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
static inline void sme_user_disable(void)
|
||||
{
|
||||
sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0);
|
||||
}
|
||||
|
||||
static inline void sme_user_enable(void)
|
||||
{
|
||||
sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN);
|
||||
}
|
||||
|
||||
static inline void sme_smstart_sm(void)
|
||||
{
|
||||
asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr"));
|
||||
}
|
||||
|
||||
static inline void sme_smstop_sm(void)
|
||||
{
|
||||
asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr"));
|
||||
}
|
||||
|
||||
static inline void sme_smstop(void)
|
||||
{
|
||||
asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr"));
|
||||
}
|
||||
|
||||
extern void __init sme_setup(void);
|
||||
|
||||
static inline int sme_max_vl(void)
|
||||
{
|
||||
return vec_max_vl(ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static inline int sme_max_virtualisable_vl(void)
|
||||
{
|
||||
return vec_max_virtualisable_vl(ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
extern void sme_alloc(struct task_struct *task);
|
||||
extern unsigned int sme_get_vl(void);
|
||||
extern int sme_set_current_vl(unsigned long arg);
|
||||
extern int sme_get_current_vl(void);
|
||||
|
||||
/*
|
||||
* Return how many bytes of memory are required to store the full SME
|
||||
* specific state (currently just ZA) for task, given task's currently
|
||||
* configured vector length.
|
||||
*/
|
||||
static inline size_t za_state_size(struct task_struct const *task)
|
||||
{
|
||||
unsigned int vl = task_get_sme_vl(task);
|
||||
|
||||
return ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline void sme_user_disable(void) { BUILD_BUG(); }
|
||||
static inline void sme_user_enable(void) { BUILD_BUG(); }
|
||||
|
||||
static inline void sme_smstart_sm(void) { }
|
||||
static inline void sme_smstop_sm(void) { }
|
||||
static inline void sme_smstop(void) { }
|
||||
|
||||
static inline void sme_alloc(struct task_struct *task) { }
|
||||
static inline void sme_setup(void) { }
|
||||
static inline unsigned int sme_get_vl(void) { return 0; }
|
||||
static inline int sme_max_vl(void) { return 0; }
|
||||
static inline int sme_max_virtualisable_vl(void) { return 0; }
|
||||
static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; }
|
||||
static inline int sme_get_current_vl(void) { return -EINVAL; }
|
||||
|
||||
static inline size_t za_state_size(struct task_struct const *task)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* ! CONFIG_ARM64_SME */
|
||||
|
||||
/* For use by EFI runtime services calls only */
|
||||
extern void __efi_fpsimd_begin(void);
|
||||
extern void __efi_fpsimd_end(void);
|
||||
|
@ -93,6 +93,12 @@
|
||||
.endif
|
||||
.endm
|
||||
|
||||
.macro _sme_check_wv v
|
||||
.if (\v) < 12 || (\v) > 15
|
||||
.error "Bad vector select register \v."
|
||||
.endif
|
||||
.endm
|
||||
|
||||
/* SVE instruction encodings for non-SVE-capable assemblers */
|
||||
/* (pre binutils 2.28, all kernel capable clang versions support SVE) */
|
||||
|
||||
@ -174,6 +180,54 @@
|
||||
| (\np)
|
||||
.endm
|
||||
|
||||
/* SME instruction encodings for non-SME-capable assemblers */
|
||||
/* (pre binutils 2.38/LLVM 13) */
|
||||
|
||||
/* RDSVL X\nx, #\imm */
|
||||
.macro _sme_rdsvl nx, imm
|
||||
_check_general_reg \nx
|
||||
_check_num (\imm), -0x20, 0x1f
|
||||
.inst 0x04bf5800 \
|
||||
| (\nx) \
|
||||
| (((\imm) & 0x3f) << 5)
|
||||
.endm
|
||||
|
||||
/*
|
||||
* STR (vector from ZA array):
|
||||
* STR ZA[\nw, #\offset], [X\nxbase, #\offset, MUL VL]
|
||||
*/
|
||||
.macro _sme_str_zav nw, nxbase, offset=0
|
||||
_sme_check_wv \nw
|
||||
_check_general_reg \nxbase
|
||||
_check_num (\offset), -0x100, 0xff
|
||||
.inst 0xe1200000 \
|
||||
| (((\nw) & 3) << 13) \
|
||||
| ((\nxbase) << 5) \
|
||||
| ((\offset) & 7)
|
||||
.endm
|
||||
|
||||
/*
|
||||
* LDR (vector to ZA array):
|
||||
* LDR ZA[\nw, #\offset], [X\nxbase, #\offset, MUL VL]
|
||||
*/
|
||||
.macro _sme_ldr_zav nw, nxbase, offset=0
|
||||
_sme_check_wv \nw
|
||||
_check_general_reg \nxbase
|
||||
_check_num (\offset), -0x100, 0xff
|
||||
.inst 0xe1000000 \
|
||||
| (((\nw) & 3) << 13) \
|
||||
| ((\nxbase) << 5) \
|
||||
| ((\offset) & 7)
|
||||
.endm
|
||||
|
||||
/*
|
||||
* Zero the entire ZA array
|
||||
* ZERO ZA
|
||||
*/
|
||||
.macro zero_za
|
||||
.inst 0xc00800ff
|
||||
.endm
|
||||
|
||||
.macro __for from:req, to:req
|
||||
.if (\from) == (\to)
|
||||
_for__body %\from
|
||||
@ -208,6 +262,17 @@
|
||||
921:
|
||||
.endm
|
||||
|
||||
/* Update SMCR_EL1.LEN with the new VQ */
|
||||
.macro sme_load_vq xvqminus1, xtmp, xtmp2
|
||||
mrs_s \xtmp, SYS_SMCR_EL1
|
||||
bic \xtmp2, \xtmp, SMCR_ELx_LEN_MASK
|
||||
orr \xtmp2, \xtmp2, \xvqminus1
|
||||
cmp \xtmp2, \xtmp
|
||||
b.eq 921f
|
||||
msr_s SYS_SMCR_EL1, \xtmp2 //self-synchronising
|
||||
921:
|
||||
.endm
|
||||
|
||||
/* Preserve the first 128-bits of Znz and zero the rest. */
|
||||
.macro _sve_flush_z nz
|
||||
_sve_check_zreg \nz
|
||||
@ -254,3 +319,25 @@
|
||||
ldr w\nxtmp, [\xpfpsr, #4]
|
||||
msr fpcr, x\nxtmp
|
||||
.endm
|
||||
|
||||
.macro sme_save_za nxbase, xvl, nw
|
||||
mov w\nw, #0
|
||||
|
||||
423:
|
||||
_sme_str_zav \nw, \nxbase
|
||||
add x\nxbase, x\nxbase, \xvl
|
||||
add x\nw, x\nw, #1
|
||||
cmp \xvl, x\nw
|
||||
bne 423b
|
||||
.endm
|
||||
|
||||
.macro sme_load_za nxbase, xvl, nw
|
||||
mov w\nw, #0
|
||||
|
||||
423:
|
||||
_sme_ldr_zav \nw, \nxbase
|
||||
add x\nxbase, x\nxbase, \xvl
|
||||
add x\nw, x\nw, #1
|
||||
cmp \xvl, x\nw
|
||||
bne 423b
|
||||
.endm
|
||||
|
@ -80,8 +80,15 @@ static inline unsigned long ftrace_call_adjust(unsigned long addr)
|
||||
|
||||
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
|
||||
struct dyn_ftrace;
|
||||
struct ftrace_ops;
|
||||
struct ftrace_regs;
|
||||
|
||||
int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec);
|
||||
#define ftrace_init_nop ftrace_init_nop
|
||||
|
||||
void ftrace_graph_func(unsigned long ip, unsigned long parent_ip,
|
||||
struct ftrace_ops *op, struct ftrace_regs *fregs);
|
||||
#define ftrace_graph_func ftrace_graph_func
|
||||
#endif
|
||||
|
||||
#define ftrace_return_address(n) return_address(n)
|
||||
|
@ -44,6 +44,8 @@ extern void huge_ptep_clear_flush(struct vm_area_struct *vma,
|
||||
#define __HAVE_ARCH_HUGE_PTE_CLEAR
|
||||
extern void huge_pte_clear(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, unsigned long sz);
|
||||
#define __HAVE_ARCH_HUGE_PTEP_GET
|
||||
extern pte_t huge_ptep_get(pte_t *ptep);
|
||||
extern void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pte, unsigned long sz);
|
||||
#define set_huge_swap_pte_at set_huge_swap_pte_at
|
||||
|
@ -109,6 +109,14 @@
|
||||
#define KERNEL_HWCAP_AFP __khwcap2_feature(AFP)
|
||||
#define KERNEL_HWCAP_RPRES __khwcap2_feature(RPRES)
|
||||
#define KERNEL_HWCAP_MTE3 __khwcap2_feature(MTE3)
|
||||
#define KERNEL_HWCAP_SME __khwcap2_feature(SME)
|
||||
#define KERNEL_HWCAP_SME_I16I64 __khwcap2_feature(SME_I16I64)
|
||||
#define KERNEL_HWCAP_SME_F64F64 __khwcap2_feature(SME_F64F64)
|
||||
#define KERNEL_HWCAP_SME_I8I32 __khwcap2_feature(SME_I8I32)
|
||||
#define KERNEL_HWCAP_SME_F16F32 __khwcap2_feature(SME_F16F32)
|
||||
#define KERNEL_HWCAP_SME_B16F32 __khwcap2_feature(SME_B16F32)
|
||||
#define KERNEL_HWCAP_SME_F32F32 __khwcap2_feature(SME_F32F32)
|
||||
#define KERNEL_HWCAP_SME_FA64 __khwcap2_feature(SME_FA64)
|
||||
|
||||
/*
|
||||
* This yields a mask that user programs can use to figure out what
|
||||
|
@ -279,6 +279,7 @@
|
||||
#define CPTR_EL2_TCPAC (1U << 31)
|
||||
#define CPTR_EL2_TAM (1 << 30)
|
||||
#define CPTR_EL2_TTA (1 << 20)
|
||||
#define CPTR_EL2_TSM (1 << 12)
|
||||
#define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT)
|
||||
#define CPTR_EL2_TZ (1 << 8)
|
||||
#define CPTR_NVHE_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
|
||||
|
@ -236,14 +236,14 @@ static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
|
||||
return mode != PSR_MODE_EL0t;
|
||||
}
|
||||
|
||||
static __always_inline u32 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
|
||||
static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
return vcpu->arch.fault.esr_el2;
|
||||
}
|
||||
|
||||
static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
|
||||
if (esr & ESR_ELx_CV)
|
||||
return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
|
||||
@ -374,7 +374,7 @@ static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
|
||||
|
||||
static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
return ESR_ELx_SYS64_ISS_RT(esr);
|
||||
}
|
||||
|
||||
|
@ -153,7 +153,7 @@ struct kvm_arch {
|
||||
};
|
||||
|
||||
struct kvm_vcpu_fault_info {
|
||||
u32 esr_el2; /* Hyp Syndrom Register */
|
||||
u64 esr_el2; /* Hyp Syndrom Register */
|
||||
u64 far_el2; /* Hyp Fault Address Register */
|
||||
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
|
||||
u64 disr_el1; /* Deferred [SError] Status Register */
|
||||
@ -295,8 +295,11 @@ struct vcpu_reset_state {
|
||||
|
||||
struct kvm_vcpu_arch {
|
||||
struct kvm_cpu_context ctxt;
|
||||
|
||||
/* Guest floating point state */
|
||||
void *sve_state;
|
||||
unsigned int sve_max_vl;
|
||||
u64 svcr;
|
||||
|
||||
/* Stage 2 paging state used by the hardware on next switch */
|
||||
struct kvm_s2_mmu *hw_mmu;
|
||||
@ -451,6 +454,7 @@ struct kvm_vcpu_arch {
|
||||
#define KVM_ARM64_DEBUG_STATE_SAVE_TRBE (1 << 13) /* Save TRBE context if active */
|
||||
#define KVM_ARM64_FP_FOREIGN_FPSTATE (1 << 14)
|
||||
#define KVM_ARM64_ON_UNSUPPORTED_CPU (1 << 15) /* Physical CPU not in supported_cpus */
|
||||
#define KVM_ARM64_HOST_SME_ENABLED (1 << 16) /* SME enabled for EL0 */
|
||||
|
||||
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
|
||||
KVM_GUESTDBG_USE_SW_BP | \
|
||||
|
@ -14,7 +14,7 @@
|
||||
* Was this synchronous external abort a RAS notification?
|
||||
* Returns '0' for errors handled by some RAS subsystem, or -ENOENT.
|
||||
*/
|
||||
static inline int kvm_handle_guest_sea(phys_addr_t addr, unsigned int esr)
|
||||
static inline int kvm_handle_guest_sea(phys_addr_t addr, u64 esr)
|
||||
{
|
||||
/* apei_claim_sea(NULL) expects to mask interrupts itself */
|
||||
lockdep_assert_irqs_enabled();
|
||||
|
@ -47,6 +47,7 @@ long set_mte_ctrl(struct task_struct *task, unsigned long arg);
|
||||
long get_mte_ctrl(struct task_struct *task);
|
||||
int mte_ptrace_copy_tags(struct task_struct *child, long request,
|
||||
unsigned long addr, unsigned long data);
|
||||
size_t mte_probe_user_range(const char __user *uaddr, size_t size);
|
||||
|
||||
#else /* CONFIG_ARM64_MTE */
|
||||
|
||||
|
@ -49,7 +49,7 @@
|
||||
#define PMD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(2)
|
||||
#define PMD_SIZE (_AC(1, UL) << PMD_SHIFT)
|
||||
#define PMD_MASK (~(PMD_SIZE-1))
|
||||
#define PTRS_PER_PMD PTRS_PER_PTE
|
||||
#define PTRS_PER_PMD (1 << (PAGE_SHIFT - 3))
|
||||
#endif
|
||||
|
||||
/*
|
||||
@ -59,7 +59,7 @@
|
||||
#define PUD_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(1)
|
||||
#define PUD_SIZE (_AC(1, UL) << PUD_SHIFT)
|
||||
#define PUD_MASK (~(PUD_SIZE-1))
|
||||
#define PTRS_PER_PUD PTRS_PER_PTE
|
||||
#define PTRS_PER_PUD (1 << (PAGE_SHIFT - 3))
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
@ -1001,7 +1001,8 @@ static inline void update_mmu_cache(struct vm_area_struct *vma,
|
||||
*/
|
||||
static inline bool arch_faults_on_old_pte(void)
|
||||
{
|
||||
WARN_ON(preemptible());
|
||||
/* The register read below requires a stable CPU to make any sense */
|
||||
cant_migrate();
|
||||
|
||||
return !cpu_has_hw_af();
|
||||
}
|
||||
|
@ -118,6 +118,7 @@ struct debug_info {
|
||||
|
||||
enum vec_type {
|
||||
ARM64_VEC_SVE = 0,
|
||||
ARM64_VEC_SME,
|
||||
ARM64_VEC_MAX,
|
||||
};
|
||||
|
||||
@ -153,6 +154,7 @@ struct thread_struct {
|
||||
|
||||
unsigned int fpsimd_cpu;
|
||||
void *sve_state; /* SVE registers, if any */
|
||||
void *za_state; /* ZA register, if any */
|
||||
unsigned int vl[ARM64_VEC_MAX]; /* vector length */
|
||||
unsigned int vl_onexec[ARM64_VEC_MAX]; /* vl after next exec */
|
||||
unsigned long fault_address; /* fault info */
|
||||
@ -168,6 +170,8 @@ struct thread_struct {
|
||||
u64 mte_ctrl;
|
||||
#endif
|
||||
u64 sctlr_user;
|
||||
u64 svcr;
|
||||
u64 tpidr2_el0;
|
||||
};
|
||||
|
||||
static inline unsigned int thread_get_vl(struct thread_struct *thread,
|
||||
@ -181,6 +185,19 @@ static inline unsigned int thread_get_sve_vl(struct thread_struct *thread)
|
||||
return thread_get_vl(thread, ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
static inline unsigned int thread_get_sme_vl(struct thread_struct *thread)
|
||||
{
|
||||
return thread_get_vl(thread, ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static inline unsigned int thread_get_cur_vl(struct thread_struct *thread)
|
||||
{
|
||||
if (system_supports_sme() && (thread->svcr & SVCR_SM_MASK))
|
||||
return thread_get_sme_vl(thread);
|
||||
else
|
||||
return thread_get_sve_vl(thread);
|
||||
}
|
||||
|
||||
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type);
|
||||
void task_set_vl(struct task_struct *task, enum vec_type type,
|
||||
unsigned long vl);
|
||||
@ -194,6 +211,11 @@ static inline unsigned int task_get_sve_vl(const struct task_struct *task)
|
||||
return task_get_vl(task, ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
static inline unsigned int task_get_sme_vl(const struct task_struct *task)
|
||||
{
|
||||
return task_get_vl(task, ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static inline void task_set_sve_vl(struct task_struct *task, unsigned long vl)
|
||||
{
|
||||
task_set_vl(task, ARM64_VEC_SVE, vl);
|
||||
@ -354,9 +376,11 @@ extern void __init minsigstksz_setup(void);
|
||||
*/
|
||||
#include <asm/fpsimd.h>
|
||||
|
||||
/* Userspace interface for PR_SVE_{SET,GET}_VL prctl()s: */
|
||||
/* Userspace interface for PR_S[MV]E_{SET,GET}_VL prctl()s: */
|
||||
#define SVE_SET_VL(arg) sve_set_current_vl(arg)
|
||||
#define SVE_GET_VL() sve_get_current_vl()
|
||||
#define SME_SET_VL(arg) sme_set_current_vl(arg)
|
||||
#define SME_GET_VL() sme_get_current_vl()
|
||||
|
||||
/* PR_PAC_RESET_KEYS prctl */
|
||||
#define PAC_RESET_KEYS(tsk, arg) ptrauth_prctl_reset_keys(tsk, arg)
|
||||
|
@ -31,38 +31,6 @@ struct stack_info {
|
||||
enum stack_type type;
|
||||
};
|
||||
|
||||
/*
|
||||
* A snapshot of a frame record or fp/lr register values, along with some
|
||||
* accounting information necessary for robust unwinding.
|
||||
*
|
||||
* @fp: The fp value in the frame record (or the real fp)
|
||||
* @pc: The lr value in the frame record (or the real lr)
|
||||
*
|
||||
* @stacks_done: Stacks which have been entirely unwound, for which it is no
|
||||
* longer valid to unwind to.
|
||||
*
|
||||
* @prev_fp: The fp that pointed to this frame record, or a synthetic value
|
||||
* of 0. This is used to ensure that within a stack, each
|
||||
* subsequent frame record is at an increasing address.
|
||||
* @prev_type: The type of stack this frame record was on, or a synthetic
|
||||
* value of STACK_TYPE_UNKNOWN. This is used to detect a
|
||||
* transition from one stack to another.
|
||||
*
|
||||
* @kr_cur: When KRETPROBES is selected, holds the kretprobe instance
|
||||
* associated with the most recently encountered replacement lr
|
||||
* value.
|
||||
*/
|
||||
struct stackframe {
|
||||
unsigned long fp;
|
||||
unsigned long pc;
|
||||
DECLARE_BITMAP(stacks_done, __NR_STACK_TYPES);
|
||||
unsigned long prev_fp;
|
||||
enum stack_type prev_type;
|
||||
#ifdef CONFIG_KRETPROBES
|
||||
struct llist_node *kr_cur;
|
||||
#endif
|
||||
};
|
||||
|
||||
extern void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk,
|
||||
const char *loglvl);
|
||||
|
||||
|
@ -114,10 +114,22 @@
|
||||
#define SYS_DC_CSW sys_insn(1, 0, 7, 10, 2)
|
||||
#define SYS_DC_CISW sys_insn(1, 0, 7, 14, 2)
|
||||
|
||||
/*
|
||||
* Automatically generated definitions for system registers, the
|
||||
* manual encodings below are in the process of being converted to
|
||||
* come from here. The header relies on the definition of sys_reg()
|
||||
* earlier in this file.
|
||||
*/
|
||||
#include "asm/sysreg-defs.h"
|
||||
|
||||
/*
|
||||
* System registers, organised loosely by encoding but grouped together
|
||||
* where the architected name contains an index. e.g. ID_MMFR<n>_EL1.
|
||||
*/
|
||||
#define SYS_SVCR_SMSTOP_SM_EL0 sys_reg(0, 3, 4, 2, 3)
|
||||
#define SYS_SVCR_SMSTART_SM_EL0 sys_reg(0, 3, 4, 3, 3)
|
||||
#define SYS_SVCR_SMSTOP_SMZA_EL0 sys_reg(0, 3, 4, 6, 3)
|
||||
|
||||
#define SYS_OSDTRRX_EL1 sys_reg(2, 0, 0, 0, 2)
|
||||
#define SYS_MDCCINT_EL1 sys_reg(2, 0, 0, 2, 0)
|
||||
#define SYS_MDSCR_EL1 sys_reg(2, 0, 0, 2, 2)
|
||||
@ -181,6 +193,7 @@
|
||||
#define SYS_ID_AA64PFR0_EL1 sys_reg(3, 0, 0, 4, 0)
|
||||
#define SYS_ID_AA64PFR1_EL1 sys_reg(3, 0, 0, 4, 1)
|
||||
#define SYS_ID_AA64ZFR0_EL1 sys_reg(3, 0, 0, 4, 4)
|
||||
#define SYS_ID_AA64SMFR0_EL1 sys_reg(3, 0, 0, 4, 5)
|
||||
|
||||
#define SYS_ID_AA64DFR0_EL1 sys_reg(3, 0, 0, 5, 0)
|
||||
#define SYS_ID_AA64DFR1_EL1 sys_reg(3, 0, 0, 5, 1)
|
||||
@ -188,7 +201,6 @@
|
||||
#define SYS_ID_AA64AFR0_EL1 sys_reg(3, 0, 0, 5, 4)
|
||||
#define SYS_ID_AA64AFR1_EL1 sys_reg(3, 0, 0, 5, 5)
|
||||
|
||||
#define SYS_ID_AA64ISAR0_EL1 sys_reg(3, 0, 0, 6, 0)
|
||||
#define SYS_ID_AA64ISAR1_EL1 sys_reg(3, 0, 0, 6, 1)
|
||||
#define SYS_ID_AA64ISAR2_EL1 sys_reg(3, 0, 0, 6, 2)
|
||||
|
||||
@ -196,17 +208,12 @@
|
||||
#define SYS_ID_AA64MMFR1_EL1 sys_reg(3, 0, 0, 7, 1)
|
||||
#define SYS_ID_AA64MMFR2_EL1 sys_reg(3, 0, 0, 7, 2)
|
||||
|
||||
#define SYS_SCTLR_EL1 sys_reg(3, 0, 1, 0, 0)
|
||||
#define SYS_ACTLR_EL1 sys_reg(3, 0, 1, 0, 1)
|
||||
#define SYS_CPACR_EL1 sys_reg(3, 0, 1, 0, 2)
|
||||
#define SYS_RGSR_EL1 sys_reg(3, 0, 1, 0, 5)
|
||||
#define SYS_GCR_EL1 sys_reg(3, 0, 1, 0, 6)
|
||||
|
||||
#define SYS_ZCR_EL1 sys_reg(3, 0, 1, 2, 0)
|
||||
#define SYS_TRFCR_EL1 sys_reg(3, 0, 1, 2, 1)
|
||||
|
||||
#define SYS_TTBR0_EL1 sys_reg(3, 0, 2, 0, 0)
|
||||
#define SYS_TTBR1_EL1 sys_reg(3, 0, 2, 0, 1)
|
||||
#define SYS_TCR_EL1 sys_reg(3, 0, 2, 0, 2)
|
||||
|
||||
#define SYS_APIAKEYLO_EL1 sys_reg(3, 0, 2, 1, 0)
|
||||
@ -242,7 +249,6 @@
|
||||
#define SYS_TFSR_EL1 sys_reg(3, 0, 5, 6, 0)
|
||||
#define SYS_TFSRE0_EL1 sys_reg(3, 0, 5, 6, 1)
|
||||
|
||||
#define SYS_FAR_EL1 sys_reg(3, 0, 6, 0, 0)
|
||||
#define SYS_PAR_EL1 sys_reg(3, 0, 7, 4, 0)
|
||||
|
||||
#define SYS_PAR_EL1_F BIT(0)
|
||||
@ -441,7 +447,6 @@
|
||||
#define SYS_ICC_IGRPEN0_EL1 sys_reg(3, 0, 12, 12, 6)
|
||||
#define SYS_ICC_IGRPEN1_EL1 sys_reg(3, 0, 12, 12, 7)
|
||||
|
||||
#define SYS_CONTEXTIDR_EL1 sys_reg(3, 0, 13, 0, 1)
|
||||
#define SYS_TPIDR_EL1 sys_reg(3, 0, 13, 0, 4)
|
||||
|
||||
#define SYS_SCXTNUM_EL1 sys_reg(3, 0, 13, 0, 7)
|
||||
@ -449,11 +454,12 @@
|
||||
#define SYS_CNTKCTL_EL1 sys_reg(3, 0, 14, 1, 0)
|
||||
|
||||
#define SYS_CCSIDR_EL1 sys_reg(3, 1, 0, 0, 0)
|
||||
#define SYS_CLIDR_EL1 sys_reg(3, 1, 0, 0, 1)
|
||||
#define SYS_GMID_EL1 sys_reg(3, 1, 0, 0, 4)
|
||||
#define SYS_AIDR_EL1 sys_reg(3, 1, 0, 0, 7)
|
||||
|
||||
#define SYS_CSSELR_EL1 sys_reg(3, 2, 0, 0, 0)
|
||||
#define SMIDR_EL1_IMPLEMENTER_SHIFT 24
|
||||
#define SMIDR_EL1_SMPS_SHIFT 15
|
||||
#define SMIDR_EL1_AFFINITY_SHIFT 0
|
||||
|
||||
#define SYS_CTR_EL0 sys_reg(3, 3, 0, 0, 1)
|
||||
#define SYS_DCZID_EL0 sys_reg(3, 3, 0, 0, 7)
|
||||
@ -477,6 +483,7 @@
|
||||
|
||||
#define SYS_TPIDR_EL0 sys_reg(3, 3, 13, 0, 2)
|
||||
#define SYS_TPIDRRO_EL0 sys_reg(3, 3, 13, 0, 3)
|
||||
#define SYS_TPIDR2_EL0 sys_reg(3, 3, 13, 0, 5)
|
||||
|
||||
#define SYS_SCXTNUM_EL0 sys_reg(3, 3, 13, 0, 7)
|
||||
|
||||
@ -544,9 +551,8 @@
|
||||
#define SYS_HFGRTR_EL2 sys_reg(3, 4, 1, 1, 4)
|
||||
#define SYS_HFGWTR_EL2 sys_reg(3, 4, 1, 1, 5)
|
||||
#define SYS_HFGITR_EL2 sys_reg(3, 4, 1, 1, 6)
|
||||
#define SYS_ZCR_EL2 sys_reg(3, 4, 1, 2, 0)
|
||||
#define SYS_TRFCR_EL2 sys_reg(3, 4, 1, 2, 1)
|
||||
#define SYS_DACR32_EL2 sys_reg(3, 4, 3, 0, 0)
|
||||
#define SYS_HCRX_EL2 sys_reg(3, 4, 1, 2, 2)
|
||||
#define SYS_HDFGRTR_EL2 sys_reg(3, 4, 3, 1, 4)
|
||||
#define SYS_HDFGWTR_EL2 sys_reg(3, 4, 3, 1, 5)
|
||||
#define SYS_HAFGRTR_EL2 sys_reg(3, 4, 3, 1, 6)
|
||||
@ -557,7 +563,6 @@
|
||||
#define SYS_VSESR_EL2 sys_reg(3, 4, 5, 2, 3)
|
||||
#define SYS_FPEXC32_EL2 sys_reg(3, 4, 5, 3, 0)
|
||||
#define SYS_TFSR_EL2 sys_reg(3, 4, 5, 6, 0)
|
||||
#define SYS_FAR_EL2 sys_reg(3, 4, 6, 0, 0)
|
||||
|
||||
#define SYS_VDISR_EL2 sys_reg(3, 4, 12, 1, 1)
|
||||
#define __SYS__AP0Rx_EL2(x) sys_reg(3, 4, 12, 8, x)
|
||||
@ -603,8 +608,6 @@
|
||||
|
||||
/* VHE encodings for architectural EL0/1 system registers */
|
||||
#define SYS_SCTLR_EL12 sys_reg(3, 5, 1, 0, 0)
|
||||
#define SYS_CPACR_EL12 sys_reg(3, 5, 1, 0, 2)
|
||||
#define SYS_ZCR_EL12 sys_reg(3, 5, 1, 2, 0)
|
||||
#define SYS_TTBR0_EL12 sys_reg(3, 5, 2, 0, 0)
|
||||
#define SYS_TTBR1_EL12 sys_reg(3, 5, 2, 0, 1)
|
||||
#define SYS_TCR_EL12 sys_reg(3, 5, 2, 0, 2)
|
||||
@ -614,11 +617,9 @@
|
||||
#define SYS_AFSR1_EL12 sys_reg(3, 5, 5, 1, 1)
|
||||
#define SYS_ESR_EL12 sys_reg(3, 5, 5, 2, 0)
|
||||
#define SYS_TFSR_EL12 sys_reg(3, 5, 5, 6, 0)
|
||||
#define SYS_FAR_EL12 sys_reg(3, 5, 6, 0, 0)
|
||||
#define SYS_MAIR_EL12 sys_reg(3, 5, 10, 2, 0)
|
||||
#define SYS_AMAIR_EL12 sys_reg(3, 5, 10, 3, 0)
|
||||
#define SYS_VBAR_EL12 sys_reg(3, 5, 12, 0, 0)
|
||||
#define SYS_CONTEXTIDR_EL12 sys_reg(3, 5, 13, 0, 1)
|
||||
#define SYS_CNTKCTL_EL12 sys_reg(3, 5, 14, 1, 0)
|
||||
#define SYS_CNTP_TVAL_EL02 sys_reg(3, 5, 14, 2, 0)
|
||||
#define SYS_CNTP_CTL_EL02 sys_reg(3, 5, 14, 2, 1)
|
||||
@ -628,31 +629,30 @@
|
||||
#define SYS_CNTV_CVAL_EL02 sys_reg(3, 5, 14, 3, 2)
|
||||
|
||||
/* Common SCTLR_ELx flags. */
|
||||
#define SCTLR_ELx_ENTP2 (BIT(60))
|
||||
#define SCTLR_ELx_DSSBS (BIT(44))
|
||||
#define SCTLR_ELx_ATA (BIT(43))
|
||||
|
||||
#define SCTLR_ELx_TCF_SHIFT 40
|
||||
#define SCTLR_ELx_TCF_NONE (UL(0x0) << SCTLR_ELx_TCF_SHIFT)
|
||||
#define SCTLR_ELx_TCF_SYNC (UL(0x1) << SCTLR_ELx_TCF_SHIFT)
|
||||
#define SCTLR_ELx_TCF_ASYNC (UL(0x2) << SCTLR_ELx_TCF_SHIFT)
|
||||
#define SCTLR_ELx_TCF_ASYMM (UL(0x3) << SCTLR_ELx_TCF_SHIFT)
|
||||
#define SCTLR_ELx_TCF_MASK (UL(0x3) << SCTLR_ELx_TCF_SHIFT)
|
||||
|
||||
#define SCTLR_ELx_ENIA_SHIFT 31
|
||||
|
||||
#define SCTLR_ELx_ITFSB (BIT(37))
|
||||
#define SCTLR_ELx_ENIA (BIT(SCTLR_ELx_ENIA_SHIFT))
|
||||
#define SCTLR_ELx_ENIB (BIT(30))
|
||||
#define SCTLR_ELx_ENDA (BIT(27))
|
||||
#define SCTLR_ELx_EE (BIT(25))
|
||||
#define SCTLR_ELx_IESB (BIT(21))
|
||||
#define SCTLR_ELx_WXN (BIT(19))
|
||||
#define SCTLR_ELx_ENDB (BIT(13))
|
||||
#define SCTLR_ELx_I (BIT(12))
|
||||
#define SCTLR_ELx_SA (BIT(3))
|
||||
#define SCTLR_ELx_C (BIT(2))
|
||||
#define SCTLR_ELx_A (BIT(1))
|
||||
#define SCTLR_ELx_M (BIT(0))
|
||||
#define SCTLR_ELx_ITFSB (BIT(37))
|
||||
#define SCTLR_ELx_ENIA (BIT(SCTLR_ELx_ENIA_SHIFT))
|
||||
#define SCTLR_ELx_ENIB (BIT(30))
|
||||
#define SCTLR_ELx_LSMAOE (BIT(29))
|
||||
#define SCTLR_ELx_nTLSMD (BIT(28))
|
||||
#define SCTLR_ELx_ENDA (BIT(27))
|
||||
#define SCTLR_ELx_EE (BIT(25))
|
||||
#define SCTLR_ELx_EIS (BIT(22))
|
||||
#define SCTLR_ELx_IESB (BIT(21))
|
||||
#define SCTLR_ELx_TSCXT (BIT(20))
|
||||
#define SCTLR_ELx_WXN (BIT(19))
|
||||
#define SCTLR_ELx_ENDB (BIT(13))
|
||||
#define SCTLR_ELx_I (BIT(12))
|
||||
#define SCTLR_ELx_EOS (BIT(11))
|
||||
#define SCTLR_ELx_SA (BIT(3))
|
||||
#define SCTLR_ELx_C (BIT(2))
|
||||
#define SCTLR_ELx_A (BIT(1))
|
||||
#define SCTLR_ELx_M (BIT(0))
|
||||
|
||||
/* SCTLR_EL2 specific flags. */
|
||||
#define SCTLR_EL2_RES1 ((BIT(4)) | (BIT(5)) | (BIT(11)) | (BIT(16)) | \
|
||||
@ -674,34 +674,6 @@
|
||||
(SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
|
||||
|
||||
/* SCTLR_EL1 specific flags. */
|
||||
#define SCTLR_EL1_EPAN (BIT(57))
|
||||
#define SCTLR_EL1_ATA0 (BIT(42))
|
||||
|
||||
#define SCTLR_EL1_TCF0_SHIFT 38
|
||||
#define SCTLR_EL1_TCF0_NONE (UL(0x0) << SCTLR_EL1_TCF0_SHIFT)
|
||||
#define SCTLR_EL1_TCF0_SYNC (UL(0x1) << SCTLR_EL1_TCF0_SHIFT)
|
||||
#define SCTLR_EL1_TCF0_ASYNC (UL(0x2) << SCTLR_EL1_TCF0_SHIFT)
|
||||
#define SCTLR_EL1_TCF0_ASYMM (UL(0x3) << SCTLR_EL1_TCF0_SHIFT)
|
||||
#define SCTLR_EL1_TCF0_MASK (UL(0x3) << SCTLR_EL1_TCF0_SHIFT)
|
||||
|
||||
#define SCTLR_EL1_BT1 (BIT(36))
|
||||
#define SCTLR_EL1_BT0 (BIT(35))
|
||||
#define SCTLR_EL1_UCI (BIT(26))
|
||||
#define SCTLR_EL1_E0E (BIT(24))
|
||||
#define SCTLR_EL1_SPAN (BIT(23))
|
||||
#define SCTLR_EL1_NTWE (BIT(18))
|
||||
#define SCTLR_EL1_NTWI (BIT(16))
|
||||
#define SCTLR_EL1_UCT (BIT(15))
|
||||
#define SCTLR_EL1_DZE (BIT(14))
|
||||
#define SCTLR_EL1_UMA (BIT(9))
|
||||
#define SCTLR_EL1_SED (BIT(8))
|
||||
#define SCTLR_EL1_ITD (BIT(7))
|
||||
#define SCTLR_EL1_CP15BEN (BIT(5))
|
||||
#define SCTLR_EL1_SA0 (BIT(4))
|
||||
|
||||
#define SCTLR_EL1_RES1 ((BIT(11)) | (BIT(20)) | (BIT(22)) | (BIT(28)) | \
|
||||
(BIT(29)))
|
||||
|
||||
#ifdef CONFIG_CPU_BIG_ENDIAN
|
||||
#define ENDIAN_SET_EL1 (SCTLR_EL1_E0E | SCTLR_ELx_EE)
|
||||
#else
|
||||
@ -709,13 +681,17 @@
|
||||
#endif
|
||||
|
||||
#define INIT_SCTLR_EL1_MMU_OFF \
|
||||
(ENDIAN_SET_EL1 | SCTLR_EL1_RES1)
|
||||
(ENDIAN_SET_EL1 | SCTLR_EL1_LSMAOE | SCTLR_EL1_nTLSMD | \
|
||||
SCTLR_EL1_EIS | SCTLR_EL1_TSCXT | SCTLR_EL1_EOS)
|
||||
|
||||
#define INIT_SCTLR_EL1_MMU_ON \
|
||||
(SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_SA | SCTLR_EL1_SA0 | \
|
||||
SCTLR_EL1_SED | SCTLR_ELx_I | SCTLR_EL1_DZE | SCTLR_EL1_UCT | \
|
||||
SCTLR_EL1_NTWE | SCTLR_ELx_IESB | SCTLR_EL1_SPAN | SCTLR_ELx_ITFSB | \
|
||||
ENDIAN_SET_EL1 | SCTLR_EL1_UCI | SCTLR_EL1_EPAN | SCTLR_EL1_RES1)
|
||||
(SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_SA | \
|
||||
SCTLR_EL1_SA0 | SCTLR_EL1_SED | SCTLR_ELx_I | \
|
||||
SCTLR_EL1_DZE | SCTLR_EL1_UCT | SCTLR_EL1_nTWE | \
|
||||
SCTLR_ELx_IESB | SCTLR_EL1_SPAN | SCTLR_ELx_ITFSB | \
|
||||
ENDIAN_SET_EL1 | SCTLR_EL1_UCI | SCTLR_EL1_EPAN | \
|
||||
SCTLR_EL1_LSMAOE | SCTLR_EL1_nTLSMD | SCTLR_EL1_EIS | \
|
||||
SCTLR_EL1_TSCXT | SCTLR_EL1_EOS)
|
||||
|
||||
/* MAIR_ELx memory attributes (used by Linux) */
|
||||
#define MAIR_ATTR_DEVICE_nGnRnE UL(0x00)
|
||||
@ -728,25 +704,6 @@
|
||||
/* Position the attr at the correct index */
|
||||
#define MAIR_ATTRIDX(attr, idx) ((attr) << ((idx) * 8))
|
||||
|
||||
/* id_aa64isar0 */
|
||||
#define ID_AA64ISAR0_RNDR_SHIFT 60
|
||||
#define ID_AA64ISAR0_TLB_SHIFT 56
|
||||
#define ID_AA64ISAR0_TS_SHIFT 52
|
||||
#define ID_AA64ISAR0_FHM_SHIFT 48
|
||||
#define ID_AA64ISAR0_DP_SHIFT 44
|
||||
#define ID_AA64ISAR0_SM4_SHIFT 40
|
||||
#define ID_AA64ISAR0_SM3_SHIFT 36
|
||||
#define ID_AA64ISAR0_SHA3_SHIFT 32
|
||||
#define ID_AA64ISAR0_RDM_SHIFT 28
|
||||
#define ID_AA64ISAR0_ATOMICS_SHIFT 20
|
||||
#define ID_AA64ISAR0_CRC32_SHIFT 16
|
||||
#define ID_AA64ISAR0_SHA2_SHIFT 12
|
||||
#define ID_AA64ISAR0_SHA1_SHIFT 8
|
||||
#define ID_AA64ISAR0_AES_SHIFT 4
|
||||
|
||||
#define ID_AA64ISAR0_TLB_RANGE_NI 0x0
|
||||
#define ID_AA64ISAR0_TLB_RANGE 0x2
|
||||
|
||||
/* id_aa64isar1 */
|
||||
#define ID_AA64ISAR1_I8MM_SHIFT 52
|
||||
#define ID_AA64ISAR1_DGH_SHIFT 48
|
||||
@ -836,6 +793,7 @@
|
||||
#define ID_AA64PFR0_ELx_32BIT_64BIT 0x2
|
||||
|
||||
/* id_aa64pfr1 */
|
||||
#define ID_AA64PFR1_SME_SHIFT 24
|
||||
#define ID_AA64PFR1_MPAMFRAC_SHIFT 16
|
||||
#define ID_AA64PFR1_RASFRAC_SHIFT 12
|
||||
#define ID_AA64PFR1_MTE_SHIFT 8
|
||||
@ -846,6 +804,7 @@
|
||||
#define ID_AA64PFR1_SSBS_PSTATE_ONLY 1
|
||||
#define ID_AA64PFR1_SSBS_PSTATE_INSNS 2
|
||||
#define ID_AA64PFR1_BT_BTI 0x1
|
||||
#define ID_AA64PFR1_SME 1
|
||||
|
||||
#define ID_AA64PFR1_MTE_NI 0x0
|
||||
#define ID_AA64PFR1_MTE_EL0 0x1
|
||||
@ -874,6 +833,23 @@
|
||||
#define ID_AA64ZFR0_AES_PMULL 0x2
|
||||
#define ID_AA64ZFR0_SVEVER_SVE2 0x1
|
||||
|
||||
/* id_aa64smfr0 */
|
||||
#define ID_AA64SMFR0_FA64_SHIFT 63
|
||||
#define ID_AA64SMFR0_I16I64_SHIFT 52
|
||||
#define ID_AA64SMFR0_F64F64_SHIFT 48
|
||||
#define ID_AA64SMFR0_I8I32_SHIFT 36
|
||||
#define ID_AA64SMFR0_F16F32_SHIFT 35
|
||||
#define ID_AA64SMFR0_B16F32_SHIFT 34
|
||||
#define ID_AA64SMFR0_F32F32_SHIFT 32
|
||||
|
||||
#define ID_AA64SMFR0_FA64 0x1
|
||||
#define ID_AA64SMFR0_I16I64 0x4
|
||||
#define ID_AA64SMFR0_F64F64 0x1
|
||||
#define ID_AA64SMFR0_I8I32 0x4
|
||||
#define ID_AA64SMFR0_F16F32 0x1
|
||||
#define ID_AA64SMFR0_B16F32 0x1
|
||||
#define ID_AA64SMFR0_F32F32 0x1
|
||||
|
||||
/* id_aa64mmfr0 */
|
||||
#define ID_AA64MMFR0_ECV_SHIFT 60
|
||||
#define ID_AA64MMFR0_FGT_SHIFT 56
|
||||
@ -926,6 +902,7 @@
|
||||
|
||||
/* id_aa64mmfr1 */
|
||||
#define ID_AA64MMFR1_ECBHB_SHIFT 60
|
||||
#define ID_AA64MMFR1_HCX_SHIFT 40
|
||||
#define ID_AA64MMFR1_AFP_SHIFT 44
|
||||
#define ID_AA64MMFR1_ETS_SHIFT 36
|
||||
#define ID_AA64MMFR1_TWED_SHIFT 32
|
||||
@ -1110,18 +1087,12 @@
|
||||
#define DCZID_DZP_SHIFT 4
|
||||
#define DCZID_BS_SHIFT 0
|
||||
|
||||
/*
|
||||
* The ZCR_ELx_LEN_* definitions intentionally include bits [8:4] which
|
||||
* are reserved by the SVE architecture for future expansion of the LEN
|
||||
* field, with compatible semantics.
|
||||
*/
|
||||
#define ZCR_ELx_LEN_SHIFT 0
|
||||
#define ZCR_ELx_LEN_SIZE 9
|
||||
#define ZCR_ELx_LEN_MASK 0x1ff
|
||||
|
||||
#define CPACR_EL1_FPEN_EL1EN (BIT(20)) /* enable EL1 access */
|
||||
#define CPACR_EL1_FPEN_EL0EN (BIT(21)) /* enable EL0 access, if EL1EN set */
|
||||
|
||||
#define CPACR_EL1_SMEN_EL1EN (BIT(24)) /* enable EL1 access */
|
||||
#define CPACR_EL1_SMEN_EL0EN (BIT(25)) /* enable EL0 access, if EL1EN set */
|
||||
|
||||
#define CPACR_EL1_ZEN_EL1EN (BIT(16)) /* enable EL1 access */
|
||||
#define CPACR_EL1_ZEN_EL0EN (BIT(17)) /* enable EL0 access, if EL1EN set */
|
||||
|
||||
@ -1170,6 +1141,8 @@
|
||||
#define TRFCR_ELx_ExTRE BIT(1)
|
||||
#define TRFCR_ELx_E0TRE BIT(0)
|
||||
|
||||
/* HCRX_EL2 definitions */
|
||||
#define HCRX_EL2_SMPME_MASK (1 << 5)
|
||||
|
||||
/* GIC Hypervisor interface registers */
|
||||
/* ICH_MISR_EL2 bit definitions */
|
||||
@ -1233,6 +1206,12 @@
|
||||
#define ICH_VTR_TDS_SHIFT 19
|
||||
#define ICH_VTR_TDS_MASK (1 << ICH_VTR_TDS_SHIFT)
|
||||
|
||||
/* HFG[WR]TR_EL2 bit definitions */
|
||||
#define HFGxTR_EL2_nTPIDR2_EL0_SHIFT 55
|
||||
#define HFGxTR_EL2_nTPIDR2_EL0_MASK BIT_MASK(HFGxTR_EL2_nTPIDR2_EL0_SHIFT)
|
||||
#define HFGxTR_EL2_nSMPRI_EL1_SHIFT 54
|
||||
#define HFGxTR_EL2_nSMPRI_EL1_MASK BIT_MASK(HFGxTR_EL2_nSMPRI_EL1_SHIFT)
|
||||
|
||||
#define ARM64_FEATURE_FIELD_BITS 4
|
||||
|
||||
/* Create a mask for the feature bits of the specified feature. */
|
||||
@ -1345,4 +1324,10 @@
|
||||
|
||||
#endif
|
||||
|
||||
#define SYS_FIELD_PREP(reg, field, val) \
|
||||
FIELD_PREP(reg##_##field##_MASK, val)
|
||||
|
||||
#define SYS_FIELD_PREP_ENUM(reg, field, val) \
|
||||
FIELD_PREP(reg##_##field##_MASK, reg##_##field##_##val)
|
||||
|
||||
#endif /* __ASM_SYSREG_H */
|
||||
|
@ -23,9 +23,9 @@ void die(const char *msg, struct pt_regs *regs, int err);
|
||||
struct siginfo;
|
||||
void arm64_notify_die(const char *str, struct pt_regs *regs,
|
||||
int signo, int sicode, unsigned long far,
|
||||
int err);
|
||||
unsigned long err);
|
||||
|
||||
void hook_debug_fault_code(int nr, int (*fn)(unsigned long, unsigned int,
|
||||
void hook_debug_fault_code(int nr, int (*fn)(unsigned long, unsigned long,
|
||||
struct pt_regs *),
|
||||
int sig, int code, const char *name);
|
||||
|
||||
|
@ -82,6 +82,8 @@ int arch_dup_task_struct(struct task_struct *dst,
|
||||
#define TIF_SVE_VL_INHERIT 24 /* Inherit SVE vl_onexec across exec */
|
||||
#define TIF_SSBD 25 /* Wants SSB mitigation */
|
||||
#define TIF_TAGGED_ADDR 26 /* Allow tagged user addresses */
|
||||
#define TIF_SME 27 /* SME in use */
|
||||
#define TIF_SME_VL_INHERIT 28 /* Inherit SME vl_onexec across exec */
|
||||
|
||||
#define _TIF_SIGPENDING (1 << TIF_SIGPENDING)
|
||||
#define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED)
|
||||
|
@ -24,7 +24,7 @@ struct undef_hook {
|
||||
|
||||
void register_undef_hook(struct undef_hook *hook);
|
||||
void unregister_undef_hook(struct undef_hook *hook);
|
||||
void force_signal_inject(int signal, int code, unsigned long address, unsigned int err);
|
||||
void force_signal_inject(int signal, int code, unsigned long address, unsigned long err);
|
||||
void arm64_notify_segfault(unsigned long addr);
|
||||
void arm64_force_sig_fault(int signo, int code, unsigned long far, const char *str);
|
||||
void arm64_force_sig_mceerr(int code, unsigned long far, short lsb, const char *str);
|
||||
@ -57,7 +57,7 @@ static inline int in_entry_text(unsigned long ptr)
|
||||
* errors share the same encoding as an all-zeros encoding from a CPU that
|
||||
* doesn't support RAS.
|
||||
*/
|
||||
static inline bool arm64_is_ras_serror(u32 esr)
|
||||
static inline bool arm64_is_ras_serror(unsigned long esr)
|
||||
{
|
||||
WARN_ON(preemptible());
|
||||
|
||||
@ -77,9 +77,9 @@ static inline bool arm64_is_ras_serror(u32 esr)
|
||||
* We treat them as Uncontainable.
|
||||
* Non-RAS SError's are reported as Uncontained/Uncategorized.
|
||||
*/
|
||||
static inline u32 arm64_ras_serror_get_severity(u32 esr)
|
||||
static inline unsigned long arm64_ras_serror_get_severity(unsigned long esr)
|
||||
{
|
||||
u32 aet = esr & ESR_ELx_AET;
|
||||
unsigned long aet = esr & ESR_ELx_AET;
|
||||
|
||||
if (!arm64_is_ras_serror(esr)) {
|
||||
/* Not a RAS error, we can't interpret the ESR. */
|
||||
@ -98,6 +98,6 @@ static inline u32 arm64_ras_serror_get_severity(u32 esr)
|
||||
return aet;
|
||||
}
|
||||
|
||||
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr);
|
||||
void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr);
|
||||
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr);
|
||||
void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr);
|
||||
#endif
|
||||
|
@ -460,4 +460,19 @@ static inline int __copy_from_user_flushcache(void *dst, const void __user *src,
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
|
||||
|
||||
/*
|
||||
* Return 0 on success, the number of bytes not probed otherwise.
|
||||
*/
|
||||
static inline size_t probe_subpage_writeable(const char __user *uaddr,
|
||||
size_t size)
|
||||
{
|
||||
if (!system_supports_mte())
|
||||
return 0;
|
||||
return mte_probe_user_range(uaddr, size);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
|
||||
|
||||
#endif /* __ASM_UACCESS_H */
|
||||
|
@ -79,5 +79,13 @@
|
||||
#define HWCAP2_AFP (1 << 20)
|
||||
#define HWCAP2_RPRES (1 << 21)
|
||||
#define HWCAP2_MTE3 (1 << 22)
|
||||
#define HWCAP2_SME (1 << 23)
|
||||
#define HWCAP2_SME_I16I64 (1 << 24)
|
||||
#define HWCAP2_SME_F64F64 (1 << 25)
|
||||
#define HWCAP2_SME_I8I32 (1 << 26)
|
||||
#define HWCAP2_SME_F16F32 (1 << 27)
|
||||
#define HWCAP2_SME_B16F32 (1 << 28)
|
||||
#define HWCAP2_SME_F32F32 (1 << 29)
|
||||
#define HWCAP2_SME_FA64 (1 << 30)
|
||||
|
||||
#endif /* _UAPI__ASM_HWCAP_H */
|
||||
|
@ -139,8 +139,10 @@ struct kvm_guest_debug_arch {
|
||||
__u64 dbg_wvr[KVM_ARM_MAX_DBG_REGS];
|
||||
};
|
||||
|
||||
#define KVM_DEBUG_ARCH_HSR_HIGH_VALID (1 << 0)
|
||||
struct kvm_debug_exit_arch {
|
||||
__u32 hsr;
|
||||
__u32 hsr_high; /* ESR_EL2[61:32] */
|
||||
__u64 far; /* used for watchpoints */
|
||||
};
|
||||
|
||||
|
@ -109,7 +109,7 @@ struct user_hwdebug_state {
|
||||
} dbg_regs[16];
|
||||
};
|
||||
|
||||
/* SVE/FP/SIMD state (NT_ARM_SVE) */
|
||||
/* SVE/FP/SIMD state (NT_ARM_SVE & NT_ARM_SSVE) */
|
||||
|
||||
struct user_sve_header {
|
||||
__u32 size; /* total meaningful regset content in bytes */
|
||||
@ -220,6 +220,7 @@ struct user_sve_header {
|
||||
(SVE_PT_SVE_PREG_OFFSET(vq, __SVE_NUM_PREGS) - \
|
||||
SVE_PT_SVE_PREGS_OFFSET(vq))
|
||||
|
||||
/* For streaming mode SVE (SSVE) FFR must be read and written as zero */
|
||||
#define SVE_PT_SVE_FFR_OFFSET(vq) \
|
||||
(SVE_PT_REGS_OFFSET + __SVE_FFR_OFFSET(vq))
|
||||
|
||||
@ -240,10 +241,12 @@ struct user_sve_header {
|
||||
- SVE_PT_SVE_OFFSET + (__SVE_VQ_BYTES - 1)) \
|
||||
/ __SVE_VQ_BYTES * __SVE_VQ_BYTES)
|
||||
|
||||
#define SVE_PT_SIZE(vq, flags) \
|
||||
(((flags) & SVE_PT_REGS_MASK) == SVE_PT_REGS_SVE ? \
|
||||
SVE_PT_SVE_OFFSET + SVE_PT_SVE_SIZE(vq, flags) \
|
||||
: SVE_PT_FPSIMD_OFFSET + SVE_PT_FPSIMD_SIZE(vq, flags))
|
||||
#define SVE_PT_SIZE(vq, flags) \
|
||||
(((flags) & SVE_PT_REGS_MASK) == SVE_PT_REGS_SVE ? \
|
||||
SVE_PT_SVE_OFFSET + SVE_PT_SVE_SIZE(vq, flags) \
|
||||
: ((((flags) & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD ? \
|
||||
SVE_PT_FPSIMD_OFFSET + SVE_PT_FPSIMD_SIZE(vq, flags) \
|
||||
: SVE_PT_REGS_OFFSET)))
|
||||
|
||||
/* pointer authentication masks (NT_ARM_PAC_MASK) */
|
||||
|
||||
@ -265,6 +268,62 @@ struct user_pac_generic_keys {
|
||||
__uint128_t apgakey;
|
||||
};
|
||||
|
||||
/* ZA state (NT_ARM_ZA) */
|
||||
|
||||
struct user_za_header {
|
||||
__u32 size; /* total meaningful regset content in bytes */
|
||||
__u32 max_size; /* maxmium possible size for this thread */
|
||||
__u16 vl; /* current vector length */
|
||||
__u16 max_vl; /* maximum possible vector length */
|
||||
__u16 flags;
|
||||
__u16 __reserved;
|
||||
};
|
||||
|
||||
/*
|
||||
* Common ZA_PT_* flags:
|
||||
* These must be kept in sync with prctl interface in <linux/prctl.h>
|
||||
*/
|
||||
#define ZA_PT_VL_INHERIT ((1 << 17) /* PR_SME_VL_INHERIT */ >> 16)
|
||||
#define ZA_PT_VL_ONEXEC ((1 << 18) /* PR_SME_SET_VL_ONEXEC */ >> 16)
|
||||
|
||||
|
||||
/*
|
||||
* The remainder of the ZA state follows struct user_za_header. The
|
||||
* total size of the ZA state (including header) depends on the
|
||||
* metadata in the header: ZA_PT_SIZE(vq, flags) gives the total size
|
||||
* of the state in bytes, including the header.
|
||||
*
|
||||
* Refer to <asm/sigcontext.h> for details of how to pass the correct
|
||||
* "vq" argument to these macros.
|
||||
*/
|
||||
|
||||
/* Offset from the start of struct user_za_header to the register data */
|
||||
#define ZA_PT_ZA_OFFSET \
|
||||
((sizeof(struct user_za_header) + (__SVE_VQ_BYTES - 1)) \
|
||||
/ __SVE_VQ_BYTES * __SVE_VQ_BYTES)
|
||||
|
||||
/*
|
||||
* The payload starts at offset ZA_PT_ZA_OFFSET, and is of size
|
||||
* ZA_PT_ZA_SIZE(vq, flags).
|
||||
*
|
||||
* The ZA array is stored as a sequence of horizontal vectors ZAV of SVL/8
|
||||
* bytes each, starting from vector 0.
|
||||
*
|
||||
* Additional data might be appended in the future.
|
||||
*
|
||||
* The ZA matrix is represented in memory in an endianness-invariant layout
|
||||
* which differs from the layout used for the FPSIMD V-registers on big-endian
|
||||
* systems: see sigcontext.h for more explanation.
|
||||
*/
|
||||
|
||||
#define ZA_PT_ZAV_OFFSET(vq, n) \
|
||||
(ZA_PT_ZA_OFFSET + ((vq * __SVE_VQ_BYTES) * n))
|
||||
|
||||
#define ZA_PT_ZA_SIZE(vq) ((vq * __SVE_VQ_BYTES) * (vq * __SVE_VQ_BYTES))
|
||||
|
||||
#define ZA_PT_SIZE(vq) \
|
||||
(ZA_PT_ZA_OFFSET + ZA_PT_ZA_SIZE(vq))
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _UAPI__ASM_PTRACE_H */
|
||||
|
@ -132,6 +132,17 @@ struct extra_context {
|
||||
#define SVE_MAGIC 0x53564501
|
||||
|
||||
struct sve_context {
|
||||
struct _aarch64_ctx head;
|
||||
__u16 vl;
|
||||
__u16 flags;
|
||||
__u16 __reserved[2];
|
||||
};
|
||||
|
||||
#define SVE_SIG_FLAG_SM 0x1 /* Context describes streaming mode */
|
||||
|
||||
#define ZA_MAGIC 0x54366345
|
||||
|
||||
struct za_context {
|
||||
struct _aarch64_ctx head;
|
||||
__u16 vl;
|
||||
__u16 __reserved[3];
|
||||
@ -186,9 +197,16 @@ struct sve_context {
|
||||
* sve_context.vl must equal the thread's current vector length when
|
||||
* doing a sigreturn.
|
||||
*
|
||||
* On systems with support for SME the SVE register state may reflect either
|
||||
* streaming or non-streaming mode. In streaming mode the streaming mode
|
||||
* vector length will be used and the flag SVE_SIG_FLAG_SM will be set in
|
||||
* the flags field. It is permitted to enter or leave streaming mode in
|
||||
* a signal return, applications should take care to ensure that any difference
|
||||
* in vector length between the two modes is handled, including any resizing
|
||||
* and movement of context blocks.
|
||||
*
|
||||
* Note: for all these macros, the "vq" argument denotes the SVE
|
||||
* vector length in quadwords (i.e., units of 128 bits).
|
||||
* Note: for all these macros, the "vq" argument denotes the vector length
|
||||
* in quadwords (i.e., units of 128 bits).
|
||||
*
|
||||
* The correct way to obtain vq is to use sve_vq_from_vl(vl). The
|
||||
* result is valid if and only if sve_vl_valid(vl) is true. This is
|
||||
@ -249,4 +267,37 @@ struct sve_context {
|
||||
#define SVE_SIG_CONTEXT_SIZE(vq) \
|
||||
(SVE_SIG_REGS_OFFSET + SVE_SIG_REGS_SIZE(vq))
|
||||
|
||||
/*
|
||||
* If the ZA register is enabled for the thread at signal delivery then,
|
||||
* za_context.head.size >= ZA_SIG_CONTEXT_SIZE(sve_vq_from_vl(za_context.vl))
|
||||
* and the register data may be accessed using the ZA_SIG_*() macros.
|
||||
*
|
||||
* If za_context.head.size < ZA_SIG_CONTEXT_SIZE(sve_vq_from_vl(za_context.vl))
|
||||
* then ZA was not enabled and no register data was included in which case
|
||||
* ZA register was not enabled for the thread and no register data
|
||||
* the ZA_SIG_*() macros should not be used except for this check.
|
||||
*
|
||||
* The same convention applies when returning from a signal: a caller
|
||||
* will need to remove or resize the za_context block if it wants to
|
||||
* enable the ZA register when it was previously non-live or vice-versa.
|
||||
* This may require the caller to allocate fresh memory and/or move other
|
||||
* context blocks in the signal frame.
|
||||
*
|
||||
* Changing the vector length during signal return is not permitted:
|
||||
* za_context.vl must equal the thread's current SME vector length when
|
||||
* doing a sigreturn.
|
||||
*/
|
||||
|
||||
#define ZA_SIG_REGS_OFFSET \
|
||||
((sizeof(struct za_context) + (__SVE_VQ_BYTES - 1)) \
|
||||
/ __SVE_VQ_BYTES * __SVE_VQ_BYTES)
|
||||
|
||||
#define ZA_SIG_REGS_SIZE(vq) ((vq * __SVE_VQ_BYTES) * (vq * __SVE_VQ_BYTES))
|
||||
|
||||
#define ZA_SIG_ZAV_OFFSET(vq, n) (ZA_SIG_REGS_OFFSET + \
|
||||
(SVE_SIG_ZREG_SIZE(vq) * n))
|
||||
|
||||
#define ZA_SIG_CONTEXT_SIZE(vq) \
|
||||
(ZA_SIG_REGS_OFFSET + ZA_SIG_REGS_SIZE(vq))
|
||||
|
||||
#endif /* _UAPI__ASM_SIGCONTEXT_H */
|
||||
|
@ -217,7 +217,7 @@ static const struct arm64_cpu_capabilities arm64_repeat_tlbi_list[] = {
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_CAVIUM_ERRATUM_23154
|
||||
const struct midr_range cavium_erratum_23154_cpus[] = {
|
||||
static const struct midr_range cavium_erratum_23154_cpus[] = {
|
||||
MIDR_ALL_VERSIONS(MIDR_THUNDERX),
|
||||
MIDR_ALL_VERSIONS(MIDR_THUNDERX_81XX),
|
||||
MIDR_ALL_VERSIONS(MIDR_THUNDERX_83XX),
|
||||
|
@ -191,20 +191,20 @@ static bool __system_matches_cap(unsigned int n);
|
||||
* sync with the documentation of the CPU feature register ABI.
|
||||
*/
|
||||
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
|
||||
ARM64_FTR_END,
|
||||
};
|
||||
|
||||
@ -261,6 +261,8 @@ static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
|
||||
};
|
||||
|
||||
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SME_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
|
||||
@ -293,6 +295,24 @@ static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
|
||||
ARM64_FTR_END,
|
||||
};
|
||||
|
||||
static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_FA64_SHIFT, 1, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I16I64_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F64F64_SHIFT, 1, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I8I32_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F16F32_SHIFT, 1, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_B16F32_SHIFT, 1, 0),
|
||||
ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
|
||||
FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F32F32_SHIFT, 1, 0),
|
||||
ARM64_FTR_END,
|
||||
};
|
||||
|
||||
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
|
||||
ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
|
||||
@ -557,7 +577,13 @@ static const struct arm64_ftr_bits ftr_id_dfr1[] = {
|
||||
|
||||
static const struct arm64_ftr_bits ftr_zcr[] = {
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
|
||||
ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
|
||||
ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */
|
||||
ARM64_FTR_END,
|
||||
};
|
||||
|
||||
static const struct arm64_ftr_bits ftr_smcr[] = {
|
||||
ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
|
||||
SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
|
||||
ARM64_FTR_END,
|
||||
};
|
||||
|
||||
@ -645,6 +671,7 @@ static const struct __ftr_reg_entry {
|
||||
ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
|
||||
&id_aa64pfr1_override),
|
||||
ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
|
||||
ARM64_FTR_REG(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0),
|
||||
|
||||
/* Op1 = 0, CRn = 0, CRm = 5 */
|
||||
ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
|
||||
@ -665,6 +692,7 @@ static const struct __ftr_reg_entry {
|
||||
|
||||
/* Op1 = 0, CRn = 1, CRm = 2 */
|
||||
ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
|
||||
ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
|
||||
|
||||
/* Op1 = 1, CRn = 0, CRm = 0 */
|
||||
ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
|
||||
@ -959,6 +987,7 @@ void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
||||
init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
|
||||
init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
|
||||
init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
|
||||
init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
|
||||
|
||||
if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
|
||||
init_32bit_cpu_features(&info->aarch32);
|
||||
@ -968,6 +997,12 @@ void __init init_cpu_features(struct cpuinfo_arm64 *info)
|
||||
vec_init_vq_map(ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
|
||||
init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
|
||||
if (IS_ENABLED(CONFIG_ARM64_SME))
|
||||
vec_init_vq_map(ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
|
||||
init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
|
||||
|
||||
@ -1194,6 +1229,9 @@ void update_cpu_features(int cpu,
|
||||
taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
|
||||
info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
|
||||
|
||||
taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
|
||||
info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
|
||||
|
||||
if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
|
||||
taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
|
||||
info->reg_zcr, boot->reg_zcr);
|
||||
@ -1204,6 +1242,16 @@ void update_cpu_features(int cpu,
|
||||
vec_update_vq_map(ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
|
||||
taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
|
||||
info->reg_smcr, boot->reg_smcr);
|
||||
|
||||
/* Probe vector lengths, unless we already gave up on SME */
|
||||
if (id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1)) &&
|
||||
!system_capabilities_finalized())
|
||||
vec_update_vq_map(ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
/*
|
||||
* The kernel uses the LDGM/STGM instructions and the number of tags
|
||||
* they read/write depends on the GMID_EL1.BS field. Check that the
|
||||
@ -1287,6 +1335,7 @@ u64 __read_sysreg_by_encoding(u32 sys_id)
|
||||
read_sysreg_case(SYS_ID_AA64PFR0_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64PFR1_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64DFR0_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64DFR1_EL1);
|
||||
read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
|
||||
@ -2012,7 +2061,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.matches = has_cpuid_feature,
|
||||
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
||||
.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
|
||||
.field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
|
||||
.field_width = 4,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.min_field_value = 2,
|
||||
@ -2194,10 +2243,10 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.matches = has_cpuid_feature,
|
||||
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
||||
.field_pos = ID_AA64ISAR0_TLB_SHIFT,
|
||||
.field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
|
||||
.field_width = 4,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.min_field_value = ID_AA64ISAR0_TLB_RANGE,
|
||||
.min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
|
||||
},
|
||||
#ifdef CONFIG_ARM64_HW_AFDBM
|
||||
{
|
||||
@ -2226,7 +2275,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.matches = has_cpuid_feature,
|
||||
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
||||
.field_pos = ID_AA64ISAR0_CRC32_SHIFT,
|
||||
.field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
|
||||
.field_width = 4,
|
||||
.min_field_value = 1,
|
||||
},
|
||||
@ -2381,7 +2430,7 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.matches = has_cpuid_feature,
|
||||
.sys_reg = SYS_ID_AA64ISAR0_EL1,
|
||||
.field_pos = ID_AA64ISAR0_RNDR_SHIFT,
|
||||
.field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
|
||||
.field_width = 4,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.min_field_value = 1,
|
||||
@ -2441,6 +2490,33 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
|
||||
.matches = has_cpuid_feature,
|
||||
.min_field_value = 1,
|
||||
},
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
{
|
||||
.desc = "Scalable Matrix Extension",
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.capability = ARM64_SME,
|
||||
.sys_reg = SYS_ID_AA64PFR1_EL1,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.field_pos = ID_AA64PFR1_SME_SHIFT,
|
||||
.field_width = 4,
|
||||
.min_field_value = ID_AA64PFR1_SME,
|
||||
.matches = has_cpuid_feature,
|
||||
.cpu_enable = sme_kernel_enable,
|
||||
},
|
||||
/* FA64 should be sorted after the base SME capability */
|
||||
{
|
||||
.desc = "FA64",
|
||||
.type = ARM64_CPUCAP_SYSTEM_FEATURE,
|
||||
.capability = ARM64_SME_FA64,
|
||||
.sys_reg = SYS_ID_AA64SMFR0_EL1,
|
||||
.sign = FTR_UNSIGNED,
|
||||
.field_pos = ID_AA64SMFR0_FA64_SHIFT,
|
||||
.field_width = 1,
|
||||
.min_field_value = ID_AA64SMFR0_FA64,
|
||||
.matches = has_cpuid_feature,
|
||||
.cpu_enable = fa64_kernel_enable,
|
||||
},
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
{},
|
||||
};
|
||||
|
||||
@ -2513,22 +2589,22 @@ static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
|
||||
#endif
|
||||
|
||||
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
|
||||
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
|
||||
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
|
||||
HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
|
||||
@ -2574,6 +2650,16 @@ static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
|
||||
HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
|
||||
HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
|
||||
HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SME, CAP_HWCAP, KERNEL_HWCAP_SME),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_FA64, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I16I64, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F64F64, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I8I32, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F16F32, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_B16F32, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
|
||||
HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F32F32, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
{},
|
||||
};
|
||||
|
||||
@ -2871,6 +2957,23 @@ static void verify_sve_features(void)
|
||||
/* Add checks on other ZCR bits here if necessary */
|
||||
}
|
||||
|
||||
static void verify_sme_features(void)
|
||||
{
|
||||
u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
|
||||
u64 smcr = read_smcr_features();
|
||||
|
||||
unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
|
||||
unsigned int len = smcr & SMCR_ELx_LEN_MASK;
|
||||
|
||||
if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
|
||||
pr_crit("CPU%d: SME: vector length support mismatch\n",
|
||||
smp_processor_id());
|
||||
cpu_die_early();
|
||||
}
|
||||
|
||||
/* Add checks on other SMCR bits here if necessary */
|
||||
}
|
||||
|
||||
static void verify_hyp_capabilities(void)
|
||||
{
|
||||
u64 safe_mmfr1, mmfr0, mmfr1;
|
||||
@ -2923,6 +3026,9 @@ static void verify_local_cpu_capabilities(void)
|
||||
if (system_supports_sve())
|
||||
verify_sve_features();
|
||||
|
||||
if (system_supports_sme())
|
||||
verify_sme_features();
|
||||
|
||||
if (is_hyp_mode_available())
|
||||
verify_hyp_capabilities();
|
||||
}
|
||||
@ -3040,6 +3146,7 @@ void __init setup_cpu_features(void)
|
||||
pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
|
||||
|
||||
sve_setup();
|
||||
sme_setup();
|
||||
minsigstksz_setup();
|
||||
|
||||
/* Advertise that we have computed the system capabilities */
|
||||
|
@ -98,6 +98,14 @@ static const char *const hwcap_str[] = {
|
||||
[KERNEL_HWCAP_AFP] = "afp",
|
||||
[KERNEL_HWCAP_RPRES] = "rpres",
|
||||
[KERNEL_HWCAP_MTE3] = "mte3",
|
||||
[KERNEL_HWCAP_SME] = "sme",
|
||||
[KERNEL_HWCAP_SME_I16I64] = "smei16i64",
|
||||
[KERNEL_HWCAP_SME_F64F64] = "smef64f64",
|
||||
[KERNEL_HWCAP_SME_I8I32] = "smei8i32",
|
||||
[KERNEL_HWCAP_SME_F16F32] = "smef16f32",
|
||||
[KERNEL_HWCAP_SME_B16F32] = "smeb16f32",
|
||||
[KERNEL_HWCAP_SME_F32F32] = "smef32f32",
|
||||
[KERNEL_HWCAP_SME_FA64] = "smefa64",
|
||||
};
|
||||
|
||||
#ifdef CONFIG_COMPAT
|
||||
@ -401,6 +409,7 @@ static void __cpuinfo_store_cpu(struct cpuinfo_arm64 *info)
|
||||
info->reg_id_aa64pfr0 = read_cpuid(ID_AA64PFR0_EL1);
|
||||
info->reg_id_aa64pfr1 = read_cpuid(ID_AA64PFR1_EL1);
|
||||
info->reg_id_aa64zfr0 = read_cpuid(ID_AA64ZFR0_EL1);
|
||||
info->reg_id_aa64smfr0 = read_cpuid(ID_AA64SMFR0_EL1);
|
||||
|
||||
if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
|
||||
info->reg_gmid = read_cpuid(GMID_EL1);
|
||||
@ -412,6 +421,10 @@ static void __cpuinfo_store_cpu(struct cpuinfo_arm64 *info)
|
||||
id_aa64pfr0_sve(info->reg_id_aa64pfr0))
|
||||
info->reg_zcr = read_zcr_features();
|
||||
|
||||
if (IS_ENABLED(CONFIG_ARM64_SME) &&
|
||||
id_aa64pfr1_sme(info->reg_id_aa64pfr1))
|
||||
info->reg_smcr = read_smcr_features();
|
||||
|
||||
cpuinfo_detect_icache_policy(info);
|
||||
}
|
||||
|
||||
|
@ -202,7 +202,7 @@ void unregister_kernel_step_hook(struct step_hook *hook)
|
||||
* So we call all the registered handlers, until the right handler is
|
||||
* found which returns zero.
|
||||
*/
|
||||
static int call_step_hook(struct pt_regs *regs, unsigned int esr)
|
||||
static int call_step_hook(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
struct step_hook *hook;
|
||||
struct list_head *list;
|
||||
@ -238,7 +238,7 @@ static void send_user_sigtrap(int si_code)
|
||||
"User debug trap");
|
||||
}
|
||||
|
||||
static int single_step_handler(unsigned long unused, unsigned int esr,
|
||||
static int single_step_handler(unsigned long unused, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
bool handler_found = false;
|
||||
@ -299,11 +299,11 @@ void unregister_kernel_break_hook(struct break_hook *hook)
|
||||
unregister_debug_hook(&hook->node);
|
||||
}
|
||||
|
||||
static int call_break_hook(struct pt_regs *regs, unsigned int esr)
|
||||
static int call_break_hook(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
struct break_hook *hook;
|
||||
struct list_head *list;
|
||||
int (*fn)(struct pt_regs *regs, unsigned int esr) = NULL;
|
||||
int (*fn)(struct pt_regs *regs, unsigned long esr) = NULL;
|
||||
|
||||
list = user_mode(regs) ? &user_break_hook : &kernel_break_hook;
|
||||
|
||||
@ -312,7 +312,7 @@ static int call_break_hook(struct pt_regs *regs, unsigned int esr)
|
||||
* entirely not preemptible, and we can use rcu list safely here.
|
||||
*/
|
||||
list_for_each_entry_rcu(hook, list, node) {
|
||||
unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
|
||||
unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
|
||||
|
||||
if ((comment & ~hook->mask) == hook->imm)
|
||||
fn = hook->fn;
|
||||
@ -322,7 +322,7 @@ static int call_break_hook(struct pt_regs *regs, unsigned int esr)
|
||||
}
|
||||
NOKPROBE_SYMBOL(call_break_hook);
|
||||
|
||||
static int brk_handler(unsigned long unused, unsigned int esr,
|
||||
static int brk_handler(unsigned long unused, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
if (call_break_hook(regs, esr) == DBG_HOOK_HANDLED)
|
||||
|
@ -282,13 +282,13 @@ extern void (*handle_arch_irq)(struct pt_regs *);
|
||||
extern void (*handle_arch_fiq)(struct pt_regs *);
|
||||
|
||||
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
|
||||
unsigned int esr)
|
||||
unsigned long esr)
|
||||
{
|
||||
arm64_enter_nmi(regs);
|
||||
|
||||
console_verbose();
|
||||
|
||||
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n",
|
||||
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
|
||||
vector, smp_processor_id(), esr,
|
||||
esr_get_class_string(esr));
|
||||
|
||||
@ -537,6 +537,14 @@ static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
|
||||
exit_to_user_mode(regs);
|
||||
}
|
||||
|
||||
static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
enter_from_user_mode(regs);
|
||||
local_daif_restore(DAIF_PROCCTX);
|
||||
do_sme_acc(esr, regs);
|
||||
exit_to_user_mode(regs);
|
||||
}
|
||||
|
||||
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
enter_from_user_mode(regs);
|
||||
@ -645,6 +653,9 @@ asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
|
||||
case ESR_ELx_EC_SVE:
|
||||
el0_sve_acc(regs, esr);
|
||||
break;
|
||||
case ESR_ELx_EC_SME:
|
||||
el0_sme_acc(regs, esr);
|
||||
break;
|
||||
case ESR_ELx_EC_FP_EXC64:
|
||||
el0_fpsimd_exc(regs, esr);
|
||||
break;
|
||||
@ -818,7 +829,7 @@ UNHANDLED(el0t, 32, error)
|
||||
#ifdef CONFIG_VMAP_STACK
|
||||
asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
|
||||
{
|
||||
unsigned int esr = read_sysreg(esr_el1);
|
||||
unsigned long esr = read_sysreg(esr_el1);
|
||||
unsigned long far = read_sysreg(far_el1);
|
||||
|
||||
arm64_enter_nmi(regs);
|
||||
|
@ -86,3 +86,39 @@ SYM_FUNC_START(sve_flush_live)
|
||||
SYM_FUNC_END(sve_flush_live)
|
||||
|
||||
#endif /* CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
SYM_FUNC_START(sme_get_vl)
|
||||
_sme_rdsvl 0, 1
|
||||
ret
|
||||
SYM_FUNC_END(sme_get_vl)
|
||||
|
||||
SYM_FUNC_START(sme_set_vq)
|
||||
sme_load_vq x0, x1, x2
|
||||
ret
|
||||
SYM_FUNC_END(sme_set_vq)
|
||||
|
||||
/*
|
||||
* Save the SME state
|
||||
*
|
||||
* x0 - pointer to buffer for state
|
||||
*/
|
||||
SYM_FUNC_START(za_save_state)
|
||||
_sme_rdsvl 1, 1 // x1 = VL/8
|
||||
sme_save_za 0, x1, 12
|
||||
ret
|
||||
SYM_FUNC_END(za_save_state)
|
||||
|
||||
/*
|
||||
* Load the SME state
|
||||
*
|
||||
* x0 - pointer to buffer for state
|
||||
*/
|
||||
SYM_FUNC_START(za_load_state)
|
||||
_sme_rdsvl 1, 1 // x1 = VL/8
|
||||
sme_load_za 0, x1, 12
|
||||
ret
|
||||
SYM_FUNC_END(za_load_state)
|
||||
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
|
@ -97,12 +97,6 @@ SYM_CODE_START(ftrace_common)
|
||||
SYM_INNER_LABEL(ftrace_call, SYM_L_GLOBAL)
|
||||
bl ftrace_stub
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
SYM_INNER_LABEL(ftrace_graph_call, SYM_L_GLOBAL) // ftrace_graph_caller();
|
||||
nop // If enabled, this will be replaced
|
||||
// "b ftrace_graph_caller"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* At the callsite x0-x8 and x19-x30 were live. Any C code will have preserved
|
||||
* x19-x29 per the AAPCS, and we created frame records upon entry, so we need
|
||||
@ -127,17 +121,6 @@ ftrace_common_return:
|
||||
ret x9
|
||||
SYM_CODE_END(ftrace_common)
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
SYM_CODE_START(ftrace_graph_caller)
|
||||
ldr x0, [sp, #S_PC]
|
||||
sub x0, x0, #AARCH64_INSN_SIZE // ip (callsite's BL insn)
|
||||
add x1, sp, #S_LR // parent_ip (callsite's LR)
|
||||
ldr x2, [sp, #PT_REGS_SIZE] // parent fp (callsite's FP)
|
||||
bl prepare_ftrace_return
|
||||
b ftrace_common_return
|
||||
SYM_CODE_END(ftrace_graph_caller)
|
||||
#endif
|
||||
|
||||
#else /* CONFIG_DYNAMIC_FTRACE_WITH_REGS */
|
||||
|
||||
/*
|
||||
|
@ -121,7 +121,10 @@
|
||||
struct fpsimd_last_state_struct {
|
||||
struct user_fpsimd_state *st;
|
||||
void *sve_state;
|
||||
void *za_state;
|
||||
u64 *svcr;
|
||||
unsigned int sve_vl;
|
||||
unsigned int sme_vl;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
|
||||
@ -136,6 +139,12 @@ __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
|
||||
.max_virtualisable_vl = SVE_VL_MIN,
|
||||
},
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
[ARM64_VEC_SME] = {
|
||||
.type = ARM64_VEC_SME,
|
||||
.name = "SME",
|
||||
},
|
||||
#endif
|
||||
};
|
||||
|
||||
static unsigned int vec_vl_inherit_flag(enum vec_type type)
|
||||
@ -143,6 +152,8 @@ static unsigned int vec_vl_inherit_flag(enum vec_type type)
|
||||
switch (type) {
|
||||
case ARM64_VEC_SVE:
|
||||
return TIF_SVE_VL_INHERIT;
|
||||
case ARM64_VEC_SME:
|
||||
return TIF_SME_VL_INHERIT;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
return 0;
|
||||
@ -186,6 +197,26 @@ extern void __percpu *efi_sve_state;
|
||||
|
||||
#endif /* ! CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
static int get_sme_default_vl(void)
|
||||
{
|
||||
return get_default_vl(ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static void set_sme_default_vl(int val)
|
||||
{
|
||||
set_default_vl(ARM64_VEC_SME, val);
|
||||
}
|
||||
|
||||
static void sme_free(struct task_struct *);
|
||||
|
||||
#else
|
||||
|
||||
static inline void sme_free(struct task_struct *t) { }
|
||||
|
||||
#endif
|
||||
|
||||
DEFINE_PER_CPU(bool, fpsimd_context_busy);
|
||||
EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
|
||||
|
||||
@ -206,10 +237,19 @@ static void __get_cpu_fpsimd_context(void)
|
||||
*
|
||||
* The double-underscore version must only be called if you know the task
|
||||
* can't be preempted.
|
||||
*
|
||||
* On RT kernels local_bh_disable() is not sufficient because it only
|
||||
* serializes soft interrupt related sections via a local lock, but stays
|
||||
* preemptible. Disabling preemption is the right choice here as bottom
|
||||
* half processing is always in thread context on RT kernels so it
|
||||
* implicitly prevents bottom half processing as well.
|
||||
*/
|
||||
static void get_cpu_fpsimd_context(void)
|
||||
{
|
||||
local_bh_disable();
|
||||
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
||||
local_bh_disable();
|
||||
else
|
||||
preempt_disable();
|
||||
__get_cpu_fpsimd_context();
|
||||
}
|
||||
|
||||
@ -230,7 +270,10 @@ static void __put_cpu_fpsimd_context(void)
|
||||
static void put_cpu_fpsimd_context(void)
|
||||
{
|
||||
__put_cpu_fpsimd_context();
|
||||
local_bh_enable();
|
||||
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
||||
local_bh_enable();
|
||||
else
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
static bool have_cpu_fpsimd_context(void)
|
||||
@ -238,23 +281,6 @@ static bool have_cpu_fpsimd_context(void)
|
||||
return !preemptible() && __this_cpu_read(fpsimd_context_busy);
|
||||
}
|
||||
|
||||
/*
|
||||
* Call __sve_free() directly only if you know task can't be scheduled
|
||||
* or preempted.
|
||||
*/
|
||||
static void __sve_free(struct task_struct *task)
|
||||
{
|
||||
kfree(task->thread.sve_state);
|
||||
task->thread.sve_state = NULL;
|
||||
}
|
||||
|
||||
static void sve_free(struct task_struct *task)
|
||||
{
|
||||
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
|
||||
|
||||
__sve_free(task);
|
||||
}
|
||||
|
||||
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
|
||||
{
|
||||
return task->thread.vl[type];
|
||||
@ -278,17 +304,28 @@ void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
|
||||
task->thread.vl_onexec[type] = vl;
|
||||
}
|
||||
|
||||
/*
|
||||
* TIF_SME controls whether a task can use SME without trapping while
|
||||
* in userspace, when TIF_SME is set then we must have storage
|
||||
* alocated in sve_state and za_state to store the contents of both ZA
|
||||
* and the SVE registers for both streaming and non-streaming modes.
|
||||
*
|
||||
* If both SVCR.ZA and SVCR.SM are disabled then at any point we
|
||||
* may disable TIF_SME and reenable traps.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* TIF_SVE controls whether a task can use SVE without trapping while
|
||||
* in userspace, and also the way a task's FPSIMD/SVE state is stored
|
||||
* in thread_struct.
|
||||
* in userspace, and also (together with TIF_SME) the way a task's
|
||||
* FPSIMD/SVE state is stored in thread_struct.
|
||||
*
|
||||
* The kernel uses this flag to track whether a user task is actively
|
||||
* using SVE, and therefore whether full SVE register state needs to
|
||||
* be tracked. If not, the cheaper FPSIMD context handling code can
|
||||
* be used instead of the more costly SVE equivalents.
|
||||
*
|
||||
* * TIF_SVE set:
|
||||
* * TIF_SVE or SVCR.SM set:
|
||||
*
|
||||
* The task can execute SVE instructions while in userspace without
|
||||
* trapping to the kernel.
|
||||
@ -296,7 +333,8 @@ void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
|
||||
* When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
|
||||
* corresponding Zn), P0-P15 and FFR are encoded in in
|
||||
* task->thread.sve_state, formatted appropriately for vector
|
||||
* length task->thread.sve_vl.
|
||||
* length task->thread.sve_vl or, if SVCR.SM is set,
|
||||
* task->thread.sme_vl.
|
||||
*
|
||||
* task->thread.sve_state must point to a valid buffer at least
|
||||
* sve_state_size(task) bytes in size.
|
||||
@ -334,16 +372,44 @@ void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
|
||||
*/
|
||||
static void task_fpsimd_load(void)
|
||||
{
|
||||
bool restore_sve_regs = false;
|
||||
bool restore_ffr;
|
||||
|
||||
WARN_ON(!system_supports_fpsimd());
|
||||
WARN_ON(!have_cpu_fpsimd_context());
|
||||
|
||||
/* Check if we should restore SVE first */
|
||||
if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
|
||||
sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
|
||||
sve_load_state(sve_pffr(¤t->thread),
|
||||
¤t->thread.uw.fpsimd_state.fpsr, true);
|
||||
} else {
|
||||
fpsimd_load_state(¤t->thread.uw.fpsimd_state);
|
||||
restore_sve_regs = true;
|
||||
restore_ffr = true;
|
||||
}
|
||||
|
||||
/* Restore SME, override SVE register configuration if needed */
|
||||
if (system_supports_sme()) {
|
||||
unsigned long sme_vl = task_get_sme_vl(current);
|
||||
|
||||
/* Ensure VL is set up for restoring data */
|
||||
if (test_thread_flag(TIF_SME))
|
||||
sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
|
||||
|
||||
write_sysreg_s(current->thread.svcr, SYS_SVCR);
|
||||
|
||||
if (thread_za_enabled(¤t->thread))
|
||||
za_load_state(current->thread.za_state);
|
||||
|
||||
if (thread_sm_enabled(¤t->thread)) {
|
||||
restore_sve_regs = true;
|
||||
restore_ffr = system_supports_fa64();
|
||||
}
|
||||
}
|
||||
|
||||
if (restore_sve_regs)
|
||||
sve_load_state(sve_pffr(¤t->thread),
|
||||
¤t->thread.uw.fpsimd_state.fpsr,
|
||||
restore_ffr);
|
||||
else
|
||||
fpsimd_load_state(¤t->thread.uw.fpsimd_state);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -361,6 +427,9 @@ static void fpsimd_save(void)
|
||||
struct fpsimd_last_state_struct const *last =
|
||||
this_cpu_ptr(&fpsimd_last_state);
|
||||
/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
|
||||
bool save_sve_regs = false;
|
||||
bool save_ffr;
|
||||
unsigned int vl;
|
||||
|
||||
WARN_ON(!system_supports_fpsimd());
|
||||
WARN_ON(!have_cpu_fpsimd_context());
|
||||
@ -368,9 +437,32 @@ static void fpsimd_save(void)
|
||||
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
|
||||
return;
|
||||
|
||||
if (IS_ENABLED(CONFIG_ARM64_SVE) &&
|
||||
test_thread_flag(TIF_SVE)) {
|
||||
if (WARN_ON(sve_get_vl() != last->sve_vl)) {
|
||||
if (test_thread_flag(TIF_SVE)) {
|
||||
save_sve_regs = true;
|
||||
save_ffr = true;
|
||||
vl = last->sve_vl;
|
||||
}
|
||||
|
||||
if (system_supports_sme()) {
|
||||
u64 *svcr = last->svcr;
|
||||
*svcr = read_sysreg_s(SYS_SVCR);
|
||||
|
||||
*svcr = read_sysreg_s(SYS_SVCR);
|
||||
|
||||
if (*svcr & SVCR_ZA_MASK)
|
||||
za_save_state(last->za_state);
|
||||
|
||||
/* If we are in streaming mode override regular SVE. */
|
||||
if (*svcr & SVCR_SM_MASK) {
|
||||
save_sve_regs = true;
|
||||
save_ffr = system_supports_fa64();
|
||||
vl = last->sme_vl;
|
||||
}
|
||||
}
|
||||
|
||||
if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
|
||||
/* Get the configured VL from RDVL, will account for SM */
|
||||
if (WARN_ON(sve_get_vl() != vl)) {
|
||||
/*
|
||||
* Can't save the user regs, so current would
|
||||
* re-enter user with corrupt state.
|
||||
@ -381,8 +473,8 @@ static void fpsimd_save(void)
|
||||
}
|
||||
|
||||
sve_save_state((char *)last->sve_state +
|
||||
sve_ffr_offset(last->sve_vl),
|
||||
&last->st->fpsr, true);
|
||||
sve_ffr_offset(vl),
|
||||
&last->st->fpsr, save_ffr);
|
||||
} else {
|
||||
fpsimd_save_state(last->st);
|
||||
}
|
||||
@ -409,6 +501,8 @@ static unsigned int find_supported_vector_length(enum vec_type type,
|
||||
|
||||
if (vl > max_vl)
|
||||
vl = max_vl;
|
||||
if (vl < info->min_vl)
|
||||
vl = info->min_vl;
|
||||
|
||||
bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
|
||||
__vq_to_bit(sve_vq_from_vl(vl)));
|
||||
@ -467,6 +561,30 @@ static int __init sve_sysctl_init(void)
|
||||
static int __init sve_sysctl_init(void) { return 0; }
|
||||
#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
|
||||
|
||||
#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
|
||||
static struct ctl_table sme_default_vl_table[] = {
|
||||
{
|
||||
.procname = "sme_default_vector_length",
|
||||
.mode = 0644,
|
||||
.proc_handler = vec_proc_do_default_vl,
|
||||
.extra1 = &vl_info[ARM64_VEC_SME],
|
||||
},
|
||||
{ }
|
||||
};
|
||||
|
||||
static int __init sme_sysctl_init(void)
|
||||
{
|
||||
if (system_supports_sme())
|
||||
if (!register_sysctl("abi", sme_default_vl_table))
|
||||
return -EINVAL;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
|
||||
static int __init sme_sysctl_init(void) { return 0; }
|
||||
#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
|
||||
|
||||
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
|
||||
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
|
||||
|
||||
@ -520,7 +638,7 @@ static void fpsimd_to_sve(struct task_struct *task)
|
||||
if (!system_supports_sve())
|
||||
return;
|
||||
|
||||
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
||||
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
|
||||
__fpsimd_to_sve(sst, fst, vq);
|
||||
}
|
||||
|
||||
@ -537,7 +655,7 @@ static void fpsimd_to_sve(struct task_struct *task)
|
||||
*/
|
||||
static void sve_to_fpsimd(struct task_struct *task)
|
||||
{
|
||||
unsigned int vq;
|
||||
unsigned int vq, vl;
|
||||
void const *sst = task->thread.sve_state;
|
||||
struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
|
||||
unsigned int i;
|
||||
@ -546,7 +664,8 @@ static void sve_to_fpsimd(struct task_struct *task)
|
||||
if (!system_supports_sve())
|
||||
return;
|
||||
|
||||
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
||||
vl = thread_get_cur_vl(&task->thread);
|
||||
vq = sve_vq_from_vl(vl);
|
||||
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
|
||||
p = (__uint128_t const *)ZREG(sst, vq, i);
|
||||
fst->vregs[i] = arm64_le128_to_cpu(*p);
|
||||
@ -554,14 +673,37 @@ static void sve_to_fpsimd(struct task_struct *task)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ARM64_SVE
|
||||
/*
|
||||
* Call __sve_free() directly only if you know task can't be scheduled
|
||||
* or preempted.
|
||||
*/
|
||||
static void __sve_free(struct task_struct *task)
|
||||
{
|
||||
kfree(task->thread.sve_state);
|
||||
task->thread.sve_state = NULL;
|
||||
}
|
||||
|
||||
static void sve_free(struct task_struct *task)
|
||||
{
|
||||
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
|
||||
|
||||
__sve_free(task);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return how many bytes of memory are required to store the full SVE
|
||||
* state for task, given task's currently configured vector length.
|
||||
*/
|
||||
static size_t sve_state_size(struct task_struct const *task)
|
||||
size_t sve_state_size(struct task_struct const *task)
|
||||
{
|
||||
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task_get_sve_vl(task)));
|
||||
unsigned int vl = 0;
|
||||
|
||||
if (system_supports_sve())
|
||||
vl = task_get_sve_vl(task);
|
||||
if (system_supports_sme())
|
||||
vl = max(vl, task_get_sme_vl(task));
|
||||
|
||||
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -587,6 +729,19 @@ void sve_alloc(struct task_struct *task)
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Force the FPSIMD state shared with SVE to be updated in the SVE state
|
||||
* even if the SVE state is the current active state.
|
||||
*
|
||||
* This should only be called by ptrace. task must be non-runnable.
|
||||
* task->thread.sve_state must point to at least sve_state_size(task)
|
||||
* bytes of allocated kernel memory.
|
||||
*/
|
||||
void fpsimd_force_sync_to_sve(struct task_struct *task)
|
||||
{
|
||||
fpsimd_to_sve(task);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ensure that task->thread.sve_state is up to date with respect to
|
||||
* the user task, irrespective of when SVE is in use or not.
|
||||
@ -597,7 +752,8 @@ void sve_alloc(struct task_struct *task)
|
||||
*/
|
||||
void fpsimd_sync_to_sve(struct task_struct *task)
|
||||
{
|
||||
if (!test_tsk_thread_flag(task, TIF_SVE))
|
||||
if (!test_tsk_thread_flag(task, TIF_SVE) &&
|
||||
!thread_sm_enabled(&task->thread))
|
||||
fpsimd_to_sve(task);
|
||||
}
|
||||
|
||||
@ -611,7 +767,8 @@ void fpsimd_sync_to_sve(struct task_struct *task)
|
||||
*/
|
||||
void sve_sync_to_fpsimd(struct task_struct *task)
|
||||
{
|
||||
if (test_tsk_thread_flag(task, TIF_SVE))
|
||||
if (test_tsk_thread_flag(task, TIF_SVE) ||
|
||||
thread_sm_enabled(&task->thread))
|
||||
sve_to_fpsimd(task);
|
||||
}
|
||||
|
||||
@ -636,7 +793,7 @@ void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
|
||||
if (!test_tsk_thread_flag(task, TIF_SVE))
|
||||
return;
|
||||
|
||||
vq = sve_vq_from_vl(task_get_sve_vl(task));
|
||||
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
|
||||
|
||||
memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
|
||||
__fpsimd_to_sve(sst, fst, vq);
|
||||
@ -680,8 +837,7 @@ int vec_set_vector_length(struct task_struct *task, enum vec_type type,
|
||||
/*
|
||||
* To ensure the FPSIMD bits of the SVE vector registers are preserved,
|
||||
* write any live register state back to task_struct, and convert to a
|
||||
* regular FPSIMD thread. Since the vector length can only be changed
|
||||
* with a syscall we can't be in streaming mode while reconfiguring.
|
||||
* regular FPSIMD thread.
|
||||
*/
|
||||
if (task == current) {
|
||||
get_cpu_fpsimd_context();
|
||||
@ -690,17 +846,26 @@ int vec_set_vector_length(struct task_struct *task, enum vec_type type,
|
||||
}
|
||||
|
||||
fpsimd_flush_task_state(task);
|
||||
if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
|
||||
if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
|
||||
thread_sm_enabled(&task->thread))
|
||||
sve_to_fpsimd(task);
|
||||
|
||||
if (system_supports_sme() && type == ARM64_VEC_SME) {
|
||||
task->thread.svcr &= ~(SVCR_SM_MASK |
|
||||
SVCR_ZA_MASK);
|
||||
clear_thread_flag(TIF_SME);
|
||||
}
|
||||
|
||||
if (task == current)
|
||||
put_cpu_fpsimd_context();
|
||||
|
||||
/*
|
||||
* Force reallocation of task SVE state to the correct size
|
||||
* on next use:
|
||||
* Force reallocation of task SVE and SME state to the correct
|
||||
* size on next use:
|
||||
*/
|
||||
sve_free(task);
|
||||
if (system_supports_sme() && type == ARM64_VEC_SME)
|
||||
sme_free(task);
|
||||
|
||||
task_set_vl(task, type, vl);
|
||||
|
||||
@ -761,6 +926,36 @@ int sve_get_current_vl(void)
|
||||
return vec_prctl_status(ARM64_VEC_SVE, 0);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
/* PR_SME_SET_VL */
|
||||
int sme_set_current_vl(unsigned long arg)
|
||||
{
|
||||
unsigned long vl, flags;
|
||||
int ret;
|
||||
|
||||
vl = arg & PR_SME_VL_LEN_MASK;
|
||||
flags = arg & ~vl;
|
||||
|
||||
if (!system_supports_sme() || is_compat_task())
|
||||
return -EINVAL;
|
||||
|
||||
ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return vec_prctl_status(ARM64_VEC_SME, flags);
|
||||
}
|
||||
|
||||
/* PR_SME_GET_VL */
|
||||
int sme_get_current_vl(void)
|
||||
{
|
||||
if (!system_supports_sme() || is_compat_task())
|
||||
return -EINVAL;
|
||||
|
||||
return vec_prctl_status(ARM64_VEC_SME, 0);
|
||||
}
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
|
||||
static void vec_probe_vqs(struct vl_info *info,
|
||||
DECLARE_BITMAP(map, SVE_VQ_MAX))
|
||||
{
|
||||
@ -770,7 +965,23 @@ static void vec_probe_vqs(struct vl_info *info,
|
||||
|
||||
for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
|
||||
write_vl(info->type, vq - 1); /* self-syncing */
|
||||
vl = sve_get_vl();
|
||||
|
||||
switch (info->type) {
|
||||
case ARM64_VEC_SVE:
|
||||
vl = sve_get_vl();
|
||||
break;
|
||||
case ARM64_VEC_SME:
|
||||
vl = sme_get_vl();
|
||||
break;
|
||||
default:
|
||||
vl = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Minimum VL identified? */
|
||||
if (sve_vq_from_vl(vl) > vq)
|
||||
break;
|
||||
|
||||
vq = sve_vq_from_vl(vl); /* skip intervening lengths */
|
||||
set_bit(__vq_to_bit(vq), map);
|
||||
}
|
||||
@ -856,21 +1067,25 @@ int vec_verify_vq_map(enum vec_type type)
|
||||
|
||||
static void __init sve_efi_setup(void)
|
||||
{
|
||||
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
|
||||
int max_vl = 0;
|
||||
int i;
|
||||
|
||||
if (!IS_ENABLED(CONFIG_EFI))
|
||||
return;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(vl_info); i++)
|
||||
max_vl = max(vl_info[i].max_vl, max_vl);
|
||||
|
||||
/*
|
||||
* alloc_percpu() warns and prints a backtrace if this goes wrong.
|
||||
* This is evidence of a crippled system and we are returning void,
|
||||
* so no attempt is made to handle this situation here.
|
||||
*/
|
||||
if (!sve_vl_valid(info->max_vl))
|
||||
if (!sve_vl_valid(max_vl))
|
||||
goto fail;
|
||||
|
||||
efi_sve_state = __alloc_percpu(
|
||||
SVE_SIG_REGS_SIZE(sve_vq_from_vl(info->max_vl)), SVE_VQ_BYTES);
|
||||
SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
|
||||
if (!efi_sve_state)
|
||||
goto fail;
|
||||
|
||||
@ -989,10 +1204,172 @@ void __init sve_setup(void)
|
||||
void fpsimd_release_task(struct task_struct *dead_task)
|
||||
{
|
||||
__sve_free(dead_task);
|
||||
sme_free(dead_task);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
/*
|
||||
* Ensure that task->thread.za_state is allocated and sufficiently large.
|
||||
*
|
||||
* This function should be used only in preparation for replacing
|
||||
* task->thread.za_state with new data. The memory is always zeroed
|
||||
* here to prevent stale data from showing through: this is done in
|
||||
* the interest of testability and predictability, the architecture
|
||||
* guarantees that when ZA is enabled it will be zeroed.
|
||||
*/
|
||||
void sme_alloc(struct task_struct *task)
|
||||
{
|
||||
if (task->thread.za_state) {
|
||||
memset(task->thread.za_state, 0, za_state_size(task));
|
||||
return;
|
||||
}
|
||||
|
||||
/* This could potentially be up to 64K. */
|
||||
task->thread.za_state =
|
||||
kzalloc(za_state_size(task), GFP_KERNEL);
|
||||
}
|
||||
|
||||
static void sme_free(struct task_struct *task)
|
||||
{
|
||||
kfree(task->thread.za_state);
|
||||
task->thread.za_state = NULL;
|
||||
}
|
||||
|
||||
void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
|
||||
{
|
||||
/* Set priority for all PEs to architecturally defined minimum */
|
||||
write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
|
||||
SYS_SMPRI_EL1);
|
||||
|
||||
/* Allow SME in kernel */
|
||||
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
|
||||
isb();
|
||||
|
||||
/* Allow EL0 to access TPIDR2 */
|
||||
write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
|
||||
isb();
|
||||
}
|
||||
|
||||
/*
|
||||
* This must be called after sme_kernel_enable(), we rely on the
|
||||
* feature table being sorted to ensure this.
|
||||
*/
|
||||
void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
|
||||
{
|
||||
/* Allow use of FA64 */
|
||||
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
|
||||
SYS_SMCR_EL1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Read the pseudo-SMCR used by cpufeatures to identify the supported
|
||||
* vector length.
|
||||
*
|
||||
* Use only if SME is present.
|
||||
* This function clobbers the SME vector length.
|
||||
*/
|
||||
u64 read_smcr_features(void)
|
||||
{
|
||||
u64 smcr;
|
||||
unsigned int vq_max;
|
||||
|
||||
sme_kernel_enable(NULL);
|
||||
sme_smstart_sm();
|
||||
|
||||
/*
|
||||
* Set the maximum possible VL.
|
||||
*/
|
||||
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
|
||||
SYS_SMCR_EL1);
|
||||
|
||||
smcr = read_sysreg_s(SYS_SMCR_EL1);
|
||||
smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
|
||||
vq_max = sve_vq_from_vl(sve_get_vl());
|
||||
smcr |= vq_max - 1; /* set LEN field to maximum effective value */
|
||||
|
||||
sme_smstop_sm();
|
||||
|
||||
return smcr;
|
||||
}
|
||||
|
||||
void __init sme_setup(void)
|
||||
{
|
||||
struct vl_info *info = &vl_info[ARM64_VEC_SME];
|
||||
u64 smcr;
|
||||
int min_bit;
|
||||
|
||||
if (!system_supports_sme())
|
||||
return;
|
||||
|
||||
/*
|
||||
* SME doesn't require any particular vector length be
|
||||
* supported but it does require at least one. We should have
|
||||
* disabled the feature entirely while bringing up CPUs but
|
||||
* let's double check here.
|
||||
*/
|
||||
WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
|
||||
|
||||
min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
|
||||
info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
|
||||
|
||||
smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
|
||||
info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
|
||||
|
||||
/*
|
||||
* Sanity-check that the max VL we determined through CPU features
|
||||
* corresponds properly to sme_vq_map. If not, do our best:
|
||||
*/
|
||||
if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
|
||||
info->max_vl)))
|
||||
info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
|
||||
info->max_vl);
|
||||
|
||||
WARN_ON(info->min_vl > info->max_vl);
|
||||
|
||||
/*
|
||||
* For the default VL, pick the maximum supported value <= 32
|
||||
* (256 bits) if there is one since this is guaranteed not to
|
||||
* grow the signal frame when in streaming mode, otherwise the
|
||||
* minimum available VL will be used.
|
||||
*/
|
||||
set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
|
||||
|
||||
pr_info("SME: minimum available vector length %u bytes per vector\n",
|
||||
info->min_vl);
|
||||
pr_info("SME: maximum available vector length %u bytes per vector\n",
|
||||
info->max_vl);
|
||||
pr_info("SME: default vector length %u bytes per vector\n",
|
||||
get_sme_default_vl());
|
||||
}
|
||||
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
|
||||
static void sve_init_regs(void)
|
||||
{
|
||||
/*
|
||||
* Convert the FPSIMD state to SVE, zeroing all the state that
|
||||
* is not shared with FPSIMD. If (as is likely) the current
|
||||
* state is live in the registers then do this there and
|
||||
* update our metadata for the current task including
|
||||
* disabling the trap, otherwise update our in-memory copy.
|
||||
* We are guaranteed to not be in streaming mode, we can only
|
||||
* take a SVE trap when not in streaming mode and we can't be
|
||||
* in streaming mode when taking a SME trap.
|
||||
*/
|
||||
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
|
||||
unsigned long vq_minus_one =
|
||||
sve_vq_from_vl(task_get_sve_vl(current)) - 1;
|
||||
sve_set_vq(vq_minus_one);
|
||||
sve_flush_live(true, vq_minus_one);
|
||||
fpsimd_bind_task_to_cpu();
|
||||
} else {
|
||||
fpsimd_to_sve(current);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Trapped SVE access
|
||||
*
|
||||
@ -1004,7 +1381,7 @@ void fpsimd_release_task(struct task_struct *dead_task)
|
||||
* would have disabled the SVE access trap for userspace during
|
||||
* ret_to_user, making an SVE access trap impossible in that case.
|
||||
*/
|
||||
void do_sve_acc(unsigned int esr, struct pt_regs *regs)
|
||||
void do_sve_acc(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
/* Even if we chose not to use SVE, the hardware could still trap: */
|
||||
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
|
||||
@ -1024,29 +1401,84 @@ void do_sve_acc(unsigned int esr, struct pt_regs *regs)
|
||||
WARN_ON(1); /* SVE access shouldn't have trapped */
|
||||
|
||||
/*
|
||||
* Convert the FPSIMD state to SVE, zeroing all the state that
|
||||
* is not shared with FPSIMD. If (as is likely) the current
|
||||
* state is live in the registers then do this there and
|
||||
* update our metadata for the current task including
|
||||
* disabling the trap, otherwise update our in-memory copy.
|
||||
* Even if the task can have used streaming mode we can only
|
||||
* generate SVE access traps in normal SVE mode and
|
||||
* transitioning out of streaming mode may discard any
|
||||
* streaming mode state. Always clear the high bits to avoid
|
||||
* any potential errors tracking what is properly initialised.
|
||||
*/
|
||||
sve_init_regs();
|
||||
|
||||
put_cpu_fpsimd_context();
|
||||
}
|
||||
|
||||
/*
|
||||
* Trapped SME access
|
||||
*
|
||||
* Storage is allocated for the full SVE and SME state, the current
|
||||
* FPSIMD register contents are migrated to SVE if SVE is not already
|
||||
* active, and the access trap is disabled.
|
||||
*
|
||||
* TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
|
||||
* would have disabled the SME access trap for userspace during
|
||||
* ret_to_user, making an SVE access trap impossible in that case.
|
||||
*/
|
||||
void do_sme_acc(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
/* Even if we chose not to use SME, the hardware could still trap: */
|
||||
if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
|
||||
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If this not a trap due to SME being disabled then something
|
||||
* is being used in the wrong mode, report as SIGILL.
|
||||
*/
|
||||
if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
|
||||
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
||||
return;
|
||||
}
|
||||
|
||||
sve_alloc(current);
|
||||
sme_alloc(current);
|
||||
if (!current->thread.sve_state || !current->thread.za_state) {
|
||||
force_sig(SIGKILL);
|
||||
return;
|
||||
}
|
||||
|
||||
get_cpu_fpsimd_context();
|
||||
|
||||
/* With TIF_SME userspace shouldn't generate any traps */
|
||||
if (test_and_set_thread_flag(TIF_SME))
|
||||
WARN_ON(1);
|
||||
|
||||
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
|
||||
unsigned long vq_minus_one =
|
||||
sve_vq_from_vl(task_get_sve_vl(current)) - 1;
|
||||
sve_set_vq(vq_minus_one);
|
||||
sve_flush_live(true, vq_minus_one);
|
||||
sve_vq_from_vl(task_get_sme_vl(current)) - 1;
|
||||
sme_set_vq(vq_minus_one);
|
||||
|
||||
fpsimd_bind_task_to_cpu();
|
||||
} else {
|
||||
fpsimd_to_sve(current);
|
||||
}
|
||||
|
||||
/*
|
||||
* If SVE was not already active initialise the SVE registers,
|
||||
* any non-shared state between the streaming and regular SVE
|
||||
* registers is architecturally guaranteed to be zeroed when
|
||||
* we enter streaming mode. We do not need to initialize ZA
|
||||
* since ZA must be disabled at this point and enabling ZA is
|
||||
* architecturally defined to zero ZA.
|
||||
*/
|
||||
if (system_supports_sve() && !test_thread_flag(TIF_SVE))
|
||||
sve_init_regs();
|
||||
|
||||
put_cpu_fpsimd_context();
|
||||
}
|
||||
|
||||
/*
|
||||
* Trapped FP/ASIMD access.
|
||||
*/
|
||||
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
|
||||
void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
/* TODO: implement lazy context saving/restoring */
|
||||
WARN_ON(1);
|
||||
@ -1055,7 +1487,7 @@ void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
|
||||
/*
|
||||
* Raise a SIGFPE for the current process.
|
||||
*/
|
||||
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
|
||||
void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
unsigned int si_code = FPE_FLTUNK;
|
||||
|
||||
@ -1141,6 +1573,9 @@ static void fpsimd_flush_thread_vl(enum vec_type type)
|
||||
|
||||
void fpsimd_flush_thread(void)
|
||||
{
|
||||
void *sve_state = NULL;
|
||||
void *za_state = NULL;
|
||||
|
||||
if (!system_supports_fpsimd())
|
||||
return;
|
||||
|
||||
@ -1152,11 +1587,28 @@ void fpsimd_flush_thread(void)
|
||||
|
||||
if (system_supports_sve()) {
|
||||
clear_thread_flag(TIF_SVE);
|
||||
sve_free(current);
|
||||
|
||||
/* Defer kfree() while in atomic context */
|
||||
sve_state = current->thread.sve_state;
|
||||
current->thread.sve_state = NULL;
|
||||
|
||||
fpsimd_flush_thread_vl(ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
if (system_supports_sme()) {
|
||||
clear_thread_flag(TIF_SME);
|
||||
|
||||
/* Defer kfree() while in atomic context */
|
||||
za_state = current->thread.za_state;
|
||||
current->thread.za_state = NULL;
|
||||
|
||||
fpsimd_flush_thread_vl(ARM64_VEC_SME);
|
||||
current->thread.svcr = 0;
|
||||
}
|
||||
|
||||
put_cpu_fpsimd_context();
|
||||
kfree(sve_state);
|
||||
kfree(za_state);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1198,22 +1650,34 @@ static void fpsimd_bind_task_to_cpu(void)
|
||||
WARN_ON(!system_supports_fpsimd());
|
||||
last->st = ¤t->thread.uw.fpsimd_state;
|
||||
last->sve_state = current->thread.sve_state;
|
||||
last->za_state = current->thread.za_state;
|
||||
last->sve_vl = task_get_sve_vl(current);
|
||||
last->sme_vl = task_get_sme_vl(current);
|
||||
last->svcr = ¤t->thread.svcr;
|
||||
current->thread.fpsimd_cpu = smp_processor_id();
|
||||
|
||||
/*
|
||||
* Toggle SVE and SME trapping for userspace if needed, these
|
||||
* are serialsied by ret_to_user().
|
||||
*/
|
||||
if (system_supports_sme()) {
|
||||
if (test_thread_flag(TIF_SME))
|
||||
sme_user_enable();
|
||||
else
|
||||
sme_user_disable();
|
||||
}
|
||||
|
||||
if (system_supports_sve()) {
|
||||
/* Toggle SVE trapping for userspace if needed */
|
||||
if (test_thread_flag(TIF_SVE))
|
||||
sve_user_enable();
|
||||
else
|
||||
sve_user_disable();
|
||||
|
||||
/* Serialised by exception return to user */
|
||||
}
|
||||
}
|
||||
|
||||
void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
|
||||
unsigned int sve_vl)
|
||||
unsigned int sve_vl, void *za_state,
|
||||
unsigned int sme_vl, u64 *svcr)
|
||||
{
|
||||
struct fpsimd_last_state_struct *last =
|
||||
this_cpu_ptr(&fpsimd_last_state);
|
||||
@ -1222,8 +1686,11 @@ void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
|
||||
WARN_ON(!in_softirq() && !irqs_disabled());
|
||||
|
||||
last->st = st;
|
||||
last->svcr = svcr;
|
||||
last->sve_state = sve_state;
|
||||
last->za_state = za_state;
|
||||
last->sve_vl = sve_vl;
|
||||
last->sme_vl = sme_vl;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1320,6 +1787,15 @@ static void fpsimd_flush_cpu_state(void)
|
||||
{
|
||||
WARN_ON(!system_supports_fpsimd());
|
||||
__this_cpu_write(fpsimd_last_state.st, NULL);
|
||||
|
||||
/*
|
||||
* Leaving streaming mode enabled will cause issues for any kernel
|
||||
* NEON and leaving streaming mode or ZA enabled may increase power
|
||||
* consumption.
|
||||
*/
|
||||
if (system_supports_sme())
|
||||
sme_smstop();
|
||||
|
||||
set_thread_flag(TIF_FOREIGN_FPSTATE);
|
||||
}
|
||||
|
||||
@ -1397,6 +1873,7 @@ EXPORT_SYMBOL(kernel_neon_end);
|
||||
static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
|
||||
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
|
||||
static DEFINE_PER_CPU(bool, efi_sve_state_used);
|
||||
static DEFINE_PER_CPU(bool, efi_sm_state);
|
||||
|
||||
/*
|
||||
* EFI runtime services support functions
|
||||
@ -1431,12 +1908,28 @@ void __efi_fpsimd_begin(void)
|
||||
*/
|
||||
if (system_supports_sve() && likely(efi_sve_state)) {
|
||||
char *sve_state = this_cpu_ptr(efi_sve_state);
|
||||
bool ffr = true;
|
||||
u64 svcr;
|
||||
|
||||
__this_cpu_write(efi_sve_state_used, true);
|
||||
|
||||
if (system_supports_sme()) {
|
||||
svcr = read_sysreg_s(SYS_SVCR);
|
||||
|
||||
if (!system_supports_fa64())
|
||||
ffr = svcr & SVCR_SM_MASK;
|
||||
|
||||
__this_cpu_write(efi_sm_state, ffr);
|
||||
}
|
||||
|
||||
sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
|
||||
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
|
||||
true);
|
||||
ffr);
|
||||
|
||||
if (system_supports_sme())
|
||||
sysreg_clear_set_s(SYS_SVCR,
|
||||
SVCR_SM_MASK, 0);
|
||||
|
||||
} else {
|
||||
fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
|
||||
}
|
||||
@ -1459,11 +1952,26 @@ void __efi_fpsimd_end(void)
|
||||
if (system_supports_sve() &&
|
||||
likely(__this_cpu_read(efi_sve_state_used))) {
|
||||
char const *sve_state = this_cpu_ptr(efi_sve_state);
|
||||
bool ffr = true;
|
||||
|
||||
/*
|
||||
* Restore streaming mode; EFI calls are
|
||||
* normal function calls so should not return in
|
||||
* streaming mode.
|
||||
*/
|
||||
if (system_supports_sme()) {
|
||||
if (__this_cpu_read(efi_sm_state)) {
|
||||
sysreg_clear_set_s(SYS_SVCR,
|
||||
0,
|
||||
SVCR_SM_MASK);
|
||||
if (!system_supports_fa64())
|
||||
ffr = efi_sm_state;
|
||||
}
|
||||
}
|
||||
|
||||
sve_set_vq(sve_vq_from_vl(sve_get_vl()) - 1);
|
||||
sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
|
||||
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
|
||||
true);
|
||||
ffr);
|
||||
|
||||
__this_cpu_write(efi_sve_state_used, false);
|
||||
} else {
|
||||
@ -1538,6 +2046,13 @@ static int __init fpsimd_init(void)
|
||||
if (!cpu_have_named_feature(ASIMD))
|
||||
pr_notice("Advanced SIMD is not implemented\n");
|
||||
|
||||
return sve_sysctl_init();
|
||||
|
||||
if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
|
||||
pr_notice("SME is implemented but not SVE\n");
|
||||
|
||||
sve_sysctl_init();
|
||||
sme_sysctl_init();
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(fpsimd_init);
|
||||
|
@ -268,6 +268,22 @@ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
|
||||
}
|
||||
|
||||
#ifdef CONFIG_DYNAMIC_FTRACE
|
||||
|
||||
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
|
||||
void ftrace_graph_func(unsigned long ip, unsigned long parent_ip,
|
||||
struct ftrace_ops *op, struct ftrace_regs *fregs)
|
||||
{
|
||||
/*
|
||||
* When DYNAMIC_FTRACE_WITH_REGS is selected, `fregs` can never be NULL
|
||||
* and arch_ftrace_get_regs(fregs) will always give a non-NULL pt_regs
|
||||
* in which we can safely modify the LR.
|
||||
*/
|
||||
struct pt_regs *regs = arch_ftrace_get_regs(fregs);
|
||||
unsigned long *parent = (unsigned long *)&procedure_link_pointer(regs);
|
||||
|
||||
prepare_ftrace_return(ip, parent, frame_pointer(regs));
|
||||
}
|
||||
#else
|
||||
/*
|
||||
* Turn on/off the call to ftrace_graph_caller() in ftrace_caller()
|
||||
* depending on @enable.
|
||||
@ -297,5 +313,6 @@ int ftrace_disable_ftrace_graph_caller(void)
|
||||
{
|
||||
return ftrace_modify_graph_caller(false);
|
||||
}
|
||||
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_REGS */
|
||||
#endif /* CONFIG_DYNAMIC_FTRACE */
|
||||
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
|
||||
|
@ -617,7 +617,7 @@ NOKPROBE_SYMBOL(toggle_bp_registers);
|
||||
/*
|
||||
* Debug exception handlers.
|
||||
*/
|
||||
static int breakpoint_handler(unsigned long unused, unsigned int esr,
|
||||
static int breakpoint_handler(unsigned long unused, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
int i, step = 0, *kernel_step;
|
||||
@ -751,7 +751,7 @@ static int watchpoint_report(struct perf_event *wp, unsigned long addr,
|
||||
return step;
|
||||
}
|
||||
|
||||
static int watchpoint_handler(unsigned long addr, unsigned int esr,
|
||||
static int watchpoint_handler(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
int i, step = 0, *kernel_step, access, closest_match = 0;
|
||||
|
@ -232,14 +232,14 @@ int kgdb_arch_handle_exception(int exception_vector, int signo,
|
||||
return err;
|
||||
}
|
||||
|
||||
static int kgdb_brk_fn(struct pt_regs *regs, unsigned int esr)
|
||||
static int kgdb_brk_fn(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
kgdb_handle_exception(1, SIGTRAP, 0, regs);
|
||||
return DBG_HOOK_HANDLED;
|
||||
}
|
||||
NOKPROBE_SYMBOL(kgdb_brk_fn)
|
||||
|
||||
static int kgdb_compiled_brk_fn(struct pt_regs *regs, unsigned int esr)
|
||||
static int kgdb_compiled_brk_fn(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
compiled_break = 1;
|
||||
kgdb_handle_exception(1, SIGTRAP, 0, regs);
|
||||
@ -248,7 +248,7 @@ static int kgdb_compiled_brk_fn(struct pt_regs *regs, unsigned int esr)
|
||||
}
|
||||
NOKPROBE_SYMBOL(kgdb_compiled_brk_fn);
|
||||
|
||||
static int kgdb_step_brk_fn(struct pt_regs *regs, unsigned int esr)
|
||||
static int kgdb_step_brk_fn(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
if (!kgdb_single_step)
|
||||
return DBG_HOOK_ERROR;
|
||||
|
@ -329,8 +329,13 @@ bool crash_is_nosave(unsigned long pfn)
|
||||
|
||||
/* in reserved memory? */
|
||||
addr = __pfn_to_phys(pfn);
|
||||
if ((addr < crashk_res.start) || (crashk_res.end < addr))
|
||||
return false;
|
||||
if ((addr < crashk_res.start) || (crashk_res.end < addr)) {
|
||||
if (!crashk_low_res.end)
|
||||
return false;
|
||||
|
||||
if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr))
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!kexec_crash_image)
|
||||
return true;
|
||||
|
@ -65,10 +65,18 @@ static int prepare_elf_headers(void **addr, unsigned long *sz)
|
||||
|
||||
/* Exclude crashkernel region */
|
||||
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
if (!ret)
|
||||
ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
|
||||
if (crashk_low_res.end) {
|
||||
ret = crash_exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
|
||||
if (ret)
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
|
||||
|
||||
out:
|
||||
kfree(cmem);
|
||||
return ret;
|
||||
}
|
||||
|
@ -15,6 +15,7 @@
|
||||
#include <linux/swapops.h>
|
||||
#include <linux/thread_info.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/uio.h>
|
||||
|
||||
#include <asm/barrier.h>
|
||||
@ -109,7 +110,8 @@ int memcmp_pages(struct page *page1, struct page *page2)
|
||||
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
|
||||
{
|
||||
/* Enable MTE Sync Mode for EL1. */
|
||||
sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
|
||||
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
|
||||
SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
|
||||
isb();
|
||||
|
||||
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
|
||||
@ -125,12 +127,12 @@ void mte_enable_kernel_sync(void)
|
||||
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
|
||||
"MTE async mode enabled system wide!");
|
||||
|
||||
__mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
|
||||
__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
|
||||
}
|
||||
|
||||
void mte_enable_kernel_async(void)
|
||||
{
|
||||
__mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
|
||||
__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
|
||||
|
||||
/*
|
||||
* MTE async mode is set system wide by the first PE that
|
||||
@ -147,7 +149,7 @@ void mte_enable_kernel_async(void)
|
||||
void mte_enable_kernel_asymm(void)
|
||||
{
|
||||
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
|
||||
__mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
|
||||
__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
|
||||
|
||||
/*
|
||||
* MTE asymm mode behaves as async mode for store
|
||||
@ -219,11 +221,11 @@ static void mte_update_sctlr_user(struct task_struct *task)
|
||||
* default order.
|
||||
*/
|
||||
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
|
||||
sctlr |= SCTLR_EL1_TCF0_ASYMM;
|
||||
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
|
||||
else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
|
||||
sctlr |= SCTLR_EL1_TCF0_ASYNC;
|
||||
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
|
||||
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
|
||||
sctlr |= SCTLR_EL1_TCF0_SYNC;
|
||||
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
|
||||
task->thread.sctlr_user = sctlr;
|
||||
}
|
||||
|
||||
@ -546,3 +548,32 @@ static int register_mte_tcf_preferred_sysctl(void)
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(register_mte_tcf_preferred_sysctl);
|
||||
|
||||
/*
|
||||
* Return 0 on success, the number of bytes not probed otherwise.
|
||||
*/
|
||||
size_t mte_probe_user_range(const char __user *uaddr, size_t size)
|
||||
{
|
||||
const char __user *end = uaddr + size;
|
||||
int err = 0;
|
||||
char val;
|
||||
|
||||
__raw_get_user(val, uaddr, err);
|
||||
if (err)
|
||||
return size;
|
||||
|
||||
uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
|
||||
while (uaddr < end) {
|
||||
/*
|
||||
* A read is sufficient for mte, the caller should have probed
|
||||
* for the pte write permission if required.
|
||||
*/
|
||||
__raw_get_user(val, uaddr, err);
|
||||
if (err)
|
||||
return end - uaddr;
|
||||
uaddr += MTE_GRANULE_SIZE;
|
||||
}
|
||||
(void)val;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -335,7 +335,7 @@ static void __kprobes kprobe_handler(struct pt_regs *regs)
|
||||
}
|
||||
|
||||
static int __kprobes
|
||||
kprobe_breakpoint_ss_handler(struct pt_regs *regs, unsigned int esr)
|
||||
kprobe_breakpoint_ss_handler(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
unsigned long addr = instruction_pointer(regs);
|
||||
@ -359,7 +359,7 @@ static struct break_hook kprobes_break_ss_hook = {
|
||||
};
|
||||
|
||||
static int __kprobes
|
||||
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
|
||||
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
kprobe_handler(regs);
|
||||
return DBG_HOOK_HANDLED;
|
||||
|
@ -166,7 +166,7 @@ int arch_uprobe_exception_notify(struct notifier_block *self,
|
||||
}
|
||||
|
||||
static int uprobe_breakpoint_handler(struct pt_regs *regs,
|
||||
unsigned int esr)
|
||||
unsigned long esr)
|
||||
{
|
||||
if (uprobe_pre_sstep_notifier(regs))
|
||||
return DBG_HOOK_HANDLED;
|
||||
@ -175,7 +175,7 @@ static int uprobe_breakpoint_handler(struct pt_regs *regs,
|
||||
}
|
||||
|
||||
static int uprobe_single_step_handler(struct pt_regs *regs,
|
||||
unsigned int esr)
|
||||
unsigned long esr)
|
||||
{
|
||||
struct uprobe_task *utask = current->utask;
|
||||
|
||||
|
@ -250,6 +250,8 @@ void show_regs(struct pt_regs *regs)
|
||||
static void tls_thread_flush(void)
|
||||
{
|
||||
write_sysreg(0, tpidr_el0);
|
||||
if (system_supports_tpidr2())
|
||||
write_sysreg_s(0, SYS_TPIDR2_EL0);
|
||||
|
||||
if (is_compat_task()) {
|
||||
current->thread.uw.tp_value = 0;
|
||||
@ -298,16 +300,42 @@ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
||||
|
||||
/*
|
||||
* Detach src's sve_state (if any) from dst so that it does not
|
||||
* get erroneously used or freed prematurely. dst's sve_state
|
||||
* get erroneously used or freed prematurely. dst's copies
|
||||
* will be allocated on demand later on if dst uses SVE.
|
||||
* For consistency, also clear TIF_SVE here: this could be done
|
||||
* later in copy_process(), but to avoid tripping up future
|
||||
* maintainers it is best not to leave TIF_SVE and sve_state in
|
||||
* maintainers it is best not to leave TIF flags and buffers in
|
||||
* an inconsistent state, even temporarily.
|
||||
*/
|
||||
dst->thread.sve_state = NULL;
|
||||
clear_tsk_thread_flag(dst, TIF_SVE);
|
||||
|
||||
/*
|
||||
* In the unlikely event that we create a new thread with ZA
|
||||
* enabled we should retain the ZA state so duplicate it here.
|
||||
* This may be shortly freed if we exec() or if CLONE_SETTLS
|
||||
* but it's simpler to do it here. To avoid confusing the rest
|
||||
* of the code ensure that we have a sve_state allocated
|
||||
* whenever za_state is allocated.
|
||||
*/
|
||||
if (thread_za_enabled(&src->thread)) {
|
||||
dst->thread.sve_state = kzalloc(sve_state_size(src),
|
||||
GFP_KERNEL);
|
||||
if (!dst->thread.sve_state)
|
||||
return -ENOMEM;
|
||||
dst->thread.za_state = kmemdup(src->thread.za_state,
|
||||
za_state_size(src),
|
||||
GFP_KERNEL);
|
||||
if (!dst->thread.za_state) {
|
||||
kfree(dst->thread.sve_state);
|
||||
dst->thread.sve_state = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
} else {
|
||||
dst->thread.za_state = NULL;
|
||||
clear_tsk_thread_flag(dst, TIF_SME);
|
||||
}
|
||||
|
||||
/* clear any pending asynchronous tag fault raised by the parent */
|
||||
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
|
||||
|
||||
@ -343,6 +371,8 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start,
|
||||
* out-of-sync with the saved value.
|
||||
*/
|
||||
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
||||
if (system_supports_tpidr2())
|
||||
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
||||
|
||||
if (stack_start) {
|
||||
if (is_compat_thread(task_thread_info(p)))
|
||||
@ -353,10 +383,12 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start,
|
||||
|
||||
/*
|
||||
* If a TLS pointer was passed to clone, use it for the new
|
||||
* thread.
|
||||
* thread. We also reset TPIDR2 if it's in use.
|
||||
*/
|
||||
if (clone_flags & CLONE_SETTLS)
|
||||
if (clone_flags & CLONE_SETTLS) {
|
||||
p->thread.uw.tp_value = tls;
|
||||
p->thread.tpidr2_el0 = 0;
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* A kthread has no context to ERET to, so ensure any buggy
|
||||
@ -387,6 +419,8 @@ int copy_thread(unsigned long clone_flags, unsigned long stack_start,
|
||||
void tls_preserve_current_state(void)
|
||||
{
|
||||
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
||||
if (system_supports_tpidr2() && !is_compat_task())
|
||||
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
||||
}
|
||||
|
||||
static void tls_thread_switch(struct task_struct *next)
|
||||
@ -399,6 +433,8 @@ static void tls_thread_switch(struct task_struct *next)
|
||||
write_sysreg(0, tpidrro_el0);
|
||||
|
||||
write_sysreg(*task_user_tls(next), tpidr_el0);
|
||||
if (system_supports_tpidr2())
|
||||
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -713,21 +713,51 @@ static int system_call_set(struct task_struct *target,
|
||||
#ifdef CONFIG_ARM64_SVE
|
||||
|
||||
static void sve_init_header_from_task(struct user_sve_header *header,
|
||||
struct task_struct *target)
|
||||
struct task_struct *target,
|
||||
enum vec_type type)
|
||||
{
|
||||
unsigned int vq;
|
||||
bool active;
|
||||
bool fpsimd_only;
|
||||
enum vec_type task_type;
|
||||
|
||||
memset(header, 0, sizeof(*header));
|
||||
|
||||
header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
|
||||
SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
|
||||
if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
|
||||
header->flags |= SVE_PT_VL_INHERIT;
|
||||
/* Check if the requested registers are active for the task */
|
||||
if (thread_sm_enabled(&target->thread))
|
||||
task_type = ARM64_VEC_SME;
|
||||
else
|
||||
task_type = ARM64_VEC_SVE;
|
||||
active = (task_type == type);
|
||||
|
||||
header->vl = task_get_sve_vl(target);
|
||||
switch (type) {
|
||||
case ARM64_VEC_SVE:
|
||||
if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
|
||||
header->flags |= SVE_PT_VL_INHERIT;
|
||||
fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
|
||||
break;
|
||||
case ARM64_VEC_SME:
|
||||
if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
|
||||
header->flags |= SVE_PT_VL_INHERIT;
|
||||
fpsimd_only = false;
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
return;
|
||||
}
|
||||
|
||||
if (active) {
|
||||
if (fpsimd_only) {
|
||||
header->flags |= SVE_PT_REGS_FPSIMD;
|
||||
} else {
|
||||
header->flags |= SVE_PT_REGS_SVE;
|
||||
}
|
||||
}
|
||||
|
||||
header->vl = task_get_vl(target, type);
|
||||
vq = sve_vq_from_vl(header->vl);
|
||||
|
||||
header->max_vl = sve_max_vl();
|
||||
header->max_vl = vec_max_vl(type);
|
||||
header->size = SVE_PT_SIZE(vq, header->flags);
|
||||
header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
|
||||
SVE_PT_REGS_SVE);
|
||||
@ -738,19 +768,17 @@ static unsigned int sve_size_from_header(struct user_sve_header const *header)
|
||||
return ALIGN(header->size, SVE_VQ_BYTES);
|
||||
}
|
||||
|
||||
static int sve_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
struct membuf to)
|
||||
static int sve_get_common(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
struct membuf to,
|
||||
enum vec_type type)
|
||||
{
|
||||
struct user_sve_header header;
|
||||
unsigned int vq;
|
||||
unsigned long start, end;
|
||||
|
||||
if (!system_supports_sve())
|
||||
return -EINVAL;
|
||||
|
||||
/* Header */
|
||||
sve_init_header_from_task(&header, target);
|
||||
sve_init_header_from_task(&header, target, type);
|
||||
vq = sve_vq_from_vl(header.vl);
|
||||
|
||||
membuf_write(&to, &header, sizeof(header));
|
||||
@ -758,49 +786,61 @@ static int sve_get(struct task_struct *target,
|
||||
if (target == current)
|
||||
fpsimd_preserve_current_state();
|
||||
|
||||
/* Registers: FPSIMD-only case */
|
||||
|
||||
BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
|
||||
if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
|
||||
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
|
||||
|
||||
switch ((header.flags & SVE_PT_REGS_MASK)) {
|
||||
case SVE_PT_REGS_FPSIMD:
|
||||
return __fpr_get(target, regset, to);
|
||||
|
||||
/* Otherwise: full SVE case */
|
||||
case SVE_PT_REGS_SVE:
|
||||
start = SVE_PT_SVE_OFFSET;
|
||||
end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
|
||||
membuf_write(&to, target->thread.sve_state, end - start);
|
||||
|
||||
BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
|
||||
start = SVE_PT_SVE_OFFSET;
|
||||
end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
|
||||
membuf_write(&to, target->thread.sve_state, end - start);
|
||||
start = end;
|
||||
end = SVE_PT_SVE_FPSR_OFFSET(vq);
|
||||
membuf_zero(&to, end - start);
|
||||
|
||||
start = end;
|
||||
end = SVE_PT_SVE_FPSR_OFFSET(vq);
|
||||
membuf_zero(&to, end - start);
|
||||
/*
|
||||
* Copy fpsr, and fpcr which must follow contiguously in
|
||||
* struct fpsimd_state:
|
||||
*/
|
||||
start = end;
|
||||
end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
|
||||
membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
|
||||
end - start);
|
||||
|
||||
/*
|
||||
* Copy fpsr, and fpcr which must follow contiguously in
|
||||
* struct fpsimd_state:
|
||||
*/
|
||||
start = end;
|
||||
end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
|
||||
membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
|
||||
start = end;
|
||||
end = sve_size_from_header(&header);
|
||||
return membuf_zero(&to, end - start);
|
||||
|
||||
start = end;
|
||||
end = sve_size_from_header(&header);
|
||||
return membuf_zero(&to, end - start);
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static int sve_set(struct task_struct *target,
|
||||
static int sve_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
struct membuf to)
|
||||
{
|
||||
if (!system_supports_sve())
|
||||
return -EINVAL;
|
||||
|
||||
return sve_get_common(target, regset, to, ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
static int sve_set_common(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf,
|
||||
enum vec_type type)
|
||||
{
|
||||
int ret;
|
||||
struct user_sve_header header;
|
||||
unsigned int vq;
|
||||
unsigned long start, end;
|
||||
|
||||
if (!system_supports_sve())
|
||||
return -EINVAL;
|
||||
|
||||
/* Header */
|
||||
if (count < sizeof(header))
|
||||
return -EINVAL;
|
||||
@ -813,13 +853,37 @@ static int sve_set(struct task_struct *target,
|
||||
* Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
|
||||
* vec_set_vector_length(), which will also validate them for us:
|
||||
*/
|
||||
ret = vec_set_vector_length(target, ARM64_VEC_SVE, header.vl,
|
||||
ret = vec_set_vector_length(target, type, header.vl,
|
||||
((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/* Actual VL set may be less than the user asked for: */
|
||||
vq = sve_vq_from_vl(task_get_sve_vl(target));
|
||||
vq = sve_vq_from_vl(task_get_vl(target, type));
|
||||
|
||||
/* Enter/exit streaming mode */
|
||||
if (system_supports_sme()) {
|
||||
u64 old_svcr = target->thread.svcr;
|
||||
|
||||
switch (type) {
|
||||
case ARM64_VEC_SVE:
|
||||
target->thread.svcr &= ~SVCR_SM_MASK;
|
||||
break;
|
||||
case ARM64_VEC_SME:
|
||||
target->thread.svcr |= SVCR_SM_MASK;
|
||||
break;
|
||||
default:
|
||||
WARN_ON_ONCE(1);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we switched then invalidate any existing SVE
|
||||
* state and ensure there's storage.
|
||||
*/
|
||||
if (target->thread.svcr != old_svcr)
|
||||
sve_alloc(target);
|
||||
}
|
||||
|
||||
/* Registers: FPSIMD-only case */
|
||||
|
||||
@ -828,10 +892,15 @@ static int sve_set(struct task_struct *target,
|
||||
ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
|
||||
SVE_PT_FPSIMD_OFFSET);
|
||||
clear_tsk_thread_flag(target, TIF_SVE);
|
||||
if (type == ARM64_VEC_SME)
|
||||
fpsimd_force_sync_to_sve(target);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Otherwise: full SVE case */
|
||||
/*
|
||||
* Otherwise: no registers or full SVE case. For backwards
|
||||
* compatibility reasons we treat empty flags as SVE registers.
|
||||
*/
|
||||
|
||||
/*
|
||||
* If setting a different VL from the requested VL and there is
|
||||
@ -852,8 +921,9 @@ static int sve_set(struct task_struct *target,
|
||||
|
||||
/*
|
||||
* Ensure target->thread.sve_state is up to date with target's
|
||||
* FPSIMD regs, so that a short copyin leaves trailing registers
|
||||
* unmodified.
|
||||
* FPSIMD regs, so that a short copyin leaves trailing
|
||||
* registers unmodified. Always enable SVE even if going into
|
||||
* streaming mode.
|
||||
*/
|
||||
fpsimd_sync_to_sve(target);
|
||||
set_tsk_thread_flag(target, TIF_SVE);
|
||||
@ -889,8 +959,181 @@ static int sve_set(struct task_struct *target,
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sve_set(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
if (!system_supports_sve())
|
||||
return -EINVAL;
|
||||
|
||||
return sve_set_common(target, regset, pos, count, kbuf, ubuf,
|
||||
ARM64_VEC_SVE);
|
||||
}
|
||||
|
||||
#endif /* CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
static int ssve_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
struct membuf to)
|
||||
{
|
||||
if (!system_supports_sme())
|
||||
return -EINVAL;
|
||||
|
||||
return sve_get_common(target, regset, to, ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static int ssve_set(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
if (!system_supports_sme())
|
||||
return -EINVAL;
|
||||
|
||||
return sve_set_common(target, regset, pos, count, kbuf, ubuf,
|
||||
ARM64_VEC_SME);
|
||||
}
|
||||
|
||||
static int za_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
struct membuf to)
|
||||
{
|
||||
struct user_za_header header;
|
||||
unsigned int vq;
|
||||
unsigned long start, end;
|
||||
|
||||
if (!system_supports_sme())
|
||||
return -EINVAL;
|
||||
|
||||
/* Header */
|
||||
memset(&header, 0, sizeof(header));
|
||||
|
||||
if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
|
||||
header.flags |= ZA_PT_VL_INHERIT;
|
||||
|
||||
header.vl = task_get_sme_vl(target);
|
||||
vq = sve_vq_from_vl(header.vl);
|
||||
header.max_vl = sme_max_vl();
|
||||
header.max_size = ZA_PT_SIZE(vq);
|
||||
|
||||
/* If ZA is not active there is only the header */
|
||||
if (thread_za_enabled(&target->thread))
|
||||
header.size = ZA_PT_SIZE(vq);
|
||||
else
|
||||
header.size = ZA_PT_ZA_OFFSET;
|
||||
|
||||
membuf_write(&to, &header, sizeof(header));
|
||||
|
||||
BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
|
||||
end = ZA_PT_ZA_OFFSET;
|
||||
|
||||
if (target == current)
|
||||
fpsimd_preserve_current_state();
|
||||
|
||||
/* Any register data to include? */
|
||||
if (thread_za_enabled(&target->thread)) {
|
||||
start = end;
|
||||
end = ZA_PT_SIZE(vq);
|
||||
membuf_write(&to, target->thread.za_state, end - start);
|
||||
}
|
||||
|
||||
/* Zero any trailing padding */
|
||||
start = end;
|
||||
end = ALIGN(header.size, SVE_VQ_BYTES);
|
||||
return membuf_zero(&to, end - start);
|
||||
}
|
||||
|
||||
static int za_set(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
int ret;
|
||||
struct user_za_header header;
|
||||
unsigned int vq;
|
||||
unsigned long start, end;
|
||||
|
||||
if (!system_supports_sme())
|
||||
return -EINVAL;
|
||||
|
||||
/* Header */
|
||||
if (count < sizeof(header))
|
||||
return -EINVAL;
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
|
||||
0, sizeof(header));
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* All current ZA_PT_* flags are consumed by
|
||||
* vec_set_vector_length(), which will also validate them for
|
||||
* us:
|
||||
*/
|
||||
ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
|
||||
((unsigned long)header.flags) << 16);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/* Actual VL set may be less than the user asked for: */
|
||||
vq = sve_vq_from_vl(task_get_sme_vl(target));
|
||||
|
||||
/* Ensure there is some SVE storage for streaming mode */
|
||||
if (!target->thread.sve_state) {
|
||||
sve_alloc(target);
|
||||
if (!target->thread.sve_state) {
|
||||
clear_thread_flag(TIF_SME);
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate/reinit ZA storage */
|
||||
sme_alloc(target);
|
||||
if (!target->thread.za_state) {
|
||||
ret = -ENOMEM;
|
||||
clear_tsk_thread_flag(target, TIF_SME);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* If there is no data then disable ZA */
|
||||
if (!count) {
|
||||
target->thread.svcr &= ~SVCR_ZA_MASK;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* If setting a different VL from the requested VL and there is
|
||||
* register data, the data layout will be wrong: don't even
|
||||
* try to set the registers in this case.
|
||||
*/
|
||||
if (vq != sve_vq_from_vl(header.vl)) {
|
||||
ret = -EIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
|
||||
start = ZA_PT_ZA_OFFSET;
|
||||
end = ZA_PT_SIZE(vq);
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
target->thread.za_state,
|
||||
start, end);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/* Mark ZA as active and let userspace use it */
|
||||
set_tsk_thread_flag(target, TIF_SME);
|
||||
target->thread.svcr |= SVCR_ZA_MASK;
|
||||
|
||||
out:
|
||||
fpsimd_flush_task_state(target);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_ARM64_SME */
|
||||
|
||||
#ifdef CONFIG_ARM64_PTR_AUTH
|
||||
static int pac_mask_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
@ -1108,6 +1351,10 @@ enum aarch64_regset {
|
||||
#ifdef CONFIG_ARM64_SVE
|
||||
REGSET_SVE,
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_SVE
|
||||
REGSET_SSVE,
|
||||
REGSET_ZA,
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_PTR_AUTH
|
||||
REGSET_PAC_MASK,
|
||||
REGSET_PAC_ENABLED_KEYS,
|
||||
@ -1188,6 +1435,33 @@ static const struct user_regset aarch64_regsets[] = {
|
||||
.set = sve_set,
|
||||
},
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
[REGSET_SSVE] = { /* Streaming mode SVE */
|
||||
.core_note_type = NT_ARM_SSVE,
|
||||
.n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
|
||||
SVE_VQ_BYTES),
|
||||
.size = SVE_VQ_BYTES,
|
||||
.align = SVE_VQ_BYTES,
|
||||
.regset_get = ssve_get,
|
||||
.set = ssve_set,
|
||||
},
|
||||
[REGSET_ZA] = { /* SME ZA */
|
||||
.core_note_type = NT_ARM_ZA,
|
||||
/*
|
||||
* ZA is a single register but it's variably sized and
|
||||
* the ptrace core requires that the size of any data
|
||||
* be an exact multiple of the configured register
|
||||
* size so report as though we had SVE_VQ_BYTES
|
||||
* registers. These values aren't exposed to
|
||||
* userspace.
|
||||
*/
|
||||
.n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
|
||||
.size = SVE_VQ_BYTES,
|
||||
.align = SVE_VQ_BYTES,
|
||||
.regset_get = za_get,
|
||||
.set = za_set,
|
||||
},
|
||||
#endif
|
||||
#ifdef CONFIG_ARM64_PTR_AUTH
|
||||
[REGSET_PAC_MASK] = {
|
||||
.core_note_type = NT_ARM_PAC_MASK,
|
||||
|
@ -225,6 +225,8 @@ static void __init request_standard_resources(void)
|
||||
kernel_code.end = __pa_symbol(__init_begin - 1);
|
||||
kernel_data.start = __pa_symbol(_sdata);
|
||||
kernel_data.end = __pa_symbol(_end - 1);
|
||||
insert_resource(&iomem_resource, &kernel_code);
|
||||
insert_resource(&iomem_resource, &kernel_data);
|
||||
|
||||
num_standard_resources = memblock.memory.cnt;
|
||||
res_size = num_standard_resources * sizeof(*standard_resources);
|
||||
@ -246,20 +248,7 @@ static void __init request_standard_resources(void)
|
||||
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
|
||||
}
|
||||
|
||||
request_resource(&iomem_resource, res);
|
||||
|
||||
if (kernel_code.start >= res->start &&
|
||||
kernel_code.end <= res->end)
|
||||
request_resource(res, &kernel_code);
|
||||
if (kernel_data.start >= res->start &&
|
||||
kernel_data.end <= res->end)
|
||||
request_resource(res, &kernel_data);
|
||||
#ifdef CONFIG_KEXEC_CORE
|
||||
/* Userspace will find "Crash kernel" region in /proc/iomem. */
|
||||
if (crashk_res.end && crashk_res.start >= res->start &&
|
||||
crashk_res.end <= res->end)
|
||||
request_resource(res, &crashk_res);
|
||||
#endif
|
||||
insert_resource(&iomem_resource, res);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -56,6 +56,7 @@ struct rt_sigframe_user_layout {
|
||||
unsigned long fpsimd_offset;
|
||||
unsigned long esr_offset;
|
||||
unsigned long sve_offset;
|
||||
unsigned long za_offset;
|
||||
unsigned long extra_offset;
|
||||
unsigned long end_offset;
|
||||
};
|
||||
@ -218,6 +219,7 @@ static int restore_fpsimd_context(struct fpsimd_context __user *ctx)
|
||||
struct user_ctxs {
|
||||
struct fpsimd_context __user *fpsimd;
|
||||
struct sve_context __user *sve;
|
||||
struct za_context __user *za;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_ARM64_SVE
|
||||
@ -226,11 +228,17 @@ static int preserve_sve_context(struct sve_context __user *ctx)
|
||||
{
|
||||
int err = 0;
|
||||
u16 reserved[ARRAY_SIZE(ctx->__reserved)];
|
||||
u16 flags = 0;
|
||||
unsigned int vl = task_get_sve_vl(current);
|
||||
unsigned int vq = 0;
|
||||
|
||||
if (test_thread_flag(TIF_SVE))
|
||||
if (thread_sm_enabled(¤t->thread)) {
|
||||
vl = task_get_sme_vl(current);
|
||||
vq = sve_vq_from_vl(vl);
|
||||
flags |= SVE_SIG_FLAG_SM;
|
||||
} else if (test_thread_flag(TIF_SVE)) {
|
||||
vq = sve_vq_from_vl(vl);
|
||||
}
|
||||
|
||||
memset(reserved, 0, sizeof(reserved));
|
||||
|
||||
@ -238,6 +246,7 @@ static int preserve_sve_context(struct sve_context __user *ctx)
|
||||
__put_user_error(round_up(SVE_SIG_CONTEXT_SIZE(vq), 16),
|
||||
&ctx->head.size, err);
|
||||
__put_user_error(vl, &ctx->vl, err);
|
||||
__put_user_error(flags, &ctx->flags, err);
|
||||
BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
|
||||
err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
|
||||
|
||||
@ -258,18 +267,28 @@ static int preserve_sve_context(struct sve_context __user *ctx)
|
||||
static int restore_sve_fpsimd_context(struct user_ctxs *user)
|
||||
{
|
||||
int err;
|
||||
unsigned int vq;
|
||||
unsigned int vl, vq;
|
||||
struct user_fpsimd_state fpsimd;
|
||||
struct sve_context sve;
|
||||
|
||||
if (__copy_from_user(&sve, user->sve, sizeof(sve)))
|
||||
return -EFAULT;
|
||||
|
||||
if (sve.vl != task_get_sve_vl(current))
|
||||
if (sve.flags & SVE_SIG_FLAG_SM) {
|
||||
if (!system_supports_sme())
|
||||
return -EINVAL;
|
||||
|
||||
vl = task_get_sme_vl(current);
|
||||
} else {
|
||||
vl = task_get_sve_vl(current);
|
||||
}
|
||||
|
||||
if (sve.vl != vl)
|
||||
return -EINVAL;
|
||||
|
||||
if (sve.head.size <= sizeof(*user->sve)) {
|
||||
clear_thread_flag(TIF_SVE);
|
||||
current->thread.svcr &= ~SVCR_SM_MASK;
|
||||
goto fpsimd_only;
|
||||
}
|
||||
|
||||
@ -301,7 +320,10 @@ static int restore_sve_fpsimd_context(struct user_ctxs *user)
|
||||
if (err)
|
||||
return -EFAULT;
|
||||
|
||||
set_thread_flag(TIF_SVE);
|
||||
if (sve.flags & SVE_SIG_FLAG_SM)
|
||||
current->thread.svcr |= SVCR_SM_MASK;
|
||||
else
|
||||
set_thread_flag(TIF_SVE);
|
||||
|
||||
fpsimd_only:
|
||||
/* copy the FP and status/control registers */
|
||||
@ -326,6 +348,101 @@ extern int restore_sve_fpsimd_context(struct user_ctxs *user);
|
||||
|
||||
#endif /* ! CONFIG_ARM64_SVE */
|
||||
|
||||
#ifdef CONFIG_ARM64_SME
|
||||
|
||||
static int preserve_za_context(struct za_context __user *ctx)
|
||||
{
|
||||
int err = 0;
|
||||
u16 reserved[ARRAY_SIZE(ctx->__reserved)];
|
||||
unsigned int vl = task_get_sme_vl(current);
|
||||
unsigned int vq;
|
||||
|
||||
if (thread_za_enabled(¤t->thread))
|
||||
vq = sve_vq_from_vl(vl);
|
||||
else
|
||||
vq = 0;
|
||||
|
||||
memset(reserved, 0, sizeof(reserved));
|
||||
|
||||
__put_user_error(ZA_MAGIC, &ctx->head.magic, err);
|
||||
__put_user_error(round_up(ZA_SIG_CONTEXT_SIZE(vq), 16),
|
||||
&ctx->head.size, err);
|
||||
__put_user_error(vl, &ctx->vl, err);
|
||||
BUILD_BUG_ON(sizeof(ctx->__reserved) != sizeof(reserved));
|
||||
err |= __copy_to_user(&ctx->__reserved, reserved, sizeof(reserved));
|
||||
|
||||
if (vq) {
|
||||
/*
|
||||
* This assumes that the ZA state has already been saved to
|
||||
* the task struct by calling the function
|
||||
* fpsimd_signal_preserve_current_state().
|
||||
*/
|
||||
err |= __copy_to_user((char __user *)ctx + ZA_SIG_REGS_OFFSET,
|
||||
current->thread.za_state,
|
||||
ZA_SIG_REGS_SIZE(vq));
|
||||
}
|
||||
|
||||
return err ? -EFAULT : 0;
|
||||
}
|
||||
|
||||
static int restore_za_context(struct user_ctxs __user *user)
|
||||
{
|
||||
int err;
|
||||
unsigned int vq;
|
||||
struct za_context za;
|
||||
|
||||
if (__copy_from_user(&za, user->za, sizeof(za)))
|
||||
return -EFAULT;
|
||||
|
||||
if (za.vl != task_get_sme_vl(current))
|
||||
return -EINVAL;
|
||||
|
||||
if (za.head.size <= sizeof(*user->za)) {
|
||||
current->thread.svcr &= ~SVCR_ZA_MASK;
|
||||
return 0;
|
||||
}
|
||||
|
||||
vq = sve_vq_from_vl(za.vl);
|
||||
|
||||
if (za.head.size < ZA_SIG_CONTEXT_SIZE(vq))
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Careful: we are about __copy_from_user() directly into
|
||||
* thread.za_state with preemption enabled, so protection is
|
||||
* needed to prevent a racing context switch from writing stale
|
||||
* registers back over the new data.
|
||||
*/
|
||||
|
||||
fpsimd_flush_task_state(current);
|
||||
/* From now, fpsimd_thread_switch() won't touch thread.sve_state */
|
||||
|
||||
sme_alloc(current);
|
||||
if (!current->thread.za_state) {
|
||||
current->thread.svcr &= ~SVCR_ZA_MASK;
|
||||
clear_thread_flag(TIF_SME);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
err = __copy_from_user(current->thread.za_state,
|
||||
(char __user const *)user->za +
|
||||
ZA_SIG_REGS_OFFSET,
|
||||
ZA_SIG_REGS_SIZE(vq));
|
||||
if (err)
|
||||
return -EFAULT;
|
||||
|
||||
set_thread_flag(TIF_SME);
|
||||
current->thread.svcr |= SVCR_ZA_MASK;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else /* ! CONFIG_ARM64_SME */
|
||||
|
||||
/* Turn any non-optimised out attempts to use these into a link error: */
|
||||
extern int preserve_za_context(void __user *ctx);
|
||||
extern int restore_za_context(struct user_ctxs *user);
|
||||
|
||||
#endif /* ! CONFIG_ARM64_SME */
|
||||
|
||||
static int parse_user_sigframe(struct user_ctxs *user,
|
||||
struct rt_sigframe __user *sf)
|
||||
@ -340,6 +457,7 @@ static int parse_user_sigframe(struct user_ctxs *user,
|
||||
|
||||
user->fpsimd = NULL;
|
||||
user->sve = NULL;
|
||||
user->za = NULL;
|
||||
|
||||
if (!IS_ALIGNED((unsigned long)base, 16))
|
||||
goto invalid;
|
||||
@ -393,7 +511,7 @@ static int parse_user_sigframe(struct user_ctxs *user,
|
||||
break;
|
||||
|
||||
case SVE_MAGIC:
|
||||
if (!system_supports_sve())
|
||||
if (!system_supports_sve() && !system_supports_sme())
|
||||
goto invalid;
|
||||
|
||||
if (user->sve)
|
||||
@ -405,6 +523,19 @@ static int parse_user_sigframe(struct user_ctxs *user,
|
||||
user->sve = (struct sve_context __user *)head;
|
||||
break;
|
||||
|
||||
case ZA_MAGIC:
|
||||
if (!system_supports_sme())
|
||||
goto invalid;
|
||||
|
||||
if (user->za)
|
||||
goto invalid;
|
||||
|
||||
if (size < sizeof(*user->za))
|
||||
goto invalid;
|
||||
|
||||
user->za = (struct za_context __user *)head;
|
||||
break;
|
||||
|
||||
case EXTRA_MAGIC:
|
||||
if (have_extra_context)
|
||||
goto invalid;
|
||||
@ -528,6 +659,9 @@ static int restore_sigframe(struct pt_regs *regs,
|
||||
}
|
||||
}
|
||||
|
||||
if (err == 0 && system_supports_sme() && user.za)
|
||||
err = restore_za_context(&user);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
@ -594,11 +728,12 @@ static int setup_sigframe_layout(struct rt_sigframe_user_layout *user,
|
||||
if (system_supports_sve()) {
|
||||
unsigned int vq = 0;
|
||||
|
||||
if (add_all || test_thread_flag(TIF_SVE)) {
|
||||
int vl = sve_max_vl();
|
||||
if (add_all || test_thread_flag(TIF_SVE) ||
|
||||
thread_sm_enabled(¤t->thread)) {
|
||||
int vl = max(sve_max_vl(), sme_max_vl());
|
||||
|
||||
if (!add_all)
|
||||
vl = task_get_sve_vl(current);
|
||||
vl = thread_get_cur_vl(¤t->thread);
|
||||
|
||||
vq = sve_vq_from_vl(vl);
|
||||
}
|
||||
@ -609,6 +744,24 @@ static int setup_sigframe_layout(struct rt_sigframe_user_layout *user,
|
||||
return err;
|
||||
}
|
||||
|
||||
if (system_supports_sme()) {
|
||||
unsigned int vl;
|
||||
unsigned int vq = 0;
|
||||
|
||||
if (add_all)
|
||||
vl = sme_max_vl();
|
||||
else
|
||||
vl = task_get_sme_vl(current);
|
||||
|
||||
if (thread_za_enabled(¤t->thread))
|
||||
vq = sve_vq_from_vl(vl);
|
||||
|
||||
err = sigframe_alloc(user, &user->za_offset,
|
||||
ZA_SIG_CONTEXT_SIZE(vq));
|
||||
if (err)
|
||||
return err;
|
||||
}
|
||||
|
||||
return sigframe_alloc_end(user);
|
||||
}
|
||||
|
||||
@ -649,13 +802,21 @@ static int setup_sigframe(struct rt_sigframe_user_layout *user,
|
||||
__put_user_error(current->thread.fault_code, &esr_ctx->esr, err);
|
||||
}
|
||||
|
||||
/* Scalable Vector Extension state, if present */
|
||||
if (system_supports_sve() && err == 0 && user->sve_offset) {
|
||||
/* Scalable Vector Extension state (including streaming), if present */
|
||||
if ((system_supports_sve() || system_supports_sme()) &&
|
||||
err == 0 && user->sve_offset) {
|
||||
struct sve_context __user *sve_ctx =
|
||||
apply_user_offset(user, user->sve_offset);
|
||||
err |= preserve_sve_context(sve_ctx);
|
||||
}
|
||||
|
||||
/* ZA state if present */
|
||||
if (system_supports_sme() && err == 0 && user->za_offset) {
|
||||
struct za_context __user *za_ctx =
|
||||
apply_user_offset(user, user->za_offset);
|
||||
err |= preserve_za_context(za_ctx);
|
||||
}
|
||||
|
||||
if (err == 0 && user->extra_offset) {
|
||||
char __user *sfp = (char __user *)user->sigframe;
|
||||
char __user *userp =
|
||||
@ -759,6 +920,13 @@ static void setup_return(struct pt_regs *regs, struct k_sigaction *ka,
|
||||
/* TCO (Tag Check Override) always cleared for signal handlers */
|
||||
regs->pstate &= ~PSR_TCO_BIT;
|
||||
|
||||
/* Signal handlers are invoked with ZA and streaming mode disabled */
|
||||
if (system_supports_sme()) {
|
||||
current->thread.svcr &= ~(SVCR_ZA_MASK |
|
||||
SVCR_SM_MASK);
|
||||
sme_smstop();
|
||||
}
|
||||
|
||||
if (ka->sa.sa_flags & SA_RESTORER)
|
||||
sigtramp = ka->sa.sa_restorer;
|
||||
else
|
||||
|
@ -19,43 +19,60 @@
|
||||
#include <asm/stacktrace.h>
|
||||
|
||||
/*
|
||||
* AArch64 PCS assigns the frame pointer to x29.
|
||||
* A snapshot of a frame record or fp/lr register values, along with some
|
||||
* accounting information necessary for robust unwinding.
|
||||
*
|
||||
* A simple function prologue looks like this:
|
||||
* sub sp, sp, #0x10
|
||||
* stp x29, x30, [sp]
|
||||
* mov x29, sp
|
||||
* @fp: The fp value in the frame record (or the real fp)
|
||||
* @pc: The lr value in the frame record (or the real lr)
|
||||
*
|
||||
* A simple function epilogue looks like this:
|
||||
* mov sp, x29
|
||||
* ldp x29, x30, [sp]
|
||||
* add sp, sp, #0x10
|
||||
* @stacks_done: Stacks which have been entirely unwound, for which it is no
|
||||
* longer valid to unwind to.
|
||||
*
|
||||
* @prev_fp: The fp that pointed to this frame record, or a synthetic value
|
||||
* of 0. This is used to ensure that within a stack, each
|
||||
* subsequent frame record is at an increasing address.
|
||||
* @prev_type: The type of stack this frame record was on, or a synthetic
|
||||
* value of STACK_TYPE_UNKNOWN. This is used to detect a
|
||||
* transition from one stack to another.
|
||||
*
|
||||
* @kr_cur: When KRETPROBES is selected, holds the kretprobe instance
|
||||
* associated with the most recently encountered replacement lr
|
||||
* value.
|
||||
*/
|
||||
|
||||
|
||||
static notrace void start_backtrace(struct stackframe *frame, unsigned long fp,
|
||||
unsigned long pc)
|
||||
{
|
||||
frame->fp = fp;
|
||||
frame->pc = pc;
|
||||
struct unwind_state {
|
||||
unsigned long fp;
|
||||
unsigned long pc;
|
||||
DECLARE_BITMAP(stacks_done, __NR_STACK_TYPES);
|
||||
unsigned long prev_fp;
|
||||
enum stack_type prev_type;
|
||||
#ifdef CONFIG_KRETPROBES
|
||||
frame->kr_cur = NULL;
|
||||
struct llist_node *kr_cur;
|
||||
#endif
|
||||
};
|
||||
|
||||
static notrace void unwind_init(struct unwind_state *state, unsigned long fp,
|
||||
unsigned long pc)
|
||||
{
|
||||
state->fp = fp;
|
||||
state->pc = pc;
|
||||
#ifdef CONFIG_KRETPROBES
|
||||
state->kr_cur = NULL;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Prime the first unwind.
|
||||
*
|
||||
* In unwind_frame() we'll check that the FP points to a valid stack,
|
||||
* In unwind_next() we'll check that the FP points to a valid stack,
|
||||
* which can't be STACK_TYPE_UNKNOWN, and the first unwind will be
|
||||
* treated as a transition to whichever stack that happens to be. The
|
||||
* prev_fp value won't be used, but we set it to 0 such that it is
|
||||
* definitely not an accessible stack address.
|
||||
*/
|
||||
bitmap_zero(frame->stacks_done, __NR_STACK_TYPES);
|
||||
frame->prev_fp = 0;
|
||||
frame->prev_type = STACK_TYPE_UNKNOWN;
|
||||
bitmap_zero(state->stacks_done, __NR_STACK_TYPES);
|
||||
state->prev_fp = 0;
|
||||
state->prev_type = STACK_TYPE_UNKNOWN;
|
||||
}
|
||||
NOKPROBE_SYMBOL(start_backtrace);
|
||||
NOKPROBE_SYMBOL(unwind_init);
|
||||
|
||||
/*
|
||||
* Unwind from one frame record (A) to the next frame record (B).
|
||||
@ -64,15 +81,12 @@ NOKPROBE_SYMBOL(start_backtrace);
|
||||
* records (e.g. a cycle), determined based on the location and fp value of A
|
||||
* and the location (but not the fp value) of B.
|
||||
*/
|
||||
static int notrace unwind_frame(struct task_struct *tsk,
|
||||
struct stackframe *frame)
|
||||
static int notrace unwind_next(struct task_struct *tsk,
|
||||
struct unwind_state *state)
|
||||
{
|
||||
unsigned long fp = frame->fp;
|
||||
unsigned long fp = state->fp;
|
||||
struct stack_info info;
|
||||
|
||||
if (!tsk)
|
||||
tsk = current;
|
||||
|
||||
/* Final frame; nothing to unwind */
|
||||
if (fp == (unsigned long)task_pt_regs(tsk)->stackframe)
|
||||
return -ENOENT;
|
||||
@ -83,7 +97,7 @@ static int notrace unwind_frame(struct task_struct *tsk,
|
||||
if (!on_accessible_stack(tsk, fp, 16, &info))
|
||||
return -EINVAL;
|
||||
|
||||
if (test_bit(info.type, frame->stacks_done))
|
||||
if (test_bit(info.type, state->stacks_done))
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
@ -99,27 +113,27 @@ static int notrace unwind_frame(struct task_struct *tsk,
|
||||
* stack to another, it's never valid to unwind back to that first
|
||||
* stack.
|
||||
*/
|
||||
if (info.type == frame->prev_type) {
|
||||
if (fp <= frame->prev_fp)
|
||||
if (info.type == state->prev_type) {
|
||||
if (fp <= state->prev_fp)
|
||||
return -EINVAL;
|
||||
} else {
|
||||
set_bit(frame->prev_type, frame->stacks_done);
|
||||
set_bit(state->prev_type, state->stacks_done);
|
||||
}
|
||||
|
||||
/*
|
||||
* Record this frame record's values and location. The prev_fp and
|
||||
* prev_type are only meaningful to the next unwind_frame() invocation.
|
||||
* prev_type are only meaningful to the next unwind_next() invocation.
|
||||
*/
|
||||
frame->fp = READ_ONCE_NOCHECK(*(unsigned long *)(fp));
|
||||
frame->pc = READ_ONCE_NOCHECK(*(unsigned long *)(fp + 8));
|
||||
frame->prev_fp = fp;
|
||||
frame->prev_type = info.type;
|
||||
state->fp = READ_ONCE_NOCHECK(*(unsigned long *)(fp));
|
||||
state->pc = READ_ONCE_NOCHECK(*(unsigned long *)(fp + 8));
|
||||
state->prev_fp = fp;
|
||||
state->prev_type = info.type;
|
||||
|
||||
frame->pc = ptrauth_strip_insn_pac(frame->pc);
|
||||
state->pc = ptrauth_strip_insn_pac(state->pc);
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
if (tsk->ret_stack &&
|
||||
(frame->pc == (unsigned long)return_to_handler)) {
|
||||
(state->pc == (unsigned long)return_to_handler)) {
|
||||
unsigned long orig_pc;
|
||||
/*
|
||||
* This is a case where function graph tracer has
|
||||
@ -127,37 +141,37 @@ static int notrace unwind_frame(struct task_struct *tsk,
|
||||
* to hook a function return.
|
||||
* So replace it to an original value.
|
||||
*/
|
||||
orig_pc = ftrace_graph_ret_addr(tsk, NULL, frame->pc,
|
||||
(void *)frame->fp);
|
||||
if (WARN_ON_ONCE(frame->pc == orig_pc))
|
||||
orig_pc = ftrace_graph_ret_addr(tsk, NULL, state->pc,
|
||||
(void *)state->fp);
|
||||
if (WARN_ON_ONCE(state->pc == orig_pc))
|
||||
return -EINVAL;
|
||||
frame->pc = orig_pc;
|
||||
state->pc = orig_pc;
|
||||
}
|
||||
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
|
||||
#ifdef CONFIG_KRETPROBES
|
||||
if (is_kretprobe_trampoline(frame->pc))
|
||||
frame->pc = kretprobe_find_ret_addr(tsk, (void *)frame->fp, &frame->kr_cur);
|
||||
if (is_kretprobe_trampoline(state->pc))
|
||||
state->pc = kretprobe_find_ret_addr(tsk, (void *)state->fp, &state->kr_cur);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
NOKPROBE_SYMBOL(unwind_frame);
|
||||
NOKPROBE_SYMBOL(unwind_next);
|
||||
|
||||
static void notrace walk_stackframe(struct task_struct *tsk,
|
||||
struct stackframe *frame,
|
||||
bool (*fn)(void *, unsigned long), void *data)
|
||||
static void notrace unwind(struct task_struct *tsk,
|
||||
struct unwind_state *state,
|
||||
stack_trace_consume_fn consume_entry, void *cookie)
|
||||
{
|
||||
while (1) {
|
||||
int ret;
|
||||
|
||||
if (!fn(data, frame->pc))
|
||||
if (!consume_entry(cookie, state->pc))
|
||||
break;
|
||||
ret = unwind_frame(tsk, frame);
|
||||
ret = unwind_next(tsk, state);
|
||||
if (ret < 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
NOKPROBE_SYMBOL(walk_stackframe);
|
||||
NOKPROBE_SYMBOL(unwind);
|
||||
|
||||
static bool dump_backtrace_entry(void *arg, unsigned long where)
|
||||
{
|
||||
@ -196,17 +210,17 @@ noinline notrace void arch_stack_walk(stack_trace_consume_fn consume_entry,
|
||||
void *cookie, struct task_struct *task,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
struct stackframe frame;
|
||||
struct unwind_state state;
|
||||
|
||||
if (regs)
|
||||
start_backtrace(&frame, regs->regs[29], regs->pc);
|
||||
unwind_init(&state, regs->regs[29], regs->pc);
|
||||
else if (task == current)
|
||||
start_backtrace(&frame,
|
||||
unwind_init(&state,
|
||||
(unsigned long)__builtin_frame_address(1),
|
||||
(unsigned long)__builtin_return_address(0));
|
||||
else
|
||||
start_backtrace(&frame, thread_saved_fp(task),
|
||||
unwind_init(&state, thread_saved_fp(task),
|
||||
thread_saved_pc(task));
|
||||
|
||||
walk_stackframe(task, &frame, consume_entry, cookie);
|
||||
unwind(task, &state, consume_entry, cookie);
|
||||
}
|
||||
|
@ -113,6 +113,6 @@ long compat_arm_syscall(struct pt_regs *regs, int scno)
|
||||
addr = instruction_pointer(regs) - (compat_thumb_mode(regs) ? 2 : 4);
|
||||
|
||||
arm64_notify_die("Oops - bad compat syscall(2)", regs,
|
||||
SIGILL, ILL_ILLTRP, addr, scno);
|
||||
SIGILL, ILL_ILLTRP, addr, 0);
|
||||
return 0;
|
||||
}
|
||||
|
@ -158,11 +158,36 @@ static void el0_svc_common(struct pt_regs *regs, int scno, int sc_nr,
|
||||
syscall_trace_exit(regs);
|
||||
}
|
||||
|
||||
static inline void sve_user_discard(void)
|
||||
/*
|
||||
* As per the ABI exit SME streaming mode and clear the SVE state not
|
||||
* shared with FPSIMD on syscall entry.
|
||||
*/
|
||||
static inline void fp_user_discard(void)
|
||||
{
|
||||
/*
|
||||
* If SME is active then exit streaming mode. If ZA is active
|
||||
* then flush the SVE registers but leave userspace access to
|
||||
* both SVE and SME enabled, otherwise disable SME for the
|
||||
* task and fall through to disabling SVE too. This means
|
||||
* that after a syscall we never have any streaming mode
|
||||
* register state to track, if this changes the KVM code will
|
||||
* need updating.
|
||||
*/
|
||||
if (system_supports_sme() && test_thread_flag(TIF_SME)) {
|
||||
u64 svcr = read_sysreg_s(SYS_SVCR);
|
||||
|
||||
if (svcr & SVCR_SM_MASK)
|
||||
sme_smstop_sm();
|
||||
}
|
||||
|
||||
if (!system_supports_sve())
|
||||
return;
|
||||
|
||||
/*
|
||||
* If SME is not active then disable SVE, the registers will
|
||||
* be cleared when userspace next attempts to access them and
|
||||
* we do not need to track the SVE register state until then.
|
||||
*/
|
||||
clear_thread_flag(TIF_SVE);
|
||||
|
||||
/*
|
||||
@ -177,7 +202,7 @@ static inline void sve_user_discard(void)
|
||||
|
||||
void do_el0_svc(struct pt_regs *regs)
|
||||
{
|
||||
sve_user_discard();
|
||||
fp_user_discard();
|
||||
el0_svc_common(regs, regs->regs[8], __NR_syscalls, sys_call_table);
|
||||
}
|
||||
|
||||
|
@ -242,7 +242,7 @@ static void arm64_show_signal(int signo, const char *str)
|
||||
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
|
||||
DEFAULT_RATELIMIT_BURST);
|
||||
struct task_struct *tsk = current;
|
||||
unsigned int esr = tsk->thread.fault_code;
|
||||
unsigned long esr = tsk->thread.fault_code;
|
||||
struct pt_regs *regs = task_pt_regs(tsk);
|
||||
|
||||
/* Leave if the signal won't be shown */
|
||||
@ -253,7 +253,7 @@ static void arm64_show_signal(int signo, const char *str)
|
||||
|
||||
pr_info("%s[%d]: unhandled exception: ", tsk->comm, task_pid_nr(tsk));
|
||||
if (esr)
|
||||
pr_cont("%s, ESR 0x%08x, ", esr_get_class_string(esr), esr);
|
||||
pr_cont("%s, ESR 0x%016lx, ", esr_get_class_string(esr), esr);
|
||||
|
||||
pr_cont("%s", str);
|
||||
print_vma_addr(KERN_CONT " in ", regs->pc);
|
||||
@ -287,7 +287,7 @@ void arm64_force_sig_ptrace_errno_trap(int errno, unsigned long far,
|
||||
|
||||
void arm64_notify_die(const char *str, struct pt_regs *regs,
|
||||
int signo, int sicode, unsigned long far,
|
||||
int err)
|
||||
unsigned long err)
|
||||
{
|
||||
if (user_mode(regs)) {
|
||||
WARN_ON(regs != current_pt_regs());
|
||||
@ -439,7 +439,7 @@ static int call_undef_hook(struct pt_regs *regs)
|
||||
return fn ? fn(regs, instr) : 1;
|
||||
}
|
||||
|
||||
void force_signal_inject(int signal, int code, unsigned long address, unsigned int err)
|
||||
void force_signal_inject(int signal, int code, unsigned long address, unsigned long err)
|
||||
{
|
||||
const char *desc;
|
||||
struct pt_regs *regs = current_pt_regs();
|
||||
@ -506,7 +506,7 @@ void do_bti(struct pt_regs *regs)
|
||||
}
|
||||
NOKPROBE_SYMBOL(do_bti);
|
||||
|
||||
void do_ptrauth_fault(struct pt_regs *regs, unsigned int esr)
|
||||
void do_ptrauth_fault(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
/*
|
||||
* Unexpected FPAC exception or pointer authentication failure in
|
||||
@ -532,7 +532,7 @@ NOKPROBE_SYMBOL(do_ptrauth_fault);
|
||||
uaccess_ttbr0_disable(); \
|
||||
}
|
||||
|
||||
static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void user_cache_maint_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
unsigned long tagged_address, address;
|
||||
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
||||
@ -572,7 +572,7 @@ static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
|
||||
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
||||
}
|
||||
|
||||
static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void ctr_read_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
||||
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
|
||||
@ -591,7 +591,7 @@ static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
||||
}
|
||||
|
||||
static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
||||
|
||||
@ -599,7 +599,7 @@ static void cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
||||
}
|
||||
|
||||
static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int rt = ESR_ELx_SYS64_ISS_RT(esr);
|
||||
|
||||
@ -607,7 +607,7 @@ static void cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
||||
}
|
||||
|
||||
static void mrs_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void mrs_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
u32 sysreg, rt;
|
||||
|
||||
@ -618,15 +618,15 @@ static void mrs_handler(unsigned int esr, struct pt_regs *regs)
|
||||
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
|
||||
}
|
||||
|
||||
static void wfi_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void wfi_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
|
||||
}
|
||||
|
||||
struct sys64_hook {
|
||||
unsigned int esr_mask;
|
||||
unsigned int esr_val;
|
||||
void (*handler)(unsigned int esr, struct pt_regs *regs);
|
||||
unsigned long esr_mask;
|
||||
unsigned long esr_val;
|
||||
void (*handler)(unsigned long esr, struct pt_regs *regs);
|
||||
};
|
||||
|
||||
static const struct sys64_hook sys64_hooks[] = {
|
||||
@ -675,7 +675,7 @@ static const struct sys64_hook sys64_hooks[] = {
|
||||
};
|
||||
|
||||
#ifdef CONFIG_COMPAT
|
||||
static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
|
||||
static bool cp15_cond_valid(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int cond;
|
||||
|
||||
@ -695,7 +695,7 @@ static bool cp15_cond_valid(unsigned int esr, struct pt_regs *regs)
|
||||
return aarch32_opcode_cond_checks[cond](regs->pstate);
|
||||
}
|
||||
|
||||
static void compat_cntfrq_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void compat_cntfrq_read_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int reg = (esr & ESR_ELx_CP15_32_ISS_RT_MASK) >> ESR_ELx_CP15_32_ISS_RT_SHIFT;
|
||||
|
||||
@ -712,7 +712,7 @@ static const struct sys64_hook cp15_32_hooks[] = {
|
||||
{},
|
||||
};
|
||||
|
||||
static void compat_cntvct_read_handler(unsigned int esr, struct pt_regs *regs)
|
||||
static void compat_cntvct_read_handler(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
int rt = (esr & ESR_ELx_CP15_64_ISS_RT_MASK) >> ESR_ELx_CP15_64_ISS_RT_SHIFT;
|
||||
int rt2 = (esr & ESR_ELx_CP15_64_ISS_RT2_MASK) >> ESR_ELx_CP15_64_ISS_RT2_SHIFT;
|
||||
@ -737,7 +737,7 @@ static const struct sys64_hook cp15_64_hooks[] = {
|
||||
{},
|
||||
};
|
||||
|
||||
void do_cp15instr(unsigned int esr, struct pt_regs *regs)
|
||||
void do_cp15instr(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
const struct sys64_hook *hook, *hook_base;
|
||||
|
||||
@ -778,7 +778,7 @@ void do_cp15instr(unsigned int esr, struct pt_regs *regs)
|
||||
NOKPROBE_SYMBOL(do_cp15instr);
|
||||
#endif
|
||||
|
||||
void do_sysinstr(unsigned int esr, struct pt_regs *regs)
|
||||
void do_sysinstr(unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
const struct sys64_hook *hook;
|
||||
|
||||
@ -821,6 +821,7 @@ static const char *esr_class_str[] = {
|
||||
[ESR_ELx_EC_SVE] = "SVE",
|
||||
[ESR_ELx_EC_ERET] = "ERET/ERETAA/ERETAB",
|
||||
[ESR_ELx_EC_FPAC] = "FPAC",
|
||||
[ESR_ELx_EC_SME] = "SME",
|
||||
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
|
||||
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
|
||||
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
|
||||
@ -842,7 +843,7 @@ static const char *esr_class_str[] = {
|
||||
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
|
||||
};
|
||||
|
||||
const char *esr_get_class_string(u32 esr)
|
||||
const char *esr_get_class_string(unsigned long esr)
|
||||
{
|
||||
return esr_class_str[ESR_ELx_EC(esr)];
|
||||
}
|
||||
@ -851,7 +852,7 @@ const char *esr_get_class_string(u32 esr)
|
||||
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
|
||||
* exceptions taken from EL0.
|
||||
*/
|
||||
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
|
||||
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned long esr)
|
||||
{
|
||||
unsigned long pc = instruction_pointer(regs);
|
||||
|
||||
@ -867,7 +868,7 @@ void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
|
||||
DEFINE_PER_CPU(unsigned long [OVERFLOW_STACK_SIZE/sizeof(long)], overflow_stack)
|
||||
__aligned(16);
|
||||
|
||||
void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far)
|
||||
void panic_bad_stack(struct pt_regs *regs, unsigned long esr, unsigned long far)
|
||||
{
|
||||
unsigned long tsk_stk = (unsigned long)current->stack;
|
||||
unsigned long irq_stk = (unsigned long)this_cpu_read(irq_stack_ptr);
|
||||
@ -876,7 +877,7 @@ void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far)
|
||||
console_verbose();
|
||||
pr_emerg("Insufficient stack space to handle exception!");
|
||||
|
||||
pr_emerg("ESR: 0x%08x -- %s\n", esr, esr_get_class_string(esr));
|
||||
pr_emerg("ESR: 0x%016lx -- %s\n", esr, esr_get_class_string(esr));
|
||||
pr_emerg("FAR: 0x%016lx\n", far);
|
||||
|
||||
pr_emerg("Task stack: [0x%016lx..0x%016lx]\n",
|
||||
@ -897,11 +898,11 @@ void panic_bad_stack(struct pt_regs *regs, unsigned int esr, unsigned long far)
|
||||
}
|
||||
#endif
|
||||
|
||||
void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
|
||||
void __noreturn arm64_serror_panic(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
console_verbose();
|
||||
|
||||
pr_crit("SError Interrupt on CPU%d, code 0x%08x -- %s\n",
|
||||
pr_crit("SError Interrupt on CPU%d, code 0x%016lx -- %s\n",
|
||||
smp_processor_id(), esr, esr_get_class_string(esr));
|
||||
if (regs)
|
||||
__show_regs(regs);
|
||||
@ -912,9 +913,9 @@ void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr)
|
||||
unreachable();
|
||||
}
|
||||
|
||||
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
|
||||
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
u32 aet = arm64_ras_serror_get_severity(esr);
|
||||
unsigned long aet = arm64_ras_serror_get_severity(esr);
|
||||
|
||||
switch (aet) {
|
||||
case ESR_ELx_AET_CE: /* corrected error */
|
||||
@ -944,7 +945,7 @@ bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr)
|
||||
}
|
||||
}
|
||||
|
||||
void do_serror(struct pt_regs *regs, unsigned int esr)
|
||||
void do_serror(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
/* non-RAS errors are not containable */
|
||||
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(regs, esr))
|
||||
@ -965,7 +966,7 @@ int is_valid_bugaddr(unsigned long addr)
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int bug_handler(struct pt_regs *regs, unsigned int esr)
|
||||
static int bug_handler(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
switch (report_bug(regs->pc, regs)) {
|
||||
case BUG_TRAP_TYPE_BUG:
|
||||
@ -990,7 +991,7 @@ static struct break_hook bug_break_hook = {
|
||||
.imm = BUG_BRK_IMM,
|
||||
};
|
||||
|
||||
static int reserved_fault_handler(struct pt_regs *regs, unsigned int esr)
|
||||
static int reserved_fault_handler(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
pr_err("%s generated an invalid instruction at %pS!\n",
|
||||
"Kernel text patching",
|
||||
@ -1012,7 +1013,7 @@ static struct break_hook fault_break_hook = {
|
||||
#define KASAN_ESR_SIZE_MASK 0x0f
|
||||
#define KASAN_ESR_SIZE(esr) (1 << ((esr) & KASAN_ESR_SIZE_MASK))
|
||||
|
||||
static int kasan_handler(struct pt_regs *regs, unsigned int esr)
|
||||
static int kasan_handler(struct pt_regs *regs, unsigned long esr)
|
||||
{
|
||||
bool recover = esr & KASAN_ESR_RECOVER;
|
||||
bool write = esr & KASAN_ESR_WRITE;
|
||||
@ -1055,11 +1056,11 @@ static struct break_hook kasan_break_hook = {
|
||||
* Initial handler for AArch64 BRK exceptions
|
||||
* This handler only used until debug_traps_init().
|
||||
*/
|
||||
int __init early_brk64(unsigned long addr, unsigned int esr,
|
||||
int __init early_brk64(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
#ifdef CONFIG_KASAN_SW_TAGS
|
||||
unsigned int comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
|
||||
unsigned long comment = esr & ESR_ELx_BRK64_ISS_COMMENT_MASK;
|
||||
|
||||
if ((comment & ~KASAN_BRK_MASK) == KASAN_BRK_IMM)
|
||||
return kasan_handler(regs, esr) != DBG_HOOK_HANDLED;
|
||||
|
@ -93,7 +93,6 @@ jiffies = jiffies_64;
|
||||
|
||||
#ifdef CONFIG_HIBERNATION
|
||||
#define HIBERNATE_TEXT \
|
||||
. = ALIGN(SZ_4K); \
|
||||
__hibernate_exit_text_start = .; \
|
||||
*(.hibernate_exit.text) \
|
||||
__hibernate_exit_text_end = .;
|
||||
@ -103,7 +102,6 @@ jiffies = jiffies_64;
|
||||
|
||||
#ifdef CONFIG_KEXEC_CORE
|
||||
#define KEXEC_TEXT \
|
||||
. = ALIGN(SZ_4K); \
|
||||
__relocate_new_kernel_start = .; \
|
||||
*(.kexec_relocate.text) \
|
||||
__relocate_new_kernel_end = .;
|
||||
@ -170,9 +168,6 @@ SECTIONS
|
||||
KPROBES_TEXT
|
||||
HYPERVISOR_TEXT
|
||||
IDMAP_TEXT
|
||||
HIBERNATE_TEXT
|
||||
KEXEC_TEXT
|
||||
TRAMP_TEXT
|
||||
*(.gnu.warning)
|
||||
. = ALIGN(16);
|
||||
*(.got) /* Global offset table */
|
||||
@ -194,6 +189,14 @@ SECTIONS
|
||||
|
||||
HYPERVISOR_DATA_SECTIONS
|
||||
|
||||
/* code sections that are never executed via the kernel mapping */
|
||||
.rodata.text : {
|
||||
TRAMP_TEXT
|
||||
HIBERNATE_TEXT
|
||||
KEXEC_TEXT
|
||||
. = ALIGN(PAGE_SIZE);
|
||||
}
|
||||
|
||||
idmap_pg_dir = .;
|
||||
. += IDMAP_DIR_SIZE;
|
||||
idmap_pg_end = .;
|
||||
@ -337,8 +340,8 @@ ASSERT(__hyp_idmap_text_end - __hyp_idmap_text_start <= PAGE_SIZE,
|
||||
ASSERT(__idmap_text_end - (__idmap_text_start & ~(SZ_4K - 1)) <= SZ_4K,
|
||||
"ID map text too big or misaligned")
|
||||
#ifdef CONFIG_HIBERNATION
|
||||
ASSERT(__hibernate_exit_text_end - (__hibernate_exit_text_start & ~(SZ_4K - 1))
|
||||
<= SZ_4K, "Hibernate exit text too big or misaligned")
|
||||
ASSERT(__hibernate_exit_text_end - __hibernate_exit_text_start <= SZ_4K,
|
||||
"Hibernate exit text is bigger than 4 KiB")
|
||||
#endif
|
||||
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
|
||||
ASSERT((__entry_tramp_text_end - __entry_tramp_text_start) <= 3*PAGE_SIZE,
|
||||
@ -362,7 +365,7 @@ ASSERT(swapper_pg_dir - tramp_pg_dir == TRAMP_SWAPPER_OFFSET,
|
||||
|
||||
#ifdef CONFIG_KEXEC_CORE
|
||||
/* kexec relocation code should fit into one KEXEC_CONTROL_PAGE_SIZE */
|
||||
ASSERT(__relocate_new_kernel_end - (__relocate_new_kernel_start & ~(SZ_4K - 1))
|
||||
<= SZ_4K, "kexec relocation code is too big or misaligned")
|
||||
ASSERT(__relocate_new_kernel_end - __relocate_new_kernel_start <= SZ_4K,
|
||||
"kexec relocation code is bigger than 4 KiB")
|
||||
ASSERT(KEXEC_CONTROL_PAGE_SIZE >= SZ_4K, "KEXEC_CONTROL_PAGE_SIZE is broken")
|
||||
#endif
|
||||
|
@ -783,6 +783,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
|
||||
|
||||
ret = 1;
|
||||
run->exit_reason = KVM_EXIT_UNKNOWN;
|
||||
run->flags = 0;
|
||||
while (ret > 0) {
|
||||
/*
|
||||
* Check conditions before entering the guest
|
||||
|
@ -82,6 +82,26 @@ void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
|
||||
|
||||
if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN)
|
||||
vcpu->arch.flags |= KVM_ARM64_HOST_SVE_ENABLED;
|
||||
|
||||
/*
|
||||
* We don't currently support SME guests but if we leave
|
||||
* things in streaming mode then when the guest starts running
|
||||
* FPSIMD or SVE code it may generate SME traps so as a
|
||||
* special case if we are in streaming mode we force the host
|
||||
* state to be saved now and exit streaming mode so that we
|
||||
* don't have to handle any SME traps for valid guest
|
||||
* operations. Do this for ZA as well for now for simplicity.
|
||||
*/
|
||||
if (system_supports_sme()) {
|
||||
if (read_sysreg(cpacr_el1) & CPACR_EL1_SMEN_EL0EN)
|
||||
vcpu->arch.flags |= KVM_ARM64_HOST_SME_ENABLED;
|
||||
|
||||
if (read_sysreg_s(SYS_SVCR) &
|
||||
(SVCR_SM_MASK | SVCR_ZA_MASK)) {
|
||||
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
|
||||
fpsimd_save_and_flush_cpu_state();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
@ -109,9 +129,14 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
|
||||
WARN_ON_ONCE(!irqs_disabled());
|
||||
|
||||
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
|
||||
/*
|
||||
* Currently we do not support SME guests so SVCR is
|
||||
* always 0 and we just need a variable to point to.
|
||||
*/
|
||||
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
|
||||
vcpu->arch.sve_state,
|
||||
vcpu->arch.sve_max_vl);
|
||||
vcpu->arch.sve_max_vl,
|
||||
NULL, 0, &vcpu->arch.svcr);
|
||||
|
||||
clear_thread_flag(TIF_FOREIGN_FPSTATE);
|
||||
update_thread_flag(TIF_SVE, vcpu_has_sve(vcpu));
|
||||
@ -130,6 +155,22 @@ void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/*
|
||||
* If we have VHE then the Hyp code will reset CPACR_EL1 to
|
||||
* CPACR_EL1_DEFAULT and we need to reenable SME.
|
||||
*/
|
||||
if (has_vhe() && system_supports_sme()) {
|
||||
/* Also restore EL0 state seen on entry */
|
||||
if (vcpu->arch.flags & KVM_ARM64_HOST_SME_ENABLED)
|
||||
sysreg_clear_set(CPACR_EL1, 0,
|
||||
CPACR_EL1_SMEN_EL0EN |
|
||||
CPACR_EL1_SMEN_EL1EN);
|
||||
else
|
||||
sysreg_clear_set(CPACR_EL1,
|
||||
CPACR_EL1_SMEN_EL0EN,
|
||||
CPACR_EL1_SMEN_EL1EN);
|
||||
}
|
||||
|
||||
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
|
||||
if (vcpu_has_sve(vcpu)) {
|
||||
__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
|
||||
|
||||
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u32 esr)
|
||||
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
|
||||
{
|
||||
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
|
||||
kvm_inject_vabt(vcpu);
|
||||
@ -117,10 +117,12 @@ static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
|
||||
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
struct kvm_run *run = vcpu->run;
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
|
||||
run->exit_reason = KVM_EXIT_DEBUG;
|
||||
run->debug.arch.hsr = esr;
|
||||
run->debug.arch.hsr = lower_32_bits(esr);
|
||||
run->debug.arch.hsr_high = upper_32_bits(esr);
|
||||
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
|
||||
|
||||
if (ESR_ELx_EC(esr) == ESR_ELx_EC_WATCHPT_LOW)
|
||||
run->debug.arch.far = vcpu->arch.fault.far_el2;
|
||||
@ -130,9 +132,9 @@ static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
|
||||
|
||||
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
|
||||
kvm_pr_unimpl("Unknown exception class: esr: %#08x -- %s\n",
|
||||
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
|
||||
esr, esr_get_class_string(esr));
|
||||
|
||||
kvm_inject_undefined(vcpu);
|
||||
@ -187,7 +189,7 @@ static exit_handle_fn arm_exit_handlers[] = {
|
||||
|
||||
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u8 esr_ec = ESR_ELx_EC(esr);
|
||||
|
||||
return arm_exit_handlers[esr_ec];
|
||||
@ -334,6 +336,6 @@ void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
|
||||
*/
|
||||
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
|
||||
|
||||
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
|
||||
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
|
||||
spsr, elr_virt, esr, far, hpfar, par, vcpu);
|
||||
}
|
||||
|
@ -266,7 +266,7 @@ static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline bool esr_is_ptrauth_trap(u32 esr)
|
||||
static inline bool esr_is_ptrauth_trap(u64 esr)
|
||||
{
|
||||
switch (esr_sys64_to_sysreg(esr)) {
|
||||
case SYS_APIAKEYLO_EL1:
|
||||
|
@ -159,20 +159,20 @@
|
||||
* No restrictions on instructions implemented in AArch64.
|
||||
*/
|
||||
#define PVM_ID_AA64ISAR0_ALLOW (\
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_AES) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_SHA1) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_SHA2) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_CRC32) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_RDM) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_SHA3) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_SM3) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_SM4) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_DP) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_FHM) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_TS) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_TLB) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_RNDR) \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_AES) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA1) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA2) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_CRC32) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RDM) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SHA3) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM3) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_SM4) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_DP) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_FHM) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TS) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_TLB) | \
|
||||
ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_RNDR) \
|
||||
)
|
||||
|
||||
#define PVM_ID_AA64ISAR1_ALLOW (\
|
||||
|
@ -47,10 +47,24 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
|
||||
val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
|
||||
__activate_traps_fpsimd32(vcpu);
|
||||
}
|
||||
if (cpus_have_final_cap(ARM64_SME))
|
||||
val |= CPTR_EL2_TSM;
|
||||
|
||||
write_sysreg(val, cptr_el2);
|
||||
write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
|
||||
|
||||
if (cpus_have_final_cap(ARM64_SME)) {
|
||||
val = read_sysreg_s(SYS_HFGRTR_EL2);
|
||||
val &= ~(HFGxTR_EL2_nTPIDR2_EL0_MASK |
|
||||
HFGxTR_EL2_nSMPRI_EL1_MASK);
|
||||
write_sysreg_s(val, SYS_HFGRTR_EL2);
|
||||
|
||||
val = read_sysreg_s(SYS_HFGWTR_EL2);
|
||||
val &= ~(HFGxTR_EL2_nTPIDR2_EL0_MASK |
|
||||
HFGxTR_EL2_nSMPRI_EL1_MASK);
|
||||
write_sysreg_s(val, SYS_HFGWTR_EL2);
|
||||
}
|
||||
|
||||
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
|
||||
struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
|
||||
|
||||
@ -94,9 +108,25 @@ static void __deactivate_traps(struct kvm_vcpu *vcpu)
|
||||
|
||||
write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
|
||||
|
||||
if (cpus_have_final_cap(ARM64_SME)) {
|
||||
u64 val;
|
||||
|
||||
val = read_sysreg_s(SYS_HFGRTR_EL2);
|
||||
val |= HFGxTR_EL2_nTPIDR2_EL0_MASK |
|
||||
HFGxTR_EL2_nSMPRI_EL1_MASK;
|
||||
write_sysreg_s(val, SYS_HFGRTR_EL2);
|
||||
|
||||
val = read_sysreg_s(SYS_HFGWTR_EL2);
|
||||
val |= HFGxTR_EL2_nTPIDR2_EL0_MASK |
|
||||
HFGxTR_EL2_nSMPRI_EL1_MASK;
|
||||
write_sysreg_s(val, SYS_HFGWTR_EL2);
|
||||
}
|
||||
|
||||
cptr = CPTR_EL2_DEFAULT;
|
||||
if (vcpu_has_sve(vcpu) && (vcpu->arch.flags & KVM_ARM64_FP_ENABLED))
|
||||
cptr |= CPTR_EL2_TZ;
|
||||
if (cpus_have_final_cap(ARM64_SME))
|
||||
cptr &= ~CPTR_EL2_TSM;
|
||||
|
||||
write_sysreg(cptr, cptr_el2);
|
||||
write_sysreg(__kvm_hyp_host_vector, vbar_el2);
|
||||
|
@ -33,7 +33,7 @@ u64 id_aa64mmfr2_el1_sys_val;
|
||||
*/
|
||||
static void inject_undef64(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
|
||||
u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
|
||||
|
||||
*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
|
||||
*vcpu_cpsr(vcpu) = read_sysreg_el2(SYS_SPSR);
|
||||
|
@ -473,7 +473,7 @@ static int __vgic_v3_bpr_min(void)
|
||||
|
||||
static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
|
||||
|
||||
return crm != 8;
|
||||
@ -1016,7 +1016,7 @@ static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
|
||||
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
int rt;
|
||||
u32 esr;
|
||||
u64 esr;
|
||||
u32 vmcr;
|
||||
void (*fn)(struct kvm_vcpu *, u32, int);
|
||||
bool is_read;
|
||||
|
@ -41,7 +41,8 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
|
||||
|
||||
val = read_sysreg(cpacr_el1);
|
||||
val |= CPACR_EL1_TTA;
|
||||
val &= ~(CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
|
||||
val &= ~(CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN |
|
||||
CPACR_EL1_SMEN_EL0EN | CPACR_EL1_SMEN_EL1EN);
|
||||
|
||||
/*
|
||||
* With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
|
||||
@ -62,6 +63,10 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
|
||||
__activate_traps_fpsimd32(vcpu);
|
||||
}
|
||||
|
||||
if (cpus_have_final_cap(ARM64_SME))
|
||||
write_sysreg(read_sysreg(sctlr_el2) & ~SCTLR_ELx_ENTP2,
|
||||
sctlr_el2);
|
||||
|
||||
write_sysreg(val, cpacr_el1);
|
||||
|
||||
write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
|
||||
@ -83,6 +88,10 @@ static void __deactivate_traps(struct kvm_vcpu *vcpu)
|
||||
*/
|
||||
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
|
||||
|
||||
if (cpus_have_final_cap(ARM64_SME))
|
||||
write_sysreg(read_sysreg(sctlr_el2) | SCTLR_ELx_ENTP2,
|
||||
sctlr_el2);
|
||||
|
||||
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
|
||||
|
||||
if (!arm64_kernel_unmapped_at_el0())
|
||||
|
@ -18,7 +18,7 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
|
||||
{
|
||||
unsigned long cpsr = *vcpu_cpsr(vcpu);
|
||||
bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
|
||||
u32 esr = 0;
|
||||
u64 esr = 0;
|
||||
|
||||
vcpu->arch.flags |= (KVM_ARM64_EXCEPT_AA64_EL1 |
|
||||
KVM_ARM64_EXCEPT_AA64_ELx_SYNC |
|
||||
@ -50,7 +50,7 @@ static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr
|
||||
|
||||
static void inject_undef64(struct kvm_vcpu *vcpu)
|
||||
{
|
||||
u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
|
||||
u64 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
|
||||
|
||||
vcpu->arch.flags |= (KVM_ARM64_EXCEPT_AA64_EL1 |
|
||||
KVM_ARM64_EXCEPT_AA64_ELx_SYNC |
|
||||
|
@ -1131,6 +1131,8 @@ static u64 read_id_reg(const struct kvm_vcpu *vcpu,
|
||||
case SYS_ID_AA64PFR1_EL1:
|
||||
if (!kvm_has_mte(vcpu->kvm))
|
||||
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
|
||||
|
||||
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
|
||||
break;
|
||||
case SYS_ID_AA64ISAR1_EL1:
|
||||
if (!vcpu_has_ptrauth(vcpu))
|
||||
@ -1552,7 +1554,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
|
||||
ID_UNALLOCATED(4,2),
|
||||
ID_UNALLOCATED(4,3),
|
||||
ID_SANITISED(ID_AA64ZFR0_EL1),
|
||||
ID_UNALLOCATED(4,5),
|
||||
ID_HIDDEN(ID_AA64SMFR0_EL1),
|
||||
ID_UNALLOCATED(4,6),
|
||||
ID_UNALLOCATED(4,7),
|
||||
|
||||
@ -1595,6 +1597,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
|
||||
|
||||
{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
|
||||
{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
|
||||
{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
|
||||
{ SYS_DESC(SYS_SMCR_EL1), undef_access },
|
||||
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
|
||||
{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
|
||||
{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
|
||||
@ -1677,8 +1681,10 @@ static const struct sys_reg_desc sys_reg_descs[] = {
|
||||
|
||||
{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
|
||||
{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
|
||||
{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
|
||||
{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
|
||||
{ SYS_DESC(SYS_CTR_EL0), access_ctr },
|
||||
{ SYS_DESC(SYS_SVCR), undef_access },
|
||||
|
||||
{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
|
||||
.reset = reset_pmcr, .reg = PMCR_EL0 },
|
||||
@ -1718,6 +1724,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
|
||||
|
||||
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
|
||||
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
|
||||
{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
|
||||
|
||||
{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
|
||||
|
||||
@ -2303,7 +2310,7 @@ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
|
||||
size_t nr_global)
|
||||
{
|
||||
struct sys_reg_params params;
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
||||
int Rt2 = (esr >> 10) & 0x1f;
|
||||
|
||||
@ -2353,7 +2360,7 @@ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
|
||||
size_t nr_global)
|
||||
{
|
||||
struct sys_reg_params params;
|
||||
u32 esr = kvm_vcpu_get_esr(vcpu);
|
||||
u64 esr = kvm_vcpu_get_esr(vcpu);
|
||||
int Rt = kvm_vcpu_sys_get_rt(vcpu);
|
||||
|
||||
params.CRm = (esr >> 1) & 0xf;
|
||||
|
@ -93,7 +93,7 @@ SYM_FUNC_START(mte_copy_tags_from_user)
|
||||
mov x3, x1
|
||||
cbz x2, 2f
|
||||
1:
|
||||
user_ldst 2f, ldtrb, w4, x1, 0
|
||||
USER(2f, ldtrb w4, [x1])
|
||||
lsl x4, x4, #MTE_TAG_SHIFT
|
||||
stg x4, [x0], #MTE_GRANULE_SIZE
|
||||
add x1, x1, #1
|
||||
@ -120,7 +120,7 @@ SYM_FUNC_START(mte_copy_tags_to_user)
|
||||
1:
|
||||
ldg x4, [x1]
|
||||
ubfx x4, x4, #MTE_TAG_SHIFT, #MTE_TAG_SIZE
|
||||
user_ldst 2f, sttrb, w4, x0, 0
|
||||
USER(2f, sttrb w4, [x0])
|
||||
add x0, x0, #1
|
||||
add x1, x1, #MTE_GRANULE_SIZE
|
||||
subs x2, x2, #1
|
||||
|
@ -16,8 +16,8 @@
|
||||
|
||||
void copy_highpage(struct page *to, struct page *from)
|
||||
{
|
||||
struct page *kto = page_address(to);
|
||||
struct page *kfrom = page_address(from);
|
||||
void *kto = page_address(to);
|
||||
void *kfrom = page_address(from);
|
||||
|
||||
copy_page(kto, kfrom);
|
||||
|
||||
|
@ -43,7 +43,7 @@
|
||||
#include <asm/traps.h>
|
||||
|
||||
struct fault_info {
|
||||
int (*fn)(unsigned long far, unsigned int esr,
|
||||
int (*fn)(unsigned long far, unsigned long esr,
|
||||
struct pt_regs *regs);
|
||||
int sig;
|
||||
int code;
|
||||
@ -53,17 +53,17 @@ struct fault_info {
|
||||
static const struct fault_info fault_info[];
|
||||
static struct fault_info debug_fault_info[];
|
||||
|
||||
static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
|
||||
static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
|
||||
{
|
||||
return fault_info + (esr & ESR_ELx_FSC);
|
||||
}
|
||||
|
||||
static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
|
||||
static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
|
||||
{
|
||||
return debug_fault_info + DBG_ESR_EVT(esr);
|
||||
}
|
||||
|
||||
static void data_abort_decode(unsigned int esr)
|
||||
static void data_abort_decode(unsigned long esr)
|
||||
{
|
||||
pr_alert("Data abort info:\n");
|
||||
|
||||
@ -85,11 +85,11 @@ static void data_abort_decode(unsigned int esr)
|
||||
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
|
||||
}
|
||||
|
||||
static void mem_abort_decode(unsigned int esr)
|
||||
static void mem_abort_decode(unsigned long esr)
|
||||
{
|
||||
pr_alert("Mem abort info:\n");
|
||||
|
||||
pr_alert(" ESR = 0x%08x\n", esr);
|
||||
pr_alert(" ESR = 0x%016lx\n", esr);
|
||||
pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
|
||||
ESR_ELx_EC(esr), esr_get_class_string(esr),
|
||||
(esr & ESR_ELx_IL) ? 32 : 16);
|
||||
@ -99,7 +99,7 @@ static void mem_abort_decode(unsigned int esr)
|
||||
pr_alert(" EA = %lu, S1PTW = %lu\n",
|
||||
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
|
||||
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
|
||||
pr_alert(" FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
|
||||
pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
|
||||
esr_to_fault_info(esr)->name);
|
||||
|
||||
if (esr_is_data_abort(esr))
|
||||
@ -229,20 +229,20 @@ int ptep_set_access_flags(struct vm_area_struct *vma,
|
||||
return 1;
|
||||
}
|
||||
|
||||
static bool is_el1_instruction_abort(unsigned int esr)
|
||||
static bool is_el1_instruction_abort(unsigned long esr)
|
||||
{
|
||||
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
|
||||
}
|
||||
|
||||
static bool is_el1_data_abort(unsigned int esr)
|
||||
static bool is_el1_data_abort(unsigned long esr)
|
||||
{
|
||||
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
|
||||
}
|
||||
|
||||
static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
|
||||
static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
|
||||
unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
|
||||
|
||||
if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
|
||||
return false;
|
||||
@ -258,7 +258,7 @@ static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
|
||||
}
|
||||
|
||||
static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
|
||||
unsigned int esr,
|
||||
unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
unsigned long flags;
|
||||
@ -290,7 +290,7 @@ static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
|
||||
}
|
||||
|
||||
static void die_kernel_fault(const char *msg, unsigned long addr,
|
||||
unsigned int esr, struct pt_regs *regs)
|
||||
unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
bust_spinlocks(1);
|
||||
|
||||
@ -308,7 +308,7 @@ static void die_kernel_fault(const char *msg, unsigned long addr,
|
||||
}
|
||||
|
||||
#ifdef CONFIG_KASAN_HW_TAGS
|
||||
static void report_tag_fault(unsigned long addr, unsigned int esr,
|
||||
static void report_tag_fault(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
/*
|
||||
@ -320,11 +320,11 @@ static void report_tag_fault(unsigned long addr, unsigned int esr,
|
||||
}
|
||||
#else
|
||||
/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
|
||||
static inline void report_tag_fault(unsigned long addr, unsigned int esr,
|
||||
static inline void report_tag_fault(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs) { }
|
||||
#endif
|
||||
|
||||
static void do_tag_recovery(unsigned long addr, unsigned int esr,
|
||||
static void do_tag_recovery(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
|
||||
@ -335,13 +335,14 @@ static void do_tag_recovery(unsigned long addr, unsigned int esr,
|
||||
* It will be done lazily on the other CPUs when they will hit a
|
||||
* tag fault.
|
||||
*/
|
||||
sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
|
||||
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
|
||||
SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
|
||||
isb();
|
||||
}
|
||||
|
||||
static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
|
||||
static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
|
||||
{
|
||||
unsigned int fsc = esr & ESR_ELx_FSC;
|
||||
unsigned long fsc = esr & ESR_ELx_FSC;
|
||||
|
||||
if (!is_el1_data_abort(esr))
|
||||
return false;
|
||||
@ -352,7 +353,7 @@ static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
|
||||
return false;
|
||||
}
|
||||
|
||||
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
|
||||
static void __do_kernel_fault(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
const char *msg;
|
||||
@ -393,7 +394,7 @@ static void __do_kernel_fault(unsigned long addr, unsigned int esr,
|
||||
die_kernel_fault(msg, addr, esr, regs);
|
||||
}
|
||||
|
||||
static void set_thread_esr(unsigned long address, unsigned int esr)
|
||||
static void set_thread_esr(unsigned long address, unsigned long esr)
|
||||
{
|
||||
current->thread.fault_address = address;
|
||||
|
||||
@ -441,7 +442,7 @@ static void set_thread_esr(unsigned long address, unsigned int esr)
|
||||
* exception level). Fail safe by not providing an ESR
|
||||
* context record at all.
|
||||
*/
|
||||
WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
|
||||
WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
|
||||
esr = 0;
|
||||
break;
|
||||
}
|
||||
@ -450,7 +451,7 @@ static void set_thread_esr(unsigned long address, unsigned int esr)
|
||||
current->thread.fault_code = esr;
|
||||
}
|
||||
|
||||
static void do_bad_area(unsigned long far, unsigned int esr,
|
||||
static void do_bad_area(unsigned long far, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
unsigned long addr = untagged_addr(far);
|
||||
@ -501,7 +502,7 @@ static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
||||
return handle_mm_fault(vma, addr, mm_flags, regs);
|
||||
}
|
||||
|
||||
static bool is_el0_instruction_abort(unsigned int esr)
|
||||
static bool is_el0_instruction_abort(unsigned long esr)
|
||||
{
|
||||
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
|
||||
}
|
||||
@ -510,12 +511,12 @@ static bool is_el0_instruction_abort(unsigned int esr)
|
||||
* Note: not valid for EL1 DC IVAC, but we never use that such that it
|
||||
* should fault. EL0 cannot issue DC IVAC (undef).
|
||||
*/
|
||||
static bool is_write_abort(unsigned int esr)
|
||||
static bool is_write_abort(unsigned long esr)
|
||||
{
|
||||
return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
|
||||
}
|
||||
|
||||
static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
|
||||
static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
const struct fault_info *inf;
|
||||
@ -671,7 +672,7 @@ static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
|
||||
}
|
||||
|
||||
static int __kprobes do_translation_fault(unsigned long far,
|
||||
unsigned int esr,
|
||||
unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
unsigned long addr = untagged_addr(far);
|
||||
@ -683,19 +684,19 @@ static int __kprobes do_translation_fault(unsigned long far,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_alignment_fault(unsigned long far, unsigned int esr,
|
||||
static int do_alignment_fault(unsigned long far, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
do_bad_area(far, esr, regs);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
|
||||
static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
return 1; /* "fault" */
|
||||
}
|
||||
|
||||
static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
|
||||
static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
const struct fault_info *inf;
|
||||
unsigned long siaddr;
|
||||
@ -725,7 +726,7 @@ static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int do_tag_check_fault(unsigned long far, unsigned int esr,
|
||||
static int do_tag_check_fault(unsigned long far, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
/*
|
||||
@ -805,7 +806,7 @@ static const struct fault_info fault_info[] = {
|
||||
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
|
||||
};
|
||||
|
||||
void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
|
||||
void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
const struct fault_info *inf = esr_to_fault_info(esr);
|
||||
unsigned long addr = untagged_addr(far);
|
||||
@ -825,14 +826,14 @@ void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
|
||||
}
|
||||
NOKPROBE_SYMBOL(do_mem_abort);
|
||||
|
||||
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
||||
void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
|
||||
{
|
||||
arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
|
||||
addr, esr);
|
||||
}
|
||||
NOKPROBE_SYMBOL(do_sp_pc_abort);
|
||||
|
||||
int __init early_brk64(unsigned long addr, unsigned int esr,
|
||||
int __init early_brk64(unsigned long addr, unsigned long esr,
|
||||
struct pt_regs *regs);
|
||||
|
||||
/*
|
||||
@ -852,7 +853,7 @@ static struct fault_info __refdata debug_fault_info[] = {
|
||||
};
|
||||
|
||||
void __init hook_debug_fault_code(int nr,
|
||||
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
||||
int (*fn)(unsigned long, unsigned long, struct pt_regs *),
|
||||
int sig, int code, const char *name)
|
||||
{
|
||||
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
||||
@ -885,7 +886,7 @@ static void debug_exception_exit(struct pt_regs *regs)
|
||||
}
|
||||
NOKPROBE_SYMBOL(debug_exception_exit);
|
||||
|
||||
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
|
||||
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
const struct fault_info *inf = esr_to_debug_fault_info(esr);
|
||||
|
@ -158,6 +158,28 @@ static inline int num_contig_ptes(unsigned long size, size_t *pgsize)
|
||||
return contig_ptes;
|
||||
}
|
||||
|
||||
pte_t huge_ptep_get(pte_t *ptep)
|
||||
{
|
||||
int ncontig, i;
|
||||
size_t pgsize;
|
||||
pte_t orig_pte = ptep_get(ptep);
|
||||
|
||||
if (!pte_present(orig_pte) || !pte_cont(orig_pte))
|
||||
return orig_pte;
|
||||
|
||||
ncontig = num_contig_ptes(page_size(pte_page(orig_pte)), &pgsize);
|
||||
for (i = 0; i < ncontig; i++, ptep++) {
|
||||
pte_t pte = ptep_get(ptep);
|
||||
|
||||
if (pte_dirty(pte))
|
||||
orig_pte = pte_mkdirty(orig_pte);
|
||||
|
||||
if (pte_young(pte))
|
||||
orig_pte = pte_mkyoung(orig_pte);
|
||||
}
|
||||
return orig_pte;
|
||||
}
|
||||
|
||||
/*
|
||||
* Changing some bits of contiguous entries requires us to follow a
|
||||
* Break-Before-Make approach, breaking the whole contiguous set
|
||||
@ -166,15 +188,14 @@ static inline int num_contig_ptes(unsigned long size, size_t *pgsize)
|
||||
*
|
||||
* This helper performs the break step.
|
||||
*/
|
||||
static pte_t get_clear_flush(struct mm_struct *mm,
|
||||
static pte_t get_clear_contig(struct mm_struct *mm,
|
||||
unsigned long addr,
|
||||
pte_t *ptep,
|
||||
unsigned long pgsize,
|
||||
unsigned long ncontig)
|
||||
{
|
||||
pte_t orig_pte = huge_ptep_get(ptep);
|
||||
bool valid = pte_valid(orig_pte);
|
||||
unsigned long i, saddr = addr;
|
||||
pte_t orig_pte = ptep_get(ptep);
|
||||
unsigned long i;
|
||||
|
||||
for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) {
|
||||
pte_t pte = ptep_get_and_clear(mm, addr, ptep);
|
||||
@ -190,11 +211,6 @@ static pte_t get_clear_flush(struct mm_struct *mm,
|
||||
if (pte_young(pte))
|
||||
orig_pte = pte_mkyoung(orig_pte);
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0);
|
||||
flush_tlb_range(&vma, saddr, addr);
|
||||
}
|
||||
return orig_pte;
|
||||
}
|
||||
|
||||
@ -385,14 +401,14 @@ pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
|
||||
{
|
||||
int ncontig;
|
||||
size_t pgsize;
|
||||
pte_t orig_pte = huge_ptep_get(ptep);
|
||||
pte_t orig_pte = ptep_get(ptep);
|
||||
|
||||
if (!pte_cont(orig_pte))
|
||||
return ptep_get_and_clear(mm, addr, ptep);
|
||||
|
||||
ncontig = find_num_contig(mm, addr, ptep, &pgsize);
|
||||
|
||||
return get_clear_flush(mm, addr, ptep, pgsize, ncontig);
|
||||
return get_clear_contig(mm, addr, ptep, pgsize, ncontig);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -408,11 +424,11 @@ static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (pte_write(pte) != pte_write(huge_ptep_get(ptep)))
|
||||
if (pte_write(pte) != pte_write(ptep_get(ptep)))
|
||||
return 1;
|
||||
|
||||
for (i = 0; i < ncontig; i++) {
|
||||
pte_t orig_pte = huge_ptep_get(ptep + i);
|
||||
pte_t orig_pte = ptep_get(ptep + i);
|
||||
|
||||
if (pte_dirty(pte) != pte_dirty(orig_pte))
|
||||
return 1;
|
||||
@ -443,7 +459,7 @@ int huge_ptep_set_access_flags(struct vm_area_struct *vma,
|
||||
if (!__cont_access_flags_changed(ptep, pte, ncontig))
|
||||
return 0;
|
||||
|
||||
orig_pte = get_clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig);
|
||||
orig_pte = get_clear_contig(vma->vm_mm, addr, ptep, pgsize, ncontig);
|
||||
|
||||
/* Make sure we don't lose the dirty or young state */
|
||||
if (pte_dirty(orig_pte))
|
||||
@ -476,7 +492,7 @@ void huge_ptep_set_wrprotect(struct mm_struct *mm,
|
||||
ncontig = find_num_contig(mm, addr, ptep, &pgsize);
|
||||
dpfn = pgsize >> PAGE_SHIFT;
|
||||
|
||||
pte = get_clear_flush(mm, addr, ptep, pgsize, ncontig);
|
||||
pte = get_clear_contig(mm, addr, ptep, pgsize, ncontig);
|
||||
pte = pte_wrprotect(pte);
|
||||
|
||||
hugeprot = pte_pgprot(pte);
|
||||
|
@ -90,6 +90,32 @@ phys_addr_t __ro_after_init arm64_dma_phys_limit;
|
||||
phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
|
||||
#endif
|
||||
|
||||
/* Current arm64 boot protocol requires 2MB alignment */
|
||||
#define CRASH_ALIGN SZ_2M
|
||||
|
||||
#define CRASH_ADDR_LOW_MAX arm64_dma_phys_limit
|
||||
#define CRASH_ADDR_HIGH_MAX (PHYS_MASK + 1)
|
||||
|
||||
static int __init reserve_crashkernel_low(unsigned long long low_size)
|
||||
{
|
||||
unsigned long long low_base;
|
||||
|
||||
low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
|
||||
if (!low_base) {
|
||||
pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
|
||||
low_base, low_base + low_size, low_size >> 20);
|
||||
|
||||
crashk_low_res.start = low_base;
|
||||
crashk_low_res.end = low_base + low_size - 1;
|
||||
insert_resource(&iomem_resource, &crashk_low_res);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* reserve_crashkernel() - reserves memory for crash kernel
|
||||
*
|
||||
@ -100,17 +126,35 @@ phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
|
||||
static void __init reserve_crashkernel(void)
|
||||
{
|
||||
unsigned long long crash_base, crash_size;
|
||||
unsigned long long crash_max = arm64_dma_phys_limit;
|
||||
unsigned long long crash_low_size = 0;
|
||||
unsigned long long crash_max = CRASH_ADDR_LOW_MAX;
|
||||
char *cmdline = boot_command_line;
|
||||
int ret;
|
||||
|
||||
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
|
||||
return;
|
||||
|
||||
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
||||
/* crashkernel=X[@offset] */
|
||||
ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
|
||||
&crash_size, &crash_base);
|
||||
/* no crashkernel= or invalid value specified */
|
||||
if (ret || !crash_size)
|
||||
if (ret == -ENOENT) {
|
||||
ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
|
||||
if (ret || !crash_size)
|
||||
return;
|
||||
|
||||
/*
|
||||
* crashkernel=Y,low can be specified or not, but invalid value
|
||||
* is not allowed.
|
||||
*/
|
||||
ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
|
||||
if (ret && (ret != -ENOENT))
|
||||
return;
|
||||
|
||||
crash_max = CRASH_ADDR_HIGH_MAX;
|
||||
} else if (ret || !crash_size) {
|
||||
/* The specified value is invalid */
|
||||
return;
|
||||
}
|
||||
|
||||
crash_size = PAGE_ALIGN(crash_size);
|
||||
|
||||
@ -118,8 +162,7 @@ static void __init reserve_crashkernel(void)
|
||||
if (crash_base)
|
||||
crash_max = crash_base + crash_size;
|
||||
|
||||
/* Current arm64 boot protocol requires 2MB alignment */
|
||||
crash_base = memblock_phys_alloc_range(crash_size, SZ_2M,
|
||||
crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
|
||||
crash_base, crash_max);
|
||||
if (!crash_base) {
|
||||
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
|
||||
@ -127,6 +170,12 @@ static void __init reserve_crashkernel(void)
|
||||
return;
|
||||
}
|
||||
|
||||
if ((crash_base >= CRASH_ADDR_LOW_MAX) &&
|
||||
crash_low_size && reserve_crashkernel_low(crash_low_size)) {
|
||||
memblock_phys_free(crash_base, crash_size);
|
||||
return;
|
||||
}
|
||||
|
||||
pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
|
||||
crash_base, crash_base + crash_size, crash_size >> 20);
|
||||
|
||||
@ -135,8 +184,12 @@ static void __init reserve_crashkernel(void)
|
||||
* map. Inform kmemleak so that it won't try to access it.
|
||||
*/
|
||||
kmemleak_ignore_phys(crash_base);
|
||||
if (crashk_low_res.end)
|
||||
kmemleak_ignore_phys(crashk_low_res.start);
|
||||
|
||||
crashk_res.start = crash_base;
|
||||
crashk_res.end = crash_base + crash_size - 1;
|
||||
insert_resource(&iomem_resource, &crashk_res);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -157,7 +210,7 @@ static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
|
||||
return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
|
||||
}
|
||||
|
||||
static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
||||
static void __init zone_sizes_init(void)
|
||||
{
|
||||
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
|
||||
unsigned int __maybe_unused acpi_zone_dma_bits;
|
||||
@ -176,7 +229,7 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max)
|
||||
if (!arm64_dma_phys_limit)
|
||||
arm64_dma_phys_limit = dma32_phys_limit;
|
||||
#endif
|
||||
max_zone_pfns[ZONE_NORMAL] = max;
|
||||
max_zone_pfns[ZONE_NORMAL] = max_pfn;
|
||||
|
||||
free_area_init(max_zone_pfns);
|
||||
}
|
||||
@ -374,7 +427,7 @@ void __init bootmem_init(void)
|
||||
* done after the fixed reservations
|
||||
*/
|
||||
sparse_init();
|
||||
zone_sizes_init(min, max);
|
||||
zone_sizes_init();
|
||||
|
||||
/*
|
||||
* Reserve the CMA area after arm64_dma_phys_limit was initialised.
|
||||
|
@ -238,7 +238,7 @@ int trans_pgd_idmap_page(struct trans_pgd_info *info, phys_addr_t *trans_ttbr0,
|
||||
int this_level, index, level_lsb, level_msb;
|
||||
|
||||
dst_addr &= PAGE_MASK;
|
||||
prev_level_entry = pte_val(pfn_pte(pfn, PAGE_KERNEL_EXEC));
|
||||
prev_level_entry = pte_val(pfn_pte(pfn, PAGE_KERNEL_ROX));
|
||||
|
||||
for (this_level = 3; this_level >= 0; this_level--) {
|
||||
levels[this_level] = trans_alloc(info);
|
||||
|
@ -3,7 +3,7 @@
|
||||
gen := arch/$(ARCH)/include/generated
|
||||
kapi := $(gen)/asm
|
||||
|
||||
kapi-hdrs-y := $(kapi)/cpucaps.h
|
||||
kapi-hdrs-y := $(kapi)/cpucaps.h $(kapi)/sysreg-defs.h
|
||||
|
||||
targets += $(addprefix ../../../, $(kapi-hdrs-y))
|
||||
|
||||
@ -14,5 +14,11 @@ kapi: $(kapi-hdrs-y)
|
||||
quiet_cmd_gen_cpucaps = GEN $@
|
||||
cmd_gen_cpucaps = mkdir -p $(dir $@); $(AWK) -f $(real-prereqs) > $@
|
||||
|
||||
quiet_cmd_gen_sysreg = GEN $@
|
||||
cmd_gen_sysreg = mkdir -p $(dir $@); $(AWK) -f $(real-prereqs) > $@
|
||||
|
||||
$(kapi)/cpucaps.h: $(src)/gen-cpucaps.awk $(src)/cpucaps FORCE
|
||||
$(call if_changed,gen_cpucaps)
|
||||
|
||||
$(kapi)/sysreg-defs.h: $(src)/gen-sysreg.awk $(src)/sysreg FORCE
|
||||
$(call if_changed,gen_sysreg)
|
||||
|
@ -43,6 +43,8 @@ KVM_PROTECTED_MODE
|
||||
MISMATCHED_CACHE_TYPE
|
||||
MTE
|
||||
MTE_ASYMM
|
||||
SME
|
||||
SME_FA64
|
||||
SPECTRE_V2
|
||||
SPECTRE_V3A
|
||||
SPECTRE_V4
|
||||
|
268
arch/arm64/tools/gen-sysreg.awk
Executable file
268
arch/arm64/tools/gen-sysreg.awk
Executable file
@ -0,0 +1,268 @@
|
||||
#!/bin/awk -f
|
||||
# SPDX-License-Identifier: GPL-2.0
|
||||
# gen-sysreg.awk: arm64 sysreg header generator
|
||||
#
|
||||
# Usage: awk -f gen-sysreg.awk sysregs.txt
|
||||
|
||||
# Log an error and terminate
|
||||
function fatal(msg) {
|
||||
print "Error at " NR ": " msg > "/dev/stderr"
|
||||
exit 1
|
||||
}
|
||||
|
||||
# Sanity check that the start or end of a block makes sense at this point in
|
||||
# the file. If not, produce an error and terminate.
|
||||
#
|
||||
# @this - the $Block or $EndBlock
|
||||
# @prev - the only valid block to already be in (value of @block)
|
||||
# @new - the new value of @block
|
||||
function change_block(this, prev, new) {
|
||||
if (block != prev)
|
||||
fatal("unexpected " this " (inside " block ")")
|
||||
|
||||
block = new
|
||||
}
|
||||
|
||||
# Sanity check the number of records for a field makes sense. If not, produce
|
||||
# an error and terminate.
|
||||
function expect_fields(nf) {
|
||||
if (NF != nf)
|
||||
fatal(NF " fields found where " nf " expected")
|
||||
}
|
||||
|
||||
# Print a CPP macro definition, padded with spaces so that the macro bodies
|
||||
# line up in a column
|
||||
function define(name, val) {
|
||||
printf "%-48s%s\n", "#define " name, val
|
||||
}
|
||||
|
||||
# Print standard BITMASK/SHIFT/WIDTH CPP definitions for a field
|
||||
function define_field(reg, field, msb, lsb) {
|
||||
define(reg "_" field, "GENMASK(" msb ", " lsb ")")
|
||||
define(reg "_" field "_MASK", "GENMASK(" msb ", " lsb ")")
|
||||
define(reg "_" field "_SHIFT", lsb)
|
||||
define(reg "_" field "_WIDTH", msb - lsb + 1)
|
||||
}
|
||||
|
||||
# Parse a "<msb>[:<lsb>]" string into the global variables @msb and @lsb
|
||||
function parse_bitdef(reg, field, bitdef, _bits)
|
||||
{
|
||||
if (bitdef ~ /^[0-9]+$/) {
|
||||
msb = bitdef
|
||||
lsb = bitdef
|
||||
} else if (split(bitdef, _bits, ":") == 2) {
|
||||
msb = _bits[1]
|
||||
lsb = _bits[2]
|
||||
} else {
|
||||
fatal("invalid bit-range definition '" bitdef "'")
|
||||
}
|
||||
|
||||
|
||||
if (msb != next_bit)
|
||||
fatal(reg "." field " starts at " msb " not " next_bit)
|
||||
if (63 < msb || msb < 0)
|
||||
fatal(reg "." field " invalid high bit in '" bitdef "'")
|
||||
if (63 < lsb || lsb < 0)
|
||||
fatal(reg "." field " invalid low bit in '" bitdef "'")
|
||||
if (msb < lsb)
|
||||
fatal(reg "." field " invalid bit-range '" bitdef "'")
|
||||
if (low > high)
|
||||
fatal(reg "." field " has invalid range " high "-" low)
|
||||
|
||||
next_bit = lsb - 1
|
||||
}
|
||||
|
||||
BEGIN {
|
||||
print "#ifndef __ASM_SYSREG_DEFS_H"
|
||||
print "#define __ASM_SYSREG_DEFS_H"
|
||||
print ""
|
||||
print "/* Generated file - do not edit */"
|
||||
print ""
|
||||
|
||||
block = "None"
|
||||
}
|
||||
|
||||
END {
|
||||
print "#endif /* __ASM_SYSREG_DEFS_H */"
|
||||
}
|
||||
|
||||
# skip blank lines and comment lines
|
||||
/^$/ { next }
|
||||
/^#/ { next }
|
||||
|
||||
/^SysregFields/ {
|
||||
change_block("SysregFields", "None", "SysregFields")
|
||||
expect_fields(2)
|
||||
|
||||
reg = $2
|
||||
|
||||
res0 = "UL(0)"
|
||||
res1 = "UL(0)"
|
||||
|
||||
next_bit = 63
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^EndSysregFields/ {
|
||||
if (next_bit > 0)
|
||||
fatal("Unspecified bits in " reg)
|
||||
|
||||
change_block("EndSysregFields", "SysregFields", "None")
|
||||
|
||||
define(reg "_RES0", "(" res0 ")")
|
||||
define(reg "_RES1", "(" res1 ")")
|
||||
print ""
|
||||
|
||||
reg = null
|
||||
res0 = null
|
||||
res1 = null
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^Sysreg/ {
|
||||
change_block("Sysreg", "None", "Sysreg")
|
||||
expect_fields(7)
|
||||
|
||||
reg = $2
|
||||
op0 = $3
|
||||
op1 = $4
|
||||
crn = $5
|
||||
crm = $6
|
||||
op2 = $7
|
||||
|
||||
res0 = "UL(0)"
|
||||
res1 = "UL(0)"
|
||||
|
||||
define("REG_" reg, "S" op0 "_" op1 "_C" crn "_C" crm "_" op2)
|
||||
define("SYS_" reg, "sys_reg(" op0 ", " op1 ", " crn ", " crm ", " op2 ")")
|
||||
|
||||
define("SYS_" reg "_Op0", op0)
|
||||
define("SYS_" reg "_Op1", op1)
|
||||
define("SYS_" reg "_CRn", crn)
|
||||
define("SYS_" reg "_CRm", crm)
|
||||
define("SYS_" reg "_Op2", op2)
|
||||
|
||||
print ""
|
||||
|
||||
next_bit = 63
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^EndSysreg/ {
|
||||
if (next_bit > 0)
|
||||
fatal("Unspecified bits in " reg)
|
||||
|
||||
change_block("EndSysreg", "Sysreg", "None")
|
||||
|
||||
if (res0 != null)
|
||||
define(reg "_RES0", "(" res0 ")")
|
||||
if (res1 != null)
|
||||
define(reg "_RES1", "(" res1 ")")
|
||||
if (res0 != null || res1 != null)
|
||||
print ""
|
||||
|
||||
reg = null
|
||||
op0 = null
|
||||
op1 = null
|
||||
crn = null
|
||||
crm = null
|
||||
op2 = null
|
||||
res0 = null
|
||||
res1 = null
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
# Currently this is effectivey a comment, in future we may want to emit
|
||||
# defines for the fields.
|
||||
/^Fields/ && (block == "Sysreg") {
|
||||
expect_fields(2)
|
||||
|
||||
if (next_bit != 63)
|
||||
fatal("Some fields already defined for " reg)
|
||||
|
||||
print "/* For " reg " fields see " $2 " */"
|
||||
print ""
|
||||
|
||||
next_bit = 0
|
||||
res0 = null
|
||||
res1 = null
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
|
||||
/^Res0/ && (block == "Sysreg" || block == "SysregFields") {
|
||||
expect_fields(2)
|
||||
parse_bitdef(reg, "RES0", $2)
|
||||
field = "RES0_" msb "_" lsb
|
||||
|
||||
res0 = res0 " | GENMASK_ULL(" msb ", " lsb ")"
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^Res1/ && (block == "Sysreg" || block == "SysregFields") {
|
||||
expect_fields(2)
|
||||
parse_bitdef(reg, "RES1", $2)
|
||||
field = "RES1_" msb "_" lsb
|
||||
|
||||
res1 = res1 " | GENMASK_ULL(" msb ", " lsb ")"
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^Field/ && (block == "Sysreg" || block == "SysregFields") {
|
||||
expect_fields(3)
|
||||
field = $3
|
||||
parse_bitdef(reg, field, $2)
|
||||
|
||||
define_field(reg, field, msb, lsb)
|
||||
print ""
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^Raz/ && (block == "Sysreg" || block == "SysregFields") {
|
||||
expect_fields(2)
|
||||
parse_bitdef(reg, field, $2)
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^Enum/ {
|
||||
change_block("Enum", "Sysreg", "Enum")
|
||||
expect_fields(3)
|
||||
field = $3
|
||||
parse_bitdef(reg, field, $2)
|
||||
|
||||
define_field(reg, field, msb, lsb)
|
||||
|
||||
next
|
||||
}
|
||||
|
||||
/^EndEnum/ {
|
||||
change_block("EndEnum", "Enum", "Sysreg")
|
||||
field = null
|
||||
msb = null
|
||||
lsb = null
|
||||
print ""
|
||||
next
|
||||
}
|
||||
|
||||
/0b[01]+/ && block = "Enum" {
|
||||
expect_fields(2)
|
||||
val = $1
|
||||
name = $2
|
||||
|
||||
define(reg "_" field "_" name, "UL(" val ")")
|
||||
next
|
||||
}
|
||||
|
||||
# Any lines not handled by previous rules are unexpected
|
||||
{
|
||||
fatal("unhandled statement")
|
||||
}
|
369
arch/arm64/tools/sysreg
Normal file
369
arch/arm64/tools/sysreg
Normal file
@ -0,0 +1,369 @@
|
||||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
#
|
||||
# System register metadata
|
||||
|
||||
# Each System register is described by a Sysreg block:
|
||||
|
||||
# Sysreg <name> <op0> <op1> <crn> <crm> <op2>
|
||||
# <field>
|
||||
# ...
|
||||
# EndSysreg
|
||||
|
||||
# Within a Sysreg block, each field can be described as one of:
|
||||
|
||||
# Res0 <msb>[:<lsb>]
|
||||
|
||||
# Res1 <msb>[:<lsb>]
|
||||
|
||||
# Field <msb>[:<lsb>] <name>
|
||||
|
||||
# Enum <msb>[:<lsb>] <name>
|
||||
# <enumval> <enumname>
|
||||
# ...
|
||||
# EndEnum
|
||||
|
||||
# Alternatively if multiple registers share the same layout then
|
||||
# a SysregFields block can be used to describe the shared layout
|
||||
|
||||
# SysregFields <fieldsname>
|
||||
# <field>
|
||||
# ...
|
||||
# EndSysregFields
|
||||
|
||||
# and referenced from within the Sysreg:
|
||||
|
||||
# Sysreg <name> <op0> <op1> <crn> <crm> <op2>
|
||||
# Fields <fieldsname>
|
||||
# EndSysreg
|
||||
|
||||
# For ID registers we adopt a few conventions for translating the
|
||||
# language in the ARM into defines:
|
||||
#
|
||||
# NI - Not implemented
|
||||
# IMP - Implemented
|
||||
#
|
||||
# In general it is recommended that new enumeration items be named for the
|
||||
# feature that introduces them (eg, FEAT_LS64_ACCDATA introduces enumeration
|
||||
# item ACCDATA) though it may be more taseful to do something else.
|
||||
|
||||
Sysreg ID_AA64ISAR0_EL1 3 0 0 6 0
|
||||
Enum 63:60 RNDR
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 59:56 TLB
|
||||
0b0000 NI
|
||||
0b0001 OS
|
||||
0b0010 RANGE
|
||||
EndEnum
|
||||
Enum 55:52 TS
|
||||
0b0000 NI
|
||||
0b0001 FLAGM
|
||||
0b0010 FLAGM2
|
||||
EndEnum
|
||||
Enum 51:48 FHM
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 47:44 DP
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 43:40 SM4
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 39:36 SM3
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 35:32 SHA3
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 31:28 RDM
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 27:24 TME
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 23:20 ATOMIC
|
||||
0b0000 NI
|
||||
0b0010 IMP
|
||||
EndEnum
|
||||
Enum 19:16 CRC32
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 15:12 SHA2
|
||||
0b0000 NI
|
||||
0b0001 SHA256
|
||||
0b0010 SHA512
|
||||
EndEnum
|
||||
Enum 11:8 SHA1
|
||||
0b0000 NI
|
||||
0b0001 IMP
|
||||
EndEnum
|
||||
Enum 7:4 AES
|
||||
0b0000 NI
|
||||
0b0001 AES
|
||||
0b0010 PMULL
|
||||
EndEnum
|
||||
Res0 3:0
|
||||
EndSysreg
|
||||
|
||||
Sysreg SCTLR_EL1 3 0 1 0 0
|
||||
Field 63 TIDCP
|
||||
Field 62 SPINMASK
|
||||
Field 61 NMI
|
||||
Field 60 EnTP2
|
||||
Res0 59:58
|
||||
Field 57 EPAN
|
||||
Field 56 EnALS
|
||||
Field 55 EnAS0
|
||||
Field 54 EnASR
|
||||
Field 53 TME
|
||||
Field 52 TME0
|
||||
Field 51 TMT
|
||||
Field 50 TMT0
|
||||
Field 49:46 TWEDEL
|
||||
Field 45 TWEDEn
|
||||
Field 44 DSSBS
|
||||
Field 43 ATA
|
||||
Field 42 ATA0
|
||||
Enum 41:40 TCF
|
||||
0b00 NONE
|
||||
0b01 SYNC
|
||||
0b10 ASYNC
|
||||
0b11 ASYMM
|
||||
EndEnum
|
||||
Enum 39:38 TCF0
|
||||
0b00 NONE
|
||||
0b01 SYNC
|
||||
0b10 ASYNC
|
||||
0b11 ASYMM
|
||||
EndEnum
|
||||
Field 37 ITFSB
|
||||
Field 36 BT1
|
||||
Field 35 BT0
|
||||
Res0 34
|
||||
Field 33 MSCEn
|
||||
Field 32 CMOW
|
||||
Field 31 EnIA
|
||||
Field 30 EnIB
|
||||
Field 29 LSMAOE
|
||||
Field 28 nTLSMD
|
||||
Field 27 EnDA
|
||||
Field 26 UCI
|
||||
Field 25 EE
|
||||
Field 24 E0E
|
||||
Field 23 SPAN
|
||||
Field 22 EIS
|
||||
Field 21 IESB
|
||||
Field 20 TSCXT
|
||||
Field 19 WXN
|
||||
Field 18 nTWE
|
||||
Res0 17
|
||||
Field 16 nTWI
|
||||
Field 15 UCT
|
||||
Field 14 DZE
|
||||
Field 13 EnDB
|
||||
Field 12 I
|
||||
Field 11 EOS
|
||||
Field 10 EnRCTX
|
||||
Field 9 UMA
|
||||
Field 8 SED
|
||||
Field 7 ITD
|
||||
Field 6 nAA
|
||||
Field 5 CP15BEN
|
||||
Field 4 SA0
|
||||
Field 3 SA
|
||||
Field 2 C
|
||||
Field 1 A
|
||||
Field 0 M
|
||||
EndSysreg
|
||||
|
||||
SysregFields CPACR_ELx
|
||||
Res0 63:29
|
||||
Field 28 TTA
|
||||
Res0 27:26
|
||||
Field 25:24 SMEN
|
||||
Res0 23:22
|
||||
Field 21:20 FPEN
|
||||
Res0 19:18
|
||||
Field 17:16 ZEN
|
||||
Res0 15:0
|
||||
EndSysregFields
|
||||
|
||||
Sysreg CPACR_EL1 3 0 1 0 2
|
||||
Fields CPACR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg SMPRI_EL1 3 0 1 2 4
|
||||
Res0 63:4
|
||||
Field 3:0 PRIORITY
|
||||
EndSysreg
|
||||
|
||||
SysregFields ZCR_ELx
|
||||
Res0 63:9
|
||||
Raz 8:4
|
||||
Field 3:0 LEN
|
||||
EndSysregFields
|
||||
|
||||
Sysreg ZCR_EL1 3 0 1 2 0
|
||||
Fields ZCR_ELx
|
||||
EndSysreg
|
||||
|
||||
SysregFields SMCR_ELx
|
||||
Res0 63:32
|
||||
Field 31 FA64
|
||||
Res0 30:9
|
||||
Raz 8:4
|
||||
Field 3:0 LEN
|
||||
EndSysregFields
|
||||
|
||||
Sysreg SMCR_EL1 3 0 1 2 6
|
||||
Fields SMCR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg FAR_EL1 3 0 6 0 0
|
||||
Field 63:0 ADDR
|
||||
EndSysreg
|
||||
|
||||
SysregFields CONTEXTIDR_ELx
|
||||
Res0 63:32
|
||||
Field 31:0 PROCID
|
||||
EndSysregFields
|
||||
|
||||
Sysreg CONTEXTIDR_EL1 3 0 13 0 1
|
||||
Fields CONTEXTIDR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg CLIDR_EL1 3 1 0 0 1
|
||||
Res0 63:47
|
||||
Field 46:33 Ttypen
|
||||
Field 32:30 ICB
|
||||
Field 29:27 LoUU
|
||||
Field 26:24 LoC
|
||||
Field 23:21 LoUIS
|
||||
Field 20:18 Ctype7
|
||||
Field 17:15 Ctype6
|
||||
Field 14:12 Ctype5
|
||||
Field 11:9 Ctype4
|
||||
Field 8:6 Ctype3
|
||||
Field 5:3 Ctype2
|
||||
Field 2:0 Ctype1
|
||||
EndSysreg
|
||||
|
||||
Sysreg SMIDR_EL1 3 1 0 0 6
|
||||
Res0 63:32
|
||||
Field 31:24 IMPLEMENTER
|
||||
Field 23:16 REVISION
|
||||
Field 15 SMPS
|
||||
Res0 14:12
|
||||
Field 11:0 AFFINITY
|
||||
EndSysreg
|
||||
|
||||
Sysreg CSSELR_EL1 3 2 0 0 0
|
||||
Res0 63:5
|
||||
Field 4 TnD
|
||||
Field 3:1 Level
|
||||
Field 0 InD
|
||||
EndSysreg
|
||||
|
||||
Sysreg SVCR 3 3 4 2 2
|
||||
Res0 63:2
|
||||
Field 1 ZA
|
||||
Field 0 SM
|
||||
EndSysreg
|
||||
|
||||
Sysreg ZCR_EL2 3 4 1 2 0
|
||||
Fields ZCR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg SMPRIMAP_EL2 3 4 1 2 5
|
||||
Field 63:60 P15
|
||||
Field 59:56 P14
|
||||
Field 55:52 P13
|
||||
Field 51:48 P12
|
||||
Field 47:44 P11
|
||||
Field 43:40 P10
|
||||
Field 39:36 F9
|
||||
Field 35:32 P8
|
||||
Field 31:28 P7
|
||||
Field 27:24 P6
|
||||
Field 23:20 P5
|
||||
Field 19:16 P4
|
||||
Field 15:12 P3
|
||||
Field 11:8 P2
|
||||
Field 7:4 P1
|
||||
Field 3:0 P0
|
||||
EndSysreg
|
||||
|
||||
Sysreg SMCR_EL2 3 4 1 2 6
|
||||
Fields SMCR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg DACR32_EL2 3 4 3 0 0
|
||||
Res0 63:32
|
||||
Field 31:30 D15
|
||||
Field 29:28 D14
|
||||
Field 27:26 D13
|
||||
Field 25:24 D12
|
||||
Field 23:22 D11
|
||||
Field 21:20 D10
|
||||
Field 19:18 D9
|
||||
Field 17:16 D8
|
||||
Field 15:14 D7
|
||||
Field 13:12 D6
|
||||
Field 11:10 D5
|
||||
Field 9:8 D4
|
||||
Field 7:6 D3
|
||||
Field 5:4 D2
|
||||
Field 3:2 D1
|
||||
Field 1:0 D0
|
||||
EndSysreg
|
||||
|
||||
Sysreg FAR_EL2 3 4 6 0 0
|
||||
Field 63:0 ADDR
|
||||
EndSysreg
|
||||
|
||||
Sysreg CONTEXTIDR_EL2 3 4 13 0 1
|
||||
Fields CONTEXTIDR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg CPACR_EL12 3 5 1 0 2
|
||||
Fields CPACR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg ZCR_EL12 3 5 1 2 0
|
||||
Fields ZCR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg SMCR_EL12 3 5 1 2 6
|
||||
Fields SMCR_ELx
|
||||
EndSysreg
|
||||
|
||||
Sysreg FAR_EL12 3 5 6 0 0
|
||||
Field 63:0 ADDR
|
||||
EndSysreg
|
||||
|
||||
Sysreg CONTEXTIDR_EL12 3 5 13 0 1
|
||||
Fields CONTEXTIDR_ELx
|
||||
EndSysreg
|
||||
|
||||
SysregFields TTBRx_EL1
|
||||
Field 63:48 ASID
|
||||
Field 47:1 BADDR
|
||||
Field 0 CnP
|
||||
EndSysregFields
|
||||
|
||||
Sysreg TTBR0_EL1 3 0 2 0 0
|
||||
Fields TTBRx_EL1
|
||||
EndSysreg
|
||||
|
||||
Sysreg TTBR1_EL1 3 0 2 0 1
|
||||
Fields TTBRx_EL1
|
||||
EndSysreg
|
@ -579,9 +579,7 @@ void arch_ftrace_trampoline_free(struct ftrace_ops *ops)
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
|
||||
#ifdef CONFIG_DYNAMIC_FTRACE
|
||||
|
||||
#ifndef CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS
|
||||
#if defined(CONFIG_DYNAMIC_FTRACE) && !defined(CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS)
|
||||
extern void ftrace_graph_call(void);
|
||||
static const char *ftrace_jmp_replace(unsigned long ip, unsigned long addr)
|
||||
{
|
||||
@ -610,18 +608,7 @@ int ftrace_disable_ftrace_graph_caller(void)
|
||||
|
||||
return ftrace_mod_jmp(ip, &ftrace_stub);
|
||||
}
|
||||
#else /* !CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS */
|
||||
int ftrace_enable_ftrace_graph_caller(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
int ftrace_disable_ftrace_graph_caller(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS */
|
||||
#endif /* !CONFIG_DYNAMIC_FTRACE */
|
||||
#endif /* CONFIG_DYNAMIC_FTRACE && !CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS */
|
||||
|
||||
/*
|
||||
* Hook the return address and push it in the stack of return addrs
|
||||
|
@ -973,16 +973,24 @@ static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
|
||||
|
||||
static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
|
||||
|
||||
/*
|
||||
* The main usage of linux,usable-memory-range is for crash dump kernel.
|
||||
* Originally, the number of usable-memory regions is one. Now there may
|
||||
* be two regions, low region and high region.
|
||||
* To make compatibility with existing user-space and older kdump, the low
|
||||
* region is always the last range of linux,usable-memory-range if exist.
|
||||
*/
|
||||
#define MAX_USABLE_RANGES 2
|
||||
|
||||
/**
|
||||
* early_init_dt_check_for_usable_mem_range - Decode usable memory range
|
||||
* location from flat tree
|
||||
*/
|
||||
void __init early_init_dt_check_for_usable_mem_range(void)
|
||||
{
|
||||
const __be32 *prop;
|
||||
int len;
|
||||
phys_addr_t cap_mem_addr;
|
||||
phys_addr_t cap_mem_size;
|
||||
struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
|
||||
const __be32 *prop, *endp;
|
||||
int len, i;
|
||||
unsigned long node = chosen_node_offset;
|
||||
|
||||
if ((long)node < 0)
|
||||
@ -991,16 +999,21 @@ void __init early_init_dt_check_for_usable_mem_range(void)
|
||||
pr_debug("Looking for usable-memory-range property... ");
|
||||
|
||||
prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
|
||||
if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
||||
if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
|
||||
return;
|
||||
|
||||
cap_mem_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
||||
cap_mem_size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
||||
endp = prop + (len / sizeof(__be32));
|
||||
for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
|
||||
rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
||||
rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
||||
|
||||
pr_debug("cap_mem_start=%pa cap_mem_size=%pa\n", &cap_mem_addr,
|
||||
&cap_mem_size);
|
||||
pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
|
||||
i, &rgn[i].base, &rgn[i].size);
|
||||
}
|
||||
|
||||
memblock_cap_memory_range(cap_mem_addr, cap_mem_size);
|
||||
memblock_cap_memory_range(rgn[0].base, rgn[0].size);
|
||||
for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
|
||||
memblock_add(rgn[i].base, rgn[i].size);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SERIAL_EARLYCON
|
||||
|
@ -386,6 +386,15 @@ void *of_kexec_alloc_and_setup_fdt(const struct kimage *image,
|
||||
crashk_res.end - crashk_res.start + 1);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
if (crashk_low_res.end) {
|
||||
ret = fdt_appendprop_addrrange(fdt, 0, chosen_node,
|
||||
"linux,usable-memory-range",
|
||||
crashk_low_res.start,
|
||||
crashk_low_res.end - crashk_low_res.start + 1);
|
||||
if (ret)
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
/* add bootargs */
|
||||
|
@ -39,7 +39,7 @@
|
||||
#define CMN_CHILD_NODE_ADDR GENMASK(27, 0)
|
||||
#define CMN_CHILD_NODE_EXTERNAL BIT(31)
|
||||
|
||||
#define CMN_MAX_DIMENSION 8
|
||||
#define CMN_MAX_DIMENSION 12
|
||||
#define CMN_MAX_XPS (CMN_MAX_DIMENSION * CMN_MAX_DIMENSION)
|
||||
#define CMN_MAX_DTMS (CMN_MAX_XPS + (CMN_MAX_DIMENSION - 1) * 4)
|
||||
|
||||
@ -52,6 +52,10 @@
|
||||
#define CMN_INFO_RSP_VC_NUM GENMASK_ULL(53, 52)
|
||||
#define CMN_INFO_DAT_VC_NUM GENMASK_ULL(51, 50)
|
||||
|
||||
#define CMN_CFGM_INFO_GLOBAL_1 0x908
|
||||
#define CMN_INFO_SNP_VC_NUM GENMASK_ULL(3, 2)
|
||||
#define CMN_INFO_REQ_VC_NUM GENMASK_ULL(1, 0)
|
||||
|
||||
/* XPs also have some local topology info which has uses too */
|
||||
#define CMN_MXP__CONNECT_INFO_P0 0x0008
|
||||
#define CMN_MXP__CONNECT_INFO_P1 0x0010
|
||||
@ -59,18 +63,26 @@
|
||||
#define CMN_MXP__CONNECT_INFO_P3 0x0030
|
||||
#define CMN_MXP__CONNECT_INFO_P4 0x0038
|
||||
#define CMN_MXP__CONNECT_INFO_P5 0x0040
|
||||
#define CMN__CONNECT_INFO_DEVICE_TYPE GENMASK_ULL(4, 0)
|
||||
|
||||
/* PMU registers occupy the 3rd 4KB page of each node's region */
|
||||
#define CMN_PMU_OFFSET 0x2000
|
||||
|
||||
/* For most nodes, this is all there is */
|
||||
#define CMN_PMU_EVENT_SEL 0x000
|
||||
#define CMN_PMU_EVENTn_ID_SHIFT(n) ((n) * 8)
|
||||
#define CMN__PMU_CBUSY_SNTHROTTLE_SEL GENMASK_ULL(44, 42)
|
||||
#define CMN__PMU_CLASS_OCCUP_ID GENMASK_ULL(36, 35)
|
||||
/* Technically this is 4 bits wide on DNs, but we only use 2 there anyway */
|
||||
#define CMN__PMU_OCCUP1_ID GENMASK_ULL(34, 32)
|
||||
|
||||
/* HN-Ps are weird... */
|
||||
#define CMN_HNP_PMU_EVENT_SEL 0x008
|
||||
|
||||
/* DTMs live in the PMU space of XP registers */
|
||||
#define CMN_DTM_WPn(n) (0x1A0 + (n) * 0x18)
|
||||
#define CMN_DTM_WPn_CONFIG(n) (CMN_DTM_WPn(n) + 0x00)
|
||||
#define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2 GENMASK_ULL(18,17)
|
||||
#define CMN_DTM_WPn_CONFIG_WP_CHN_NUM GENMASK_ULL(20, 19)
|
||||
#define CMN_DTM_WPn_CONFIG_WP_DEV_SEL2 GENMASK_ULL(18, 17)
|
||||
#define CMN_DTM_WPn_CONFIG_WP_COMBINE BIT(9)
|
||||
#define CMN_DTM_WPn_CONFIG_WP_EXCLUSIVE BIT(8)
|
||||
#define CMN600_WPn_CONFIG_WP_COMBINE BIT(6)
|
||||
@ -143,8 +155,8 @@
|
||||
|
||||
/* Event attributes */
|
||||
#define CMN_CONFIG_TYPE GENMASK_ULL(15, 0)
|
||||
#define CMN_CONFIG_EVENTID GENMASK_ULL(23, 16)
|
||||
#define CMN_CONFIG_OCCUPID GENMASK_ULL(27, 24)
|
||||
#define CMN_CONFIG_EVENTID GENMASK_ULL(26, 16)
|
||||
#define CMN_CONFIG_OCCUPID GENMASK_ULL(30, 27)
|
||||
#define CMN_CONFIG_BYNODEID BIT_ULL(31)
|
||||
#define CMN_CONFIG_NODEID GENMASK_ULL(47, 32)
|
||||
|
||||
@ -177,9 +189,14 @@
|
||||
|
||||
|
||||
enum cmn_model {
|
||||
CMN_ANY = -1,
|
||||
CMN600 = 1,
|
||||
CI700 = 2,
|
||||
CMN650 = 2,
|
||||
CMN700 = 4,
|
||||
CI700 = 8,
|
||||
/* ...and then we can use bitmap tricks for commonality */
|
||||
CMN_ANY = -1,
|
||||
NOT_CMN600 = -2,
|
||||
CMN_650ON = CMN650 | CMN700,
|
||||
};
|
||||
|
||||
/* CMN-600 r0px shouldn't exist in silicon, thankfully */
|
||||
@ -191,6 +208,14 @@ enum cmn_revision {
|
||||
CMN600_R2P0,
|
||||
CMN600_R3P0,
|
||||
CMN600_R3P1,
|
||||
CMN650_R0P0 = 0,
|
||||
CMN650_R1P0,
|
||||
CMN650_R1P1,
|
||||
CMN650_R2P0,
|
||||
CMN650_R1P2,
|
||||
CMN700_R0P0 = 0,
|
||||
CMN700_R1P0,
|
||||
CMN700_R2P0,
|
||||
CI700_R0P0 = 0,
|
||||
CI700_R1P0,
|
||||
CI700_R2P0,
|
||||
@ -211,13 +236,26 @@ enum cmn_node_type {
|
||||
CMN_TYPE_RND = 0xd,
|
||||
CMN_TYPE_RNSAM = 0xf,
|
||||
CMN_TYPE_MTSX,
|
||||
CMN_TYPE_HNP,
|
||||
CMN_TYPE_CXRA = 0x100,
|
||||
CMN_TYPE_CXHA = 0x101,
|
||||
CMN_TYPE_CXLA = 0x102,
|
||||
CMN_TYPE_CXHA,
|
||||
CMN_TYPE_CXLA,
|
||||
CMN_TYPE_CCRA,
|
||||
CMN_TYPE_CCHA,
|
||||
CMN_TYPE_CCLA,
|
||||
CMN_TYPE_CCLA_RNI,
|
||||
/* Not a real node type */
|
||||
CMN_TYPE_WP = 0x7770
|
||||
};
|
||||
|
||||
enum cmn_filter_select {
|
||||
SEL_NONE = -1,
|
||||
SEL_OCCUP1ID,
|
||||
SEL_CLASS_OCCUP_ID,
|
||||
SEL_CBUSY_SNTHROTTLE_SEL,
|
||||
SEL_MAX
|
||||
};
|
||||
|
||||
struct arm_cmn_node {
|
||||
void __iomem *pmu_base;
|
||||
u16 id, logid;
|
||||
@ -227,15 +265,17 @@ struct arm_cmn_node {
|
||||
union {
|
||||
/* DN/HN-F/CXHA */
|
||||
struct {
|
||||
u8 occupid_val;
|
||||
u8 occupid_count;
|
||||
};
|
||||
u8 val : 4;
|
||||
u8 count : 4;
|
||||
} occupid[SEL_MAX];
|
||||
/* XP */
|
||||
u8 dtc;
|
||||
};
|
||||
union {
|
||||
u8 event[4];
|
||||
__le32 event_sel;
|
||||
u16 event_w[4];
|
||||
__le64 event_sel_w;
|
||||
};
|
||||
};
|
||||
|
||||
@ -278,6 +318,8 @@ struct arm_cmn {
|
||||
struct {
|
||||
unsigned int rsp_vc_num : 2;
|
||||
unsigned int dat_vc_num : 2;
|
||||
unsigned int snp_vc_num : 2;
|
||||
unsigned int req_vc_num : 2;
|
||||
};
|
||||
|
||||
struct arm_cmn_node *xps;
|
||||
@ -307,9 +349,7 @@ struct arm_cmn_nodeid {
|
||||
|
||||
static int arm_cmn_xyidbits(const struct arm_cmn *cmn)
|
||||
{
|
||||
int dim = max(cmn->mesh_x, cmn->mesh_y);
|
||||
|
||||
return dim > 4 ? 3 : 2;
|
||||
return fls((cmn->mesh_x - 1) | (cmn->mesh_y - 1) | 2);
|
||||
}
|
||||
|
||||
static struct arm_cmn_nodeid arm_cmn_nid(const struct arm_cmn *cmn, u16 id)
|
||||
@ -361,7 +401,8 @@ static struct dentry *arm_cmn_debugfs;
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
static const char *arm_cmn_device_type(u8 type)
|
||||
{
|
||||
switch(type) {
|
||||
switch(FIELD_GET(CMN__CONNECT_INFO_DEVICE_TYPE, type)) {
|
||||
case 0x00: return " |";
|
||||
case 0x01: return " RN-I |";
|
||||
case 0x02: return " RN-D |";
|
||||
case 0x04: return " RN-F_B |";
|
||||
@ -371,6 +412,7 @@ static const char *arm_cmn_device_type(u8 type)
|
||||
case 0x08: return " HN-T |";
|
||||
case 0x09: return " HN-I |";
|
||||
case 0x0a: return " HN-D |";
|
||||
case 0x0b: return " HN-P |";
|
||||
case 0x0c: return " SN-F |";
|
||||
case 0x0d: return " SBSX |";
|
||||
case 0x0e: return " HN-F |";
|
||||
@ -383,8 +425,12 @@ static const char *arm_cmn_device_type(u8 type)
|
||||
case 0x15: return "RN-F_D_E|";
|
||||
case 0x16: return " RN-F_C |";
|
||||
case 0x17: return "RN-F_C_E|";
|
||||
case 0x18: return " RN-F_E |";
|
||||
case 0x19: return "RN-F_E_E|";
|
||||
case 0x1c: return " MTSX |";
|
||||
default: return " |";
|
||||
case 0x1d: return " HN-V |";
|
||||
case 0x1e: return " CCG |";
|
||||
default: return " ???? |";
|
||||
}
|
||||
}
|
||||
|
||||
@ -492,11 +538,13 @@ static void arm_cmn_debugfs_init(struct arm_cmn *cmn, int id) {}
|
||||
|
||||
struct arm_cmn_hw_event {
|
||||
struct arm_cmn_node *dn;
|
||||
u64 dtm_idx[2];
|
||||
u64 dtm_idx[4];
|
||||
unsigned int dtc_idx;
|
||||
u8 dtcs_used;
|
||||
u8 num_dns;
|
||||
u8 dtm_offset;
|
||||
bool wide_sel;
|
||||
enum cmn_filter_select filter_sel;
|
||||
};
|
||||
|
||||
#define for_each_hw_dn(hw, dn, i) \
|
||||
@ -522,7 +570,8 @@ struct arm_cmn_event_attr {
|
||||
struct device_attribute attr;
|
||||
enum cmn_model model;
|
||||
enum cmn_node_type type;
|
||||
u8 eventid;
|
||||
enum cmn_filter_select fsel;
|
||||
u16 eventid;
|
||||
u8 occupid;
|
||||
};
|
||||
|
||||
@ -532,23 +581,17 @@ struct arm_cmn_format_attr {
|
||||
int config;
|
||||
};
|
||||
|
||||
#define CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid) \
|
||||
#define _CMN_EVENT_ATTR(_model, _name, _type, _eventid, _occupid, _fsel)\
|
||||
(&((struct arm_cmn_event_attr[]) {{ \
|
||||
.attr = __ATTR(_name, 0444, arm_cmn_event_show, NULL), \
|
||||
.model = _model, \
|
||||
.type = _type, \
|
||||
.eventid = _eventid, \
|
||||
.occupid = _occupid, \
|
||||
.fsel = _fsel, \
|
||||
}})[0].attr.attr)
|
||||
|
||||
static bool arm_cmn_is_occup_event(enum cmn_model model,
|
||||
enum cmn_node_type type, unsigned int id)
|
||||
{
|
||||
if (type == CMN_TYPE_DVM)
|
||||
return (model == CMN600 && id == 0x05) ||
|
||||
(model == CI700 && id == 0x0c);
|
||||
return type == CMN_TYPE_HNF && id == 0x0f;
|
||||
}
|
||||
#define CMN_EVENT_ATTR(_model, _name, _type, _eventid) \
|
||||
_CMN_EVENT_ATTR(_model, _name, _type, _eventid, 0, SEL_NONE)
|
||||
|
||||
static ssize_t arm_cmn_event_show(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
@ -565,7 +608,7 @@ static ssize_t arm_cmn_event_show(struct device *dev,
|
||||
"type=0x%x,eventid=0x%x,wp_dev_sel=?,wp_chn_sel=?,wp_grp=?,wp_val=?,wp_mask=?\n",
|
||||
eattr->type, eattr->eventid);
|
||||
|
||||
if (arm_cmn_is_occup_event(eattr->model, eattr->type, eattr->eventid))
|
||||
if (eattr->fsel > SEL_NONE)
|
||||
return sysfs_emit(buf, "type=0x%x,eventid=0x%x,occupid=0x%x\n",
|
||||
eattr->type, eattr->eventid, eattr->occupid);
|
||||
|
||||
@ -580,20 +623,25 @@ static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj,
|
||||
struct device *dev = kobj_to_dev(kobj);
|
||||
struct arm_cmn *cmn = to_cmn(dev_get_drvdata(dev));
|
||||
struct arm_cmn_event_attr *eattr;
|
||||
enum cmn_node_type type;
|
||||
u16 eventid;
|
||||
|
||||
eattr = container_of(attr, typeof(*eattr), attr.attr);
|
||||
|
||||
if (!(eattr->model & cmn->model))
|
||||
return 0;
|
||||
|
||||
type = eattr->type;
|
||||
eventid = eattr->eventid;
|
||||
|
||||
/* Watchpoints aren't nodes, so avoid confusion */
|
||||
if (eattr->type == CMN_TYPE_WP)
|
||||
if (type == CMN_TYPE_WP)
|
||||
return attr->mode;
|
||||
|
||||
/* Hide XP events for unused interfaces/channels */
|
||||
if (eattr->type == CMN_TYPE_XP) {
|
||||
unsigned int intf = (eattr->eventid >> 2) & 7;
|
||||
unsigned int chan = eattr->eventid >> 5;
|
||||
if (type == CMN_TYPE_XP) {
|
||||
unsigned int intf = (eventid >> 2) & 7;
|
||||
unsigned int chan = eventid >> 5;
|
||||
|
||||
if ((intf & 4) && !(cmn->ports_used & BIT(intf & 3)))
|
||||
return 0;
|
||||
@ -602,43 +650,107 @@ static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj,
|
||||
return 0;
|
||||
|
||||
if ((chan == 5 && cmn->rsp_vc_num < 2) ||
|
||||
(chan == 6 && cmn->dat_vc_num < 2))
|
||||
(chan == 6 && cmn->dat_vc_num < 2) ||
|
||||
(chan == 7 && cmn->snp_vc_num < 2) ||
|
||||
(chan == 8 && cmn->req_vc_num < 2))
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Revision-specific differences */
|
||||
if (cmn->model == CMN600 && cmn->rev < CMN600_R1P2) {
|
||||
if (eattr->type == CMN_TYPE_HNF && eattr->eventid == 0x1b)
|
||||
return 0;
|
||||
if (cmn->model == CMN600) {
|
||||
if (cmn->rev < CMN600_R1P3) {
|
||||
if (type == CMN_TYPE_CXRA && eventid > 0x10)
|
||||
return 0;
|
||||
}
|
||||
if (cmn->rev < CMN600_R1P2) {
|
||||
if (type == CMN_TYPE_HNF && eventid == 0x1b)
|
||||
return 0;
|
||||
if (type == CMN_TYPE_CXRA || type == CMN_TYPE_CXHA)
|
||||
return 0;
|
||||
}
|
||||
} else if (cmn->model == CMN650) {
|
||||
if (cmn->rev < CMN650_R2P0 || cmn->rev == CMN650_R1P2) {
|
||||
if (type == CMN_TYPE_HNF && eventid > 0x22)
|
||||
return 0;
|
||||
if (type == CMN_TYPE_SBSX && eventid == 0x17)
|
||||
return 0;
|
||||
if (type == CMN_TYPE_RNI && eventid > 0x10)
|
||||
return 0;
|
||||
}
|
||||
} else if (cmn->model == CMN700) {
|
||||
if (cmn->rev < CMN700_R2P0) {
|
||||
if (type == CMN_TYPE_HNF && eventid > 0x2c)
|
||||
return 0;
|
||||
if (type == CMN_TYPE_CCHA && eventid > 0x74)
|
||||
return 0;
|
||||
if (type == CMN_TYPE_CCLA && eventid > 0x27)
|
||||
return 0;
|
||||
}
|
||||
if (cmn->rev < CMN700_R1P0) {
|
||||
if (type == CMN_TYPE_HNF && eventid > 0x2b)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (!arm_cmn_node(cmn, eattr->type))
|
||||
if (!arm_cmn_node(cmn, type))
|
||||
return 0;
|
||||
|
||||
return attr->mode;
|
||||
}
|
||||
|
||||
#define _CMN_EVENT_DVM(_model, _name, _event, _occup) \
|
||||
CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup)
|
||||
#define _CMN_EVENT_DVM(_model, _name, _event, _occup, _fsel) \
|
||||
_CMN_EVENT_ATTR(_model, dn_##_name, CMN_TYPE_DVM, _event, _occup, _fsel)
|
||||
#define CMN_EVENT_DTC(_name) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0, 0)
|
||||
#define _CMN_EVENT_HNF(_model, _name, _event, _occup) \
|
||||
CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event, _occup)
|
||||
CMN_EVENT_ATTR(CMN_ANY, dtc_##_name, CMN_TYPE_DTC, 0)
|
||||
#define _CMN_EVENT_HNF(_model, _name, _event, _occup, _fsel) \
|
||||
_CMN_EVENT_ATTR(_model, hnf_##_name, CMN_TYPE_HNF, _event, _occup, _fsel)
|
||||
#define CMN_EVENT_HNI(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event, 0)
|
||||
CMN_EVENT_ATTR(CMN_ANY, hni_##_name, CMN_TYPE_HNI, _event)
|
||||
#define CMN_EVENT_HNP(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, hnp_##_name, CMN_TYPE_HNP, _event)
|
||||
#define __CMN_EVENT_XP(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event, 0)
|
||||
CMN_EVENT_ATTR(CMN_ANY, mxp_##_name, CMN_TYPE_XP, _event)
|
||||
#define CMN_EVENT_SBSX(_model, _name, _event) \
|
||||
CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event, 0)
|
||||
CMN_EVENT_ATTR(_model, sbsx_##_name, CMN_TYPE_SBSX, _event)
|
||||
#define CMN_EVENT_RNID(_model, _name, _event) \
|
||||
CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event, 0)
|
||||
CMN_EVENT_ATTR(_model, rnid_##_name, CMN_TYPE_RNI, _event)
|
||||
#define CMN_EVENT_MTSX(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event, 0)
|
||||
CMN_EVENT_ATTR(CMN_ANY, mtsx_##_name, CMN_TYPE_MTSX, _event)
|
||||
#define CMN_EVENT_CXRA(_model, _name, _event) \
|
||||
CMN_EVENT_ATTR(_model, cxra_##_name, CMN_TYPE_CXRA, _event)
|
||||
#define CMN_EVENT_CXHA(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, cxha_##_name, CMN_TYPE_CXHA, _event)
|
||||
#define CMN_EVENT_CCRA(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, ccra_##_name, CMN_TYPE_CCRA, _event)
|
||||
#define CMN_EVENT_CCHA(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, ccha_##_name, CMN_TYPE_CCHA, _event)
|
||||
#define CMN_EVENT_CCLA(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, ccla_##_name, CMN_TYPE_CCLA, _event)
|
||||
#define CMN_EVENT_CCLA_RNI(_name, _event) \
|
||||
CMN_EVENT_ATTR(CMN_ANY, ccla_rni_##_name, CMN_TYPE_CCLA_RNI, _event)
|
||||
|
||||
#define CMN_EVENT_DVM(_model, _name, _event) \
|
||||
_CMN_EVENT_DVM(_model, _name, _event, 0)
|
||||
_CMN_EVENT_DVM(_model, _name, _event, 0, SEL_NONE)
|
||||
#define CMN_EVENT_DVM_OCC(_model, _name, _event) \
|
||||
_CMN_EVENT_DVM(_model, _name##_all, _event, 0, SEL_OCCUP1ID), \
|
||||
_CMN_EVENT_DVM(_model, _name##_dvmop, _event, 1, SEL_OCCUP1ID), \
|
||||
_CMN_EVENT_DVM(_model, _name##_dvmsync, _event, 2, SEL_OCCUP1ID)
|
||||
#define CMN_EVENT_HNF(_model, _name, _event) \
|
||||
_CMN_EVENT_HNF(_model, _name, _event, 0)
|
||||
_CMN_EVENT_HNF(_model, _name, _event, 0, SEL_NONE)
|
||||
#define CMN_EVENT_HNF_CLS(_model, _name, _event) \
|
||||
_CMN_EVENT_HNF(_model, _name##_class0, _event, 0, SEL_CLASS_OCCUP_ID), \
|
||||
_CMN_EVENT_HNF(_model, _name##_class1, _event, 1, SEL_CLASS_OCCUP_ID), \
|
||||
_CMN_EVENT_HNF(_model, _name##_class2, _event, 2, SEL_CLASS_OCCUP_ID), \
|
||||
_CMN_EVENT_HNF(_model, _name##_class3, _event, 3, SEL_CLASS_OCCUP_ID)
|
||||
#define CMN_EVENT_HNF_SNT(_model, _name, _event) \
|
||||
_CMN_EVENT_HNF(_model, _name##_all, _event, 0, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_group0_read, _event, 1, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_group0_write, _event, 2, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_group1_read, _event, 3, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_group1_write, _event, 4, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_read, _event, 5, SEL_CBUSY_SNTHROTTLE_SEL), \
|
||||
_CMN_EVENT_HNF(_model, _name##_write, _event, 6, SEL_CBUSY_SNTHROTTLE_SEL)
|
||||
|
||||
#define _CMN_EVENT_XP(_name, _event) \
|
||||
__CMN_EVENT_XP(e_##_name, (_event) | (0 << 2)), \
|
||||
__CMN_EVENT_XP(w_##_name, (_event) | (1 << 2)), \
|
||||
@ -657,7 +769,9 @@ static umode_t arm_cmn_event_attr_is_visible(struct kobject *kobj,
|
||||
_CMN_EVENT_XP(dat_##_name, (_event) | (3 << 5)), \
|
||||
_CMN_EVENT_XP(pub_##_name, (_event) | (4 << 5)), \
|
||||
_CMN_EVENT_XP(rsp2_##_name, (_event) | (5 << 5)), \
|
||||
_CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5))
|
||||
_CMN_EVENT_XP(dat2_##_name, (_event) | (6 << 5)), \
|
||||
_CMN_EVENT_XP(snp2_##_name, (_event) | (7 << 5)), \
|
||||
_CMN_EVENT_XP(req2_##_name, (_event) | (8 << 5))
|
||||
|
||||
|
||||
static struct attribute *arm_cmn_event_attrs[] = {
|
||||
@ -672,23 +786,27 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_DVM(CMN600, rxreq_dvmsync, 0x02),
|
||||
CMN_EVENT_DVM(CMN600, rxreq_dvmop_vmid_filtered, 0x03),
|
||||
CMN_EVENT_DVM(CMN600, rxreq_retried, 0x04),
|
||||
_CMN_EVENT_DVM(CMN600, rxreq_trk_occupancy_all, 0x05, 0),
|
||||
_CMN_EVENT_DVM(CMN600, rxreq_trk_occupancy_dvmop, 0x05, 1),
|
||||
_CMN_EVENT_DVM(CMN600, rxreq_trk_occupancy_dvmsync, 0x05, 2),
|
||||
CMN_EVENT_DVM(CI700, dvmop_tlbi, 0x01),
|
||||
CMN_EVENT_DVM(CI700, dvmop_bpi, 0x02),
|
||||
CMN_EVENT_DVM(CI700, dvmop_pici, 0x03),
|
||||
CMN_EVENT_DVM(CI700, dvmop_vici, 0x04),
|
||||
CMN_EVENT_DVM(CI700, dvmsync, 0x05),
|
||||
CMN_EVENT_DVM(CI700, vmid_filtered, 0x06),
|
||||
CMN_EVENT_DVM(CI700, rndop_filtered, 0x07),
|
||||
CMN_EVENT_DVM(CI700, retry, 0x08),
|
||||
CMN_EVENT_DVM(CI700, txsnp_flitv, 0x09),
|
||||
CMN_EVENT_DVM(CI700, txsnp_stall, 0x0a),
|
||||
CMN_EVENT_DVM(CI700, trkfull, 0x0b),
|
||||
_CMN_EVENT_DVM(CI700, trk_occupancy_all, 0x0c, 0),
|
||||
_CMN_EVENT_DVM(CI700, trk_occupancy_dvmop, 0x0c, 1),
|
||||
_CMN_EVENT_DVM(CI700, trk_occupancy_dvmsync, 0x0c, 2),
|
||||
CMN_EVENT_DVM_OCC(CMN600, rxreq_trk_occupancy, 0x05),
|
||||
CMN_EVENT_DVM(NOT_CMN600, dvmop_tlbi, 0x01),
|
||||
CMN_EVENT_DVM(NOT_CMN600, dvmop_bpi, 0x02),
|
||||
CMN_EVENT_DVM(NOT_CMN600, dvmop_pici, 0x03),
|
||||
CMN_EVENT_DVM(NOT_CMN600, dvmop_vici, 0x04),
|
||||
CMN_EVENT_DVM(NOT_CMN600, dvmsync, 0x05),
|
||||
CMN_EVENT_DVM(NOT_CMN600, vmid_filtered, 0x06),
|
||||
CMN_EVENT_DVM(NOT_CMN600, rndop_filtered, 0x07),
|
||||
CMN_EVENT_DVM(NOT_CMN600, retry, 0x08),
|
||||
CMN_EVENT_DVM(NOT_CMN600, txsnp_flitv, 0x09),
|
||||
CMN_EVENT_DVM(NOT_CMN600, txsnp_stall, 0x0a),
|
||||
CMN_EVENT_DVM(NOT_CMN600, trkfull, 0x0b),
|
||||
CMN_EVENT_DVM_OCC(NOT_CMN600, trk_occupancy, 0x0c),
|
||||
CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_cxha, 0x0d),
|
||||
CMN_EVENT_DVM_OCC(CMN700, trk_occupancy_pdn, 0x0e),
|
||||
CMN_EVENT_DVM(CMN700, trk_alloc, 0x0f),
|
||||
CMN_EVENT_DVM(CMN700, trk_cxha_alloc, 0x10),
|
||||
CMN_EVENT_DVM(CMN700, trk_pdn_alloc, 0x11),
|
||||
CMN_EVENT_DVM(CMN700, txsnp_stall_limit, 0x12),
|
||||
CMN_EVENT_DVM(CMN700, rxsnp_stall_starv, 0x13),
|
||||
CMN_EVENT_DVM(CMN700, txsnp_sync_stall_op, 0x14),
|
||||
|
||||
CMN_EVENT_HNF(CMN_ANY, cache_miss, 0x01),
|
||||
CMN_EVENT_HNF(CMN_ANY, slc_sf_cache_access, 0x02),
|
||||
@ -704,11 +822,11 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_HNF(CMN_ANY, mc_retries, 0x0c),
|
||||
CMN_EVENT_HNF(CMN_ANY, mc_reqs, 0x0d),
|
||||
CMN_EVENT_HNF(CMN_ANY, qos_hh_retry, 0x0e),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_all, 0x0f, 0),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_read, 0x0f, 1),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_write, 0x0f, 2),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_atomic, 0x0f, 3),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_stash, 0x0f, 4),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_all, 0x0f, 0, SEL_OCCUP1ID),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_read, 0x0f, 1, SEL_OCCUP1ID),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_write, 0x0f, 2, SEL_OCCUP1ID),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_atomic, 0x0f, 3, SEL_OCCUP1ID),
|
||||
_CMN_EVENT_HNF(CMN_ANY, qos_pocq_occupancy_stash, 0x0f, 4, SEL_OCCUP1ID),
|
||||
CMN_EVENT_HNF(CMN_ANY, pocq_addrhaz, 0x10),
|
||||
CMN_EVENT_HNF(CMN_ANY, pocq_atomic_addrhaz, 0x11),
|
||||
CMN_EVENT_HNF(CMN_ANY, ld_st_swp_adq_full, 0x12),
|
||||
@ -725,9 +843,22 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_HNF(CMN_ANY, stash_snp_sent, 0x1d),
|
||||
CMN_EVENT_HNF(CMN_ANY, stash_data_pull, 0x1e),
|
||||
CMN_EVENT_HNF(CMN_ANY, snp_fwded, 0x1f),
|
||||
CMN_EVENT_HNF(CI700, atomic_fwd, 0x20),
|
||||
CMN_EVENT_HNF(CI700, mpam_hardlim, 0x21),
|
||||
CMN_EVENT_HNF(CI700, mpam_softlim, 0x22),
|
||||
CMN_EVENT_HNF(NOT_CMN600, atomic_fwd, 0x20),
|
||||
CMN_EVENT_HNF(NOT_CMN600, mpam_hardlim, 0x21),
|
||||
CMN_EVENT_HNF(NOT_CMN600, mpam_softlim, 0x22),
|
||||
CMN_EVENT_HNF(CMN_650ON, snp_sent_cluster, 0x23),
|
||||
CMN_EVENT_HNF(CMN_650ON, sf_imprecise_evict, 0x24),
|
||||
CMN_EVENT_HNF(CMN_650ON, sf_evict_shared_line, 0x25),
|
||||
CMN_EVENT_HNF_CLS(CMN700, pocq_class_occup, 0x26),
|
||||
CMN_EVENT_HNF_CLS(CMN700, pocq_class_retry, 0x27),
|
||||
CMN_EVENT_HNF_CLS(CMN700, class_mc_reqs, 0x28),
|
||||
CMN_EVENT_HNF_CLS(CMN700, class_cgnt_cmin, 0x29),
|
||||
CMN_EVENT_HNF_SNT(CMN700, sn_throttle, 0x2a),
|
||||
CMN_EVENT_HNF_SNT(CMN700, sn_throttle_min, 0x2b),
|
||||
CMN_EVENT_HNF(CMN700, sf_precise_to_imprecise, 0x2c),
|
||||
CMN_EVENT_HNF(CMN700, snp_intv_cln, 0x2d),
|
||||
CMN_EVENT_HNF(CMN700, nc_excl, 0x2e),
|
||||
CMN_EVENT_HNF(CMN700, excl_mon_ovfl, 0x2f),
|
||||
|
||||
CMN_EVENT_HNI(rrt_rd_occ_cnt_ovfl, 0x20),
|
||||
CMN_EVENT_HNI(rrt_wr_occ_cnt_ovfl, 0x21),
|
||||
@ -749,12 +880,33 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_HNI(nonpcie_serialization, 0x31),
|
||||
CMN_EVENT_HNI(pcie_serialization, 0x32),
|
||||
|
||||
/*
|
||||
* HN-P events squat on top of the HN-I similarly to DVM events, except
|
||||
* for being crammed into the same physical node as well. And of course
|
||||
* where would the fun be if the same events were in the same order...
|
||||
*/
|
||||
CMN_EVENT_HNP(rrt_wr_occ_cnt_ovfl, 0x01),
|
||||
CMN_EVENT_HNP(rdt_wr_occ_cnt_ovfl, 0x02),
|
||||
CMN_EVENT_HNP(wdb_occ_cnt_ovfl, 0x03),
|
||||
CMN_EVENT_HNP(rrt_wr_alloc, 0x04),
|
||||
CMN_EVENT_HNP(rdt_wr_alloc, 0x05),
|
||||
CMN_EVENT_HNP(wdb_alloc, 0x06),
|
||||
CMN_EVENT_HNP(awvalid_no_awready, 0x07),
|
||||
CMN_EVENT_HNP(awready_no_awvalid, 0x08),
|
||||
CMN_EVENT_HNP(wvalid_no_wready, 0x09),
|
||||
CMN_EVENT_HNP(rrt_rd_occ_cnt_ovfl, 0x11),
|
||||
CMN_EVENT_HNP(rdt_rd_occ_cnt_ovfl, 0x12),
|
||||
CMN_EVENT_HNP(rrt_rd_alloc, 0x13),
|
||||
CMN_EVENT_HNP(rdt_rd_alloc, 0x14),
|
||||
CMN_EVENT_HNP(arvalid_no_arready, 0x15),
|
||||
CMN_EVENT_HNP(arready_no_arvalid, 0x16),
|
||||
|
||||
CMN_EVENT_XP(txflit_valid, 0x01),
|
||||
CMN_EVENT_XP(txflit_stall, 0x02),
|
||||
CMN_EVENT_XP(partial_dat_flit, 0x03),
|
||||
/* We treat watchpoints as a special made-up class of XP events */
|
||||
CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP, 0),
|
||||
CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN, 0),
|
||||
CMN_EVENT_ATTR(CMN_ANY, watchpoint_up, CMN_TYPE_WP, CMN_WP_UP),
|
||||
CMN_EVENT_ATTR(CMN_ANY, watchpoint_down, CMN_TYPE_WP, CMN_WP_DOWN),
|
||||
|
||||
CMN_EVENT_SBSX(CMN_ANY, rd_req, 0x01),
|
||||
CMN_EVENT_SBSX(CMN_ANY, wr_req, 0x02),
|
||||
@ -768,7 +920,7 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_SBSX(CMN_ANY, wdb_occ_cnt_ovfl, 0x14),
|
||||
CMN_EVENT_SBSX(CMN_ANY, rd_axi_trkr_occ_cnt_ovfl, 0x15),
|
||||
CMN_EVENT_SBSX(CMN_ANY, cmo_axi_trkr_occ_cnt_ovfl, 0x16),
|
||||
CMN_EVENT_SBSX(CI700, rdb_occ_cnt_ovfl, 0x17),
|
||||
CMN_EVENT_SBSX(NOT_CMN600, rdb_occ_cnt_ovfl, 0x17),
|
||||
CMN_EVENT_SBSX(CMN_ANY, arvalid_no_arready, 0x21),
|
||||
CMN_EVENT_SBSX(CMN_ANY, awvalid_no_awready, 0x22),
|
||||
CMN_EVENT_SBSX(CMN_ANY, wvalid_no_wready, 0x23),
|
||||
@ -795,12 +947,25 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_RNID(CMN600, rdb_replay, 0x12),
|
||||
CMN_EVENT_RNID(CMN600, rdb_hybrid, 0x13),
|
||||
CMN_EVENT_RNID(CMN600, rdb_ord, 0x14),
|
||||
CMN_EVENT_RNID(CI700, padb_occ_ovfl, 0x11),
|
||||
CMN_EVENT_RNID(CI700, rpdb_occ_ovfl, 0x12),
|
||||
CMN_EVENT_RNID(CI700, rrt_occup_ovfl_slice1, 0x13),
|
||||
CMN_EVENT_RNID(CI700, rrt_occup_ovfl_slice2, 0x14),
|
||||
CMN_EVENT_RNID(CI700, rrt_occup_ovfl_slice3, 0x15),
|
||||
CMN_EVENT_RNID(CI700, wrt_throttled, 0x16),
|
||||
CMN_EVENT_RNID(NOT_CMN600, padb_occ_ovfl, 0x11),
|
||||
CMN_EVENT_RNID(NOT_CMN600, rpdb_occ_ovfl, 0x12),
|
||||
CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice1, 0x13),
|
||||
CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice2, 0x14),
|
||||
CMN_EVENT_RNID(NOT_CMN600, rrt_occup_ovfl_slice3, 0x15),
|
||||
CMN_EVENT_RNID(NOT_CMN600, wrt_throttled, 0x16),
|
||||
CMN_EVENT_RNID(CMN700, ldb_full, 0x17),
|
||||
CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice0, 0x18),
|
||||
CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice1, 0x19),
|
||||
CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice2, 0x1a),
|
||||
CMN_EVENT_RNID(CMN700, rrt_rd_req_occup_ovfl_slice3, 0x1b),
|
||||
CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice0, 0x1c),
|
||||
CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice1, 0x1d),
|
||||
CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice2, 0x1e),
|
||||
CMN_EVENT_RNID(CMN700, rrt_burst_occup_ovfl_slice3, 0x1f),
|
||||
CMN_EVENT_RNID(CMN700, rrt_burst_alloc, 0x20),
|
||||
CMN_EVENT_RNID(CMN700, awid_hash, 0x21),
|
||||
CMN_EVENT_RNID(CMN700, atomic_alloc, 0x22),
|
||||
CMN_EVENT_RNID(CMN700, atomic_occ_ovfl, 0x23),
|
||||
|
||||
CMN_EVENT_MTSX(tc_lookup, 0x01),
|
||||
CMN_EVENT_MTSX(tc_fill, 0x02),
|
||||
@ -815,6 +980,118 @@ static struct attribute *arm_cmn_event_attrs[] = {
|
||||
CMN_EVENT_MTSX(tcq_occ_cnt_ovfl, 0x0b),
|
||||
CMN_EVENT_MTSX(tdb_occ_cnt_ovfl, 0x0c),
|
||||
|
||||
CMN_EVENT_CXRA(CMN_ANY, rht_occ, 0x01),
|
||||
CMN_EVENT_CXRA(CMN_ANY, sht_occ, 0x02),
|
||||
CMN_EVENT_CXRA(CMN_ANY, rdb_occ, 0x03),
|
||||
CMN_EVENT_CXRA(CMN_ANY, wdb_occ, 0x04),
|
||||
CMN_EVENT_CXRA(CMN_ANY, ssb_occ, 0x05),
|
||||
CMN_EVENT_CXRA(CMN_ANY, snp_bcasts, 0x06),
|
||||
CMN_EVENT_CXRA(CMN_ANY, req_chains, 0x07),
|
||||
CMN_EVENT_CXRA(CMN_ANY, req_chain_avglen, 0x08),
|
||||
CMN_EVENT_CXRA(CMN_ANY, chirsp_stalls, 0x09),
|
||||
CMN_EVENT_CXRA(CMN_ANY, chidat_stalls, 0x0a),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link0, 0x0b),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link1, 0x0c),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxreq_pcrd_stalls_link2, 0x0d),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link0, 0x0e),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link1, 0x0f),
|
||||
CMN_EVENT_CXRA(CMN_ANY, cxdat_pcrd_stalls_link2, 0x10),
|
||||
CMN_EVENT_CXRA(CMN_ANY, external_chirsp_stalls, 0x11),
|
||||
CMN_EVENT_CXRA(CMN_ANY, external_chidat_stalls, 0x12),
|
||||
CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link0, 0x13),
|
||||
CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link1, 0x14),
|
||||
CMN_EVENT_CXRA(NOT_CMN600, cxmisc_pcrd_stalls_link2, 0x15),
|
||||
|
||||
CMN_EVENT_CXHA(rddatbyp, 0x21),
|
||||
CMN_EVENT_CXHA(chirsp_up_stall, 0x22),
|
||||
CMN_EVENT_CXHA(chidat_up_stall, 0x23),
|
||||
CMN_EVENT_CXHA(snppcrd_link0_stall, 0x24),
|
||||
CMN_EVENT_CXHA(snppcrd_link1_stall, 0x25),
|
||||
CMN_EVENT_CXHA(snppcrd_link2_stall, 0x26),
|
||||
CMN_EVENT_CXHA(reqtrk_occ, 0x27),
|
||||
CMN_EVENT_CXHA(rdb_occ, 0x28),
|
||||
CMN_EVENT_CXHA(rdbyp_occ, 0x29),
|
||||
CMN_EVENT_CXHA(wdb_occ, 0x2a),
|
||||
CMN_EVENT_CXHA(snptrk_occ, 0x2b),
|
||||
CMN_EVENT_CXHA(sdb_occ, 0x2c),
|
||||
CMN_EVENT_CXHA(snphaz_occ, 0x2d),
|
||||
|
||||
CMN_EVENT_CCRA(rht_occ, 0x41),
|
||||
CMN_EVENT_CCRA(sht_occ, 0x42),
|
||||
CMN_EVENT_CCRA(rdb_occ, 0x43),
|
||||
CMN_EVENT_CCRA(wdb_occ, 0x44),
|
||||
CMN_EVENT_CCRA(ssb_occ, 0x45),
|
||||
CMN_EVENT_CCRA(snp_bcasts, 0x46),
|
||||
CMN_EVENT_CCRA(req_chains, 0x47),
|
||||
CMN_EVENT_CCRA(req_chain_avglen, 0x48),
|
||||
CMN_EVENT_CCRA(chirsp_stalls, 0x49),
|
||||
CMN_EVENT_CCRA(chidat_stalls, 0x4a),
|
||||
CMN_EVENT_CCRA(cxreq_pcrd_stalls_link0, 0x4b),
|
||||
CMN_EVENT_CCRA(cxreq_pcrd_stalls_link1, 0x4c),
|
||||
CMN_EVENT_CCRA(cxreq_pcrd_stalls_link2, 0x4d),
|
||||
CMN_EVENT_CCRA(cxdat_pcrd_stalls_link0, 0x4e),
|
||||
CMN_EVENT_CCRA(cxdat_pcrd_stalls_link1, 0x4f),
|
||||
CMN_EVENT_CCRA(cxdat_pcrd_stalls_link2, 0x50),
|
||||
CMN_EVENT_CCRA(external_chirsp_stalls, 0x51),
|
||||
CMN_EVENT_CCRA(external_chidat_stalls, 0x52),
|
||||
CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link0, 0x53),
|
||||
CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link1, 0x54),
|
||||
CMN_EVENT_CCRA(cxmisc_pcrd_stalls_link2, 0x55),
|
||||
CMN_EVENT_CCRA(rht_alloc, 0x56),
|
||||
CMN_EVENT_CCRA(sht_alloc, 0x57),
|
||||
CMN_EVENT_CCRA(rdb_alloc, 0x58),
|
||||
CMN_EVENT_CCRA(wdb_alloc, 0x59),
|
||||
CMN_EVENT_CCRA(ssb_alloc, 0x5a),
|
||||
|
||||
CMN_EVENT_CCHA(rddatbyp, 0x61),
|
||||
CMN_EVENT_CCHA(chirsp_up_stall, 0x62),
|
||||
CMN_EVENT_CCHA(chidat_up_stall, 0x63),
|
||||
CMN_EVENT_CCHA(snppcrd_link0_stall, 0x64),
|
||||
CMN_EVENT_CCHA(snppcrd_link1_stall, 0x65),
|
||||
CMN_EVENT_CCHA(snppcrd_link2_stall, 0x66),
|
||||
CMN_EVENT_CCHA(reqtrk_occ, 0x67),
|
||||
CMN_EVENT_CCHA(rdb_occ, 0x68),
|
||||
CMN_EVENT_CCHA(rdbyp_occ, 0x69),
|
||||
CMN_EVENT_CCHA(wdb_occ, 0x6a),
|
||||
CMN_EVENT_CCHA(snptrk_occ, 0x6b),
|
||||
CMN_EVENT_CCHA(sdb_occ, 0x6c),
|
||||
CMN_EVENT_CCHA(snphaz_occ, 0x6d),
|
||||
CMN_EVENT_CCHA(reqtrk_alloc, 0x6e),
|
||||
CMN_EVENT_CCHA(rdb_alloc, 0x6f),
|
||||
CMN_EVENT_CCHA(rdbyp_alloc, 0x70),
|
||||
CMN_EVENT_CCHA(wdb_alloc, 0x71),
|
||||
CMN_EVENT_CCHA(snptrk_alloc, 0x72),
|
||||
CMN_EVENT_CCHA(sdb_alloc, 0x73),
|
||||
CMN_EVENT_CCHA(snphaz_alloc, 0x74),
|
||||
CMN_EVENT_CCHA(pb_rhu_req_occ, 0x75),
|
||||
CMN_EVENT_CCHA(pb_rhu_req_alloc, 0x76),
|
||||
CMN_EVENT_CCHA(pb_rhu_pcie_req_occ, 0x77),
|
||||
CMN_EVENT_CCHA(pb_rhu_pcie_req_alloc, 0x78),
|
||||
CMN_EVENT_CCHA(pb_pcie_wr_req_occ, 0x79),
|
||||
CMN_EVENT_CCHA(pb_pcie_wr_req_alloc, 0x7a),
|
||||
CMN_EVENT_CCHA(pb_pcie_reg_req_occ, 0x7b),
|
||||
CMN_EVENT_CCHA(pb_pcie_reg_req_alloc, 0x7c),
|
||||
CMN_EVENT_CCHA(pb_pcie_rsvd_req_occ, 0x7d),
|
||||
CMN_EVENT_CCHA(pb_pcie_rsvd_req_alloc, 0x7e),
|
||||
CMN_EVENT_CCHA(pb_rhu_dat_occ, 0x7f),
|
||||
CMN_EVENT_CCHA(pb_rhu_dat_alloc, 0x80),
|
||||
CMN_EVENT_CCHA(pb_rhu_pcie_dat_occ, 0x81),
|
||||
CMN_EVENT_CCHA(pb_rhu_pcie_dat_alloc, 0x82),
|
||||
CMN_EVENT_CCHA(pb_pcie_wr_dat_occ, 0x83),
|
||||
CMN_EVENT_CCHA(pb_pcie_wr_dat_alloc, 0x84),
|
||||
|
||||
CMN_EVENT_CCLA(rx_cxs, 0x21),
|
||||
CMN_EVENT_CCLA(tx_cxs, 0x22),
|
||||
CMN_EVENT_CCLA(rx_cxs_avg_size, 0x23),
|
||||
CMN_EVENT_CCLA(tx_cxs_avg_size, 0x24),
|
||||
CMN_EVENT_CCLA(tx_cxs_lcrd_backpressure, 0x25),
|
||||
CMN_EVENT_CCLA(link_crdbuf_occ, 0x26),
|
||||
CMN_EVENT_CCLA(link_crdbuf_alloc, 0x27),
|
||||
CMN_EVENT_CCLA(pfwd_rcvr_cxs, 0x28),
|
||||
CMN_EVENT_CCLA(pfwd_sndr_num_flits, 0x29),
|
||||
CMN_EVENT_CCLA(pfwd_sndr_stalls_static_crd, 0x2a),
|
||||
CMN_EVENT_CCLA(pfwd_sndr_stalls_dynmaic_crd, 0x2b),
|
||||
|
||||
NULL
|
||||
};
|
||||
|
||||
@ -1032,6 +1309,42 @@ static void arm_cmn_event_read(struct perf_event *event)
|
||||
local64_add(delta, &event->count);
|
||||
}
|
||||
|
||||
static int arm_cmn_set_event_sel_hi(struct arm_cmn_node *dn,
|
||||
enum cmn_filter_select fsel, u8 occupid)
|
||||
{
|
||||
u64 reg;
|
||||
|
||||
if (fsel == SEL_NONE)
|
||||
return 0;
|
||||
|
||||
if (!dn->occupid[fsel].count) {
|
||||
dn->occupid[fsel].val = occupid;
|
||||
reg = FIELD_PREP(CMN__PMU_CBUSY_SNTHROTTLE_SEL,
|
||||
dn->occupid[SEL_CBUSY_SNTHROTTLE_SEL].val) |
|
||||
FIELD_PREP(CMN__PMU_CLASS_OCCUP_ID,
|
||||
dn->occupid[SEL_CLASS_OCCUP_ID].val) |
|
||||
FIELD_PREP(CMN__PMU_OCCUP1_ID,
|
||||
dn->occupid[SEL_OCCUP1ID].val);
|
||||
writel_relaxed(reg >> 32, dn->pmu_base + CMN_PMU_EVENT_SEL + 4);
|
||||
} else if (dn->occupid[fsel].val != occupid) {
|
||||
return -EBUSY;
|
||||
}
|
||||
dn->occupid[fsel].count++;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void arm_cmn_set_event_sel_lo(struct arm_cmn_node *dn, int dtm_idx,
|
||||
int eventid, bool wide_sel)
|
||||
{
|
||||
if (wide_sel) {
|
||||
dn->event_w[dtm_idx] = eventid;
|
||||
writeq_relaxed(le64_to_cpu(dn->event_sel_w), dn->pmu_base + CMN_PMU_EVENT_SEL);
|
||||
} else {
|
||||
dn->event[dtm_idx] = eventid;
|
||||
writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL);
|
||||
}
|
||||
}
|
||||
|
||||
static void arm_cmn_event_start(struct perf_event *event, int flags)
|
||||
{
|
||||
struct arm_cmn *cmn = to_cmn(event->pmu);
|
||||
@ -1058,8 +1371,8 @@ static void arm_cmn_event_start(struct perf_event *event, int flags)
|
||||
} else for_each_hw_dn(hw, dn, i) {
|
||||
int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
|
||||
|
||||
dn->event[dtm_idx] = CMN_EVENT_EVENTID(event);
|
||||
writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL);
|
||||
arm_cmn_set_event_sel_lo(dn, dtm_idx, CMN_EVENT_EVENTID(event),
|
||||
hw->wide_sel);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1086,8 +1399,7 @@ static void arm_cmn_event_stop(struct perf_event *event, int flags)
|
||||
} else for_each_hw_dn(hw, dn, i) {
|
||||
int dtm_idx = arm_cmn_get_index(hw->dtm_idx, i);
|
||||
|
||||
dn->event[dtm_idx] = 0;
|
||||
writel_relaxed(le32_to_cpu(dn->event_sel), dn->pmu_base + CMN_PMU_EVENT_SEL);
|
||||
arm_cmn_set_event_sel_lo(dn, dtm_idx, 0, hw->wide_sel);
|
||||
}
|
||||
|
||||
arm_cmn_event_read(event);
|
||||
@ -1095,7 +1407,7 @@ static void arm_cmn_event_stop(struct perf_event *event, int flags)
|
||||
|
||||
struct arm_cmn_val {
|
||||
u8 dtm_count[CMN_MAX_DTMS];
|
||||
u8 occupid[CMN_MAX_DTMS];
|
||||
u8 occupid[CMN_MAX_DTMS][SEL_MAX];
|
||||
u8 wp[CMN_MAX_DTMS][4];
|
||||
int dtc_count;
|
||||
bool cycles;
|
||||
@ -1108,7 +1420,6 @@ static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val,
|
||||
struct arm_cmn_node *dn;
|
||||
enum cmn_node_type type;
|
||||
int i;
|
||||
u8 occupid;
|
||||
|
||||
if (is_software_event(event))
|
||||
return;
|
||||
@ -1120,16 +1431,14 @@ static void arm_cmn_val_add_event(struct arm_cmn *cmn, struct arm_cmn_val *val,
|
||||
}
|
||||
|
||||
val->dtc_count++;
|
||||
if (arm_cmn_is_occup_event(cmn->model, type, CMN_EVENT_EVENTID(event)))
|
||||
occupid = CMN_EVENT_OCCUPID(event) + 1;
|
||||
else
|
||||
occupid = 0;
|
||||
|
||||
for_each_hw_dn(hw, dn, i) {
|
||||
int wp_idx, dtm = dn->dtm;
|
||||
int wp_idx, dtm = dn->dtm, sel = hw->filter_sel;
|
||||
|
||||
val->dtm_count[dtm]++;
|
||||
val->occupid[dtm] = occupid;
|
||||
|
||||
if (sel > SEL_NONE)
|
||||
val->occupid[dtm][sel] = CMN_EVENT_OCCUPID(event) + 1;
|
||||
|
||||
if (type != CMN_TYPE_WP)
|
||||
continue;
|
||||
@ -1147,7 +1456,6 @@ static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event)
|
||||
enum cmn_node_type type;
|
||||
struct arm_cmn_val *val;
|
||||
int i, ret = -EINVAL;
|
||||
u8 occupid;
|
||||
|
||||
if (leader == event)
|
||||
return 0;
|
||||
@ -1172,18 +1480,14 @@ static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event)
|
||||
if (val->dtc_count == CMN_DT_NUM_COUNTERS)
|
||||
goto done;
|
||||
|
||||
if (arm_cmn_is_occup_event(cmn->model, type, CMN_EVENT_EVENTID(event)))
|
||||
occupid = CMN_EVENT_OCCUPID(event) + 1;
|
||||
else
|
||||
occupid = 0;
|
||||
|
||||
for_each_hw_dn(hw, dn, i) {
|
||||
int wp_idx, wp_cmb, dtm = dn->dtm;
|
||||
int wp_idx, wp_cmb, dtm = dn->dtm, sel = hw->filter_sel;
|
||||
|
||||
if (val->dtm_count[dtm] == CMN_DTM_NUM_COUNTERS)
|
||||
goto done;
|
||||
|
||||
if (occupid && val->occupid[dtm] && occupid != val->occupid[dtm])
|
||||
if (sel > SEL_NONE && val->occupid[dtm][sel] &&
|
||||
val->occupid[dtm][sel] != CMN_EVENT_OCCUPID(event) + 1)
|
||||
goto done;
|
||||
|
||||
if (type != CMN_TYPE_WP)
|
||||
@ -1204,6 +1508,22 @@ static int arm_cmn_validate_group(struct arm_cmn *cmn, struct perf_event *event)
|
||||
return ret;
|
||||
}
|
||||
|
||||
static enum cmn_filter_select arm_cmn_filter_sel(enum cmn_model model,
|
||||
enum cmn_node_type type,
|
||||
unsigned int eventid)
|
||||
{
|
||||
struct arm_cmn_event_attr *e;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(arm_cmn_event_attrs) - 1; i++) {
|
||||
e = container_of(arm_cmn_event_attrs[i], typeof(*e), attr.attr);
|
||||
if (e->model & model && e->type == type && e->eventid == eventid)
|
||||
return e->fsel;
|
||||
}
|
||||
return SEL_NONE;
|
||||
}
|
||||
|
||||
|
||||
static int arm_cmn_event_init(struct perf_event *event)
|
||||
{
|
||||
struct arm_cmn *cmn = to_cmn(event->pmu);
|
||||
@ -1228,18 +1548,23 @@ static int arm_cmn_event_init(struct perf_event *event)
|
||||
if (type == CMN_TYPE_DTC)
|
||||
return 0;
|
||||
|
||||
eventid = CMN_EVENT_EVENTID(event);
|
||||
/* For watchpoints we need the actual XP node here */
|
||||
if (type == CMN_TYPE_WP) {
|
||||
type = CMN_TYPE_XP;
|
||||
/* ...and we need a "real" direction */
|
||||
eventid = CMN_EVENT_EVENTID(event);
|
||||
if (eventid != CMN_WP_UP && eventid != CMN_WP_DOWN)
|
||||
return -EINVAL;
|
||||
/* ...but the DTM may depend on which port we're watching */
|
||||
if (cmn->multi_dtm)
|
||||
hw->dtm_offset = CMN_EVENT_WP_DEV_SEL(event) / 2;
|
||||
} else if (type == CMN_TYPE_XP && cmn->model == CMN700) {
|
||||
hw->wide_sel = true;
|
||||
}
|
||||
|
||||
/* This is sufficiently annoying to recalculate, so cache it */
|
||||
hw->filter_sel = arm_cmn_filter_sel(cmn->model, type, eventid);
|
||||
|
||||
bynodeid = CMN_EVENT_BYNODEID(event);
|
||||
nodeid = CMN_EVENT_NODEID(event);
|
||||
|
||||
@ -1281,8 +1606,8 @@ static void arm_cmn_event_clear(struct arm_cmn *cmn, struct perf_event *event,
|
||||
if (type == CMN_TYPE_WP)
|
||||
dtm->wp_event[arm_cmn_wp_idx(event)] = -1;
|
||||
|
||||
if (arm_cmn_is_occup_event(cmn->model, type, CMN_EVENT_EVENTID(event)))
|
||||
hw->dn[i].occupid_count--;
|
||||
if (hw->filter_sel > SEL_NONE)
|
||||
hw->dn[i].occupid[hw->filter_sel].count--;
|
||||
|
||||
dtm->pmu_config_low &= ~CMN__PMEVCNT_PAIRED(dtm_idx);
|
||||
writel_relaxed(dtm->pmu_config_low, dtm->base + CMN_DTM_PMU_CONFIG);
|
||||
@ -1362,18 +1687,8 @@ static int arm_cmn_event_add(struct perf_event *event, int flags)
|
||||
input_sel = CMN__PMEVCNT0_INPUT_SEL_DEV + dtm_idx +
|
||||
(nid.port << 4) + (nid.dev << 2);
|
||||
|
||||
if (arm_cmn_is_occup_event(cmn->model, type, CMN_EVENT_EVENTID(event))) {
|
||||
u8 occupid = CMN_EVENT_OCCUPID(event);
|
||||
|
||||
if (dn->occupid_count == 0) {
|
||||
dn->occupid_val = occupid;
|
||||
writel_relaxed(occupid,
|
||||
dn->pmu_base + CMN_PMU_EVENT_SEL + 4);
|
||||
} else if (dn->occupid_val != occupid) {
|
||||
goto free_dtms;
|
||||
}
|
||||
dn->occupid_count++;
|
||||
}
|
||||
if (arm_cmn_set_event_sel_hi(dn, hw->filter_sel, CMN_EVENT_OCCUPID(event)))
|
||||
goto free_dtms;
|
||||
}
|
||||
|
||||
arm_cmn_set_index(hw->dtm_idx, i, dtm_idx);
|
||||
@ -1622,6 +1937,10 @@ static int arm_cmn_init_dtcs(struct arm_cmn *cmn)
|
||||
/* To the PMU, RN-Ds don't add anything over RN-Is, so smoosh them together */
|
||||
if (dn->type == CMN_TYPE_RND)
|
||||
dn->type = CMN_TYPE_RNI;
|
||||
|
||||
/* We split the RN-I off already, so let the CCLA part match CCLA events */
|
||||
if (dn->type == CMN_TYPE_CCLA_RNI)
|
||||
dn->type = CMN_TYPE_CCLA;
|
||||
}
|
||||
|
||||
writel_relaxed(CMN_DT_DTC_CTL_DT_EN, cmn->dtc[0].base + CMN_DT_DTC_CTL);
|
||||
@ -1652,6 +1971,18 @@ static void arm_cmn_init_node_info(struct arm_cmn *cmn, u32 offset, struct arm_c
|
||||
node->type, node->logid, offset);
|
||||
}
|
||||
|
||||
static enum cmn_node_type arm_cmn_subtype(enum cmn_node_type type)
|
||||
{
|
||||
switch (type) {
|
||||
case CMN_TYPE_HNP:
|
||||
return CMN_TYPE_HNI;
|
||||
case CMN_TYPE_CCLA_RNI:
|
||||
return CMN_TYPE_RNI;
|
||||
default:
|
||||
return CMN_TYPE_INVALID;
|
||||
}
|
||||
}
|
||||
|
||||
static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
{
|
||||
void __iomem *cfg_region;
|
||||
@ -1676,6 +2007,10 @@ static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
cmn->rsp_vc_num = FIELD_GET(CMN_INFO_RSP_VC_NUM, reg);
|
||||
cmn->dat_vc_num = FIELD_GET(CMN_INFO_DAT_VC_NUM, reg);
|
||||
|
||||
reg = readq_relaxed(cfg_region + CMN_CFGM_INFO_GLOBAL_1);
|
||||
cmn->snp_vc_num = FIELD_GET(CMN_INFO_SNP_VC_NUM, reg);
|
||||
cmn->req_vc_num = FIELD_GET(CMN_INFO_REQ_VC_NUM, reg);
|
||||
|
||||
reg = readq_relaxed(cfg_region + CMN_CHILD_INFO);
|
||||
child_count = FIELD_GET(CMN_CI_CHILD_COUNT, reg);
|
||||
child_poff = FIELD_GET(CMN_CI_CHILD_PTR_OFFSET, reg);
|
||||
@ -1692,8 +2027,13 @@ static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
cmn->num_dns += FIELD_GET(CMN_CI_CHILD_COUNT, reg);
|
||||
}
|
||||
|
||||
/* Cheeky +1 to help terminate pointer-based iteration later */
|
||||
dn = devm_kcalloc(cmn->dev, cmn->num_dns + 1, sizeof(*dn), GFP_KERNEL);
|
||||
/*
|
||||
* Some nodes effectively have two separate types, which we'll handle
|
||||
* by creating one of each internally. For a (very) safe initial upper
|
||||
* bound, account for double the number of non-XP nodes.
|
||||
*/
|
||||
dn = devm_kcalloc(cmn->dev, cmn->num_dns * 2 - cmn->num_xps,
|
||||
sizeof(*dn), GFP_KERNEL);
|
||||
if (!dn)
|
||||
return -ENOMEM;
|
||||
|
||||
@ -1794,6 +2134,9 @@ static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
case CMN_TYPE_MTSX:
|
||||
case CMN_TYPE_CXRA:
|
||||
case CMN_TYPE_CXHA:
|
||||
case CMN_TYPE_CCRA:
|
||||
case CMN_TYPE_CCHA:
|
||||
case CMN_TYPE_CCLA:
|
||||
dn++;
|
||||
break;
|
||||
/* Nothing to see here */
|
||||
@ -1802,6 +2145,19 @@ static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
case CMN_TYPE_RNSAM:
|
||||
case CMN_TYPE_CXLA:
|
||||
break;
|
||||
/*
|
||||
* Split "optimised" combination nodes into separate
|
||||
* types for the different event sets. Offsetting the
|
||||
* base address lets us handle the second pmu_event_sel
|
||||
* register via the normal mechanism later.
|
||||
*/
|
||||
case CMN_TYPE_HNP:
|
||||
case CMN_TYPE_CCLA_RNI:
|
||||
dn[1] = dn[0];
|
||||
dn[0].pmu_base += CMN_HNP_PMU_EVENT_SEL;
|
||||
dn[1].type = arm_cmn_subtype(dn->type);
|
||||
dn += 2;
|
||||
break;
|
||||
/* Something has gone horribly wrong */
|
||||
default:
|
||||
dev_err(cmn->dev, "invalid device node type: 0x%x\n", dn->type);
|
||||
@ -1810,9 +2166,10 @@ static int arm_cmn_discover(struct arm_cmn *cmn, unsigned int rgn_offset)
|
||||
}
|
||||
}
|
||||
|
||||
/* Correct for any nodes we skipped */
|
||||
/* Correct for any nodes we added or skipped */
|
||||
cmn->num_dns = dn - cmn->dns;
|
||||
|
||||
/* Cheeky +1 to help terminate pointer-based iteration later */
|
||||
sz = (void *)(dn + 1) - (void *)cmn->dns;
|
||||
dn = devm_krealloc(cmn->dev, cmn->dns, sz, GFP_KERNEL);
|
||||
if (dn)
|
||||
@ -1970,6 +2327,8 @@ static int arm_cmn_remove(struct platform_device *pdev)
|
||||
#ifdef CONFIG_OF
|
||||
static const struct of_device_id arm_cmn_of_match[] = {
|
||||
{ .compatible = "arm,cmn-600", .data = (void *)CMN600 },
|
||||
{ .compatible = "arm,cmn-650", .data = (void *)CMN650 },
|
||||
{ .compatible = "arm,cmn-700", .data = (void *)CMN700 },
|
||||
{ .compatible = "arm,ci-700", .data = (void *)CI700 },
|
||||
{}
|
||||
};
|
||||
@ -1979,6 +2338,8 @@ MODULE_DEVICE_TABLE(of, arm_cmn_of_match);
|
||||
#ifdef CONFIG_ACPI
|
||||
static const struct acpi_device_id arm_cmn_acpi_match[] = {
|
||||
{ "ARMHC600", CMN600 },
|
||||
{ "ARMHC650", CMN650 },
|
||||
{ "ARMHC700", CMN700 },
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(acpi, arm_cmn_acpi_match);
|
||||
|
@ -159,7 +159,9 @@ static int arm_pmu_acpi_parse_irqs(void)
|
||||
* them with their PMUs.
|
||||
*/
|
||||
per_cpu(pmu_irqs, cpu) = irq;
|
||||
armpmu_request_irq(irq, cpu);
|
||||
err = armpmu_request_irq(irq, cpu);
|
||||
if (err)
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
@ -1035,6 +1035,9 @@ static void __arm_spe_pmu_dev_probe(void *info)
|
||||
fallthrough;
|
||||
case 2:
|
||||
spe_pmu->counter_sz = 12;
|
||||
break;
|
||||
case 3:
|
||||
spe_pmu->counter_sz = 16;
|
||||
}
|
||||
|
||||
dev_info(dev,
|
||||
|
@ -1,6 +1,6 @@
|
||||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
obj-$(CONFIG_HISI_PMU) += hisi_uncore_pmu.o hisi_uncore_l3c_pmu.o \
|
||||
hisi_uncore_hha_pmu.o hisi_uncore_ddrc_pmu.o hisi_uncore_sllc_pmu.o \
|
||||
hisi_uncore_pa_pmu.o
|
||||
hisi_uncore_pa_pmu.o hisi_uncore_cpa_pmu.o
|
||||
|
||||
obj-$(CONFIG_HISI_PCIE_PMU) += hisi_pcie_pmu.o
|
||||
|
409
drivers/perf/hisilicon/hisi_uncore_cpa_pmu.c
Normal file
409
drivers/perf/hisilicon/hisi_uncore_cpa_pmu.c
Normal file
@ -0,0 +1,409 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* HiSilicon SoC CPA(Coherency Protocol Agent) hardware event counters support
|
||||
*
|
||||
* Copyright (C) 2022 HiSilicon Limited
|
||||
* Author: Qi Liu <liuqi115@huawei.com>
|
||||
*
|
||||
* This code is based on the uncore PMUs like arm-cci and arm-ccn.
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) "cpa pmu: " fmt
|
||||
#include <linux/acpi.h>
|
||||
#include <linux/bug.h>
|
||||
#include <linux/cpuhotplug.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/smp.h>
|
||||
|
||||
#include "hisi_uncore_pmu.h"
|
||||
|
||||
/* CPA register definition */
|
||||
#define CPA_PERF_CTRL 0x1c00
|
||||
#define CPA_EVENT_CTRL 0x1c04
|
||||
#define CPA_INT_MASK 0x1c70
|
||||
#define CPA_INT_STATUS 0x1c78
|
||||
#define CPA_INT_CLEAR 0x1c7c
|
||||
#define CPA_EVENT_TYPE0 0x1c80
|
||||
#define CPA_VERSION 0x1cf0
|
||||
#define CPA_CNT0_LOWER 0x1d00
|
||||
#define CPA_CFG_REG 0x0534
|
||||
|
||||
/* CPA operation command */
|
||||
#define CPA_PERF_CTRL_EN BIT_ULL(0)
|
||||
#define CPA_EVTYPE_MASK 0xffUL
|
||||
#define CPA_PM_CTRL BIT_ULL(9)
|
||||
|
||||
/* CPA has 8-counters */
|
||||
#define CPA_NR_COUNTERS 0x8
|
||||
#define CPA_COUNTER_BITS 64
|
||||
#define CPA_NR_EVENTS 0xff
|
||||
#define CPA_REG_OFFSET 0x8
|
||||
|
||||
static u32 hisi_cpa_pmu_get_counter_offset(int idx)
|
||||
{
|
||||
return (CPA_CNT0_LOWER + idx * CPA_REG_OFFSET);
|
||||
}
|
||||
|
||||
static u64 hisi_cpa_pmu_read_counter(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc)
|
||||
{
|
||||
return readq(cpa_pmu->base + hisi_cpa_pmu_get_counter_offset(hwc->idx));
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_write_counter(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc, u64 val)
|
||||
{
|
||||
writeq(val, cpa_pmu->base + hisi_cpa_pmu_get_counter_offset(hwc->idx));
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_write_evtype(struct hisi_pmu *cpa_pmu, int idx,
|
||||
u32 type)
|
||||
{
|
||||
u32 reg, reg_idx, shift, val;
|
||||
|
||||
/*
|
||||
* Select the appropriate event select register(CPA_EVENT_TYPE0/1).
|
||||
* There are 2 event select registers for the 8 hardware counters.
|
||||
* Event code is 8-bits and for the former 4 hardware counters,
|
||||
* CPA_EVENT_TYPE0 is chosen. For the latter 4 hardware counters,
|
||||
* CPA_EVENT_TYPE1 is chosen.
|
||||
*/
|
||||
reg = CPA_EVENT_TYPE0 + (idx / 4) * 4;
|
||||
reg_idx = idx % 4;
|
||||
shift = CPA_REG_OFFSET * reg_idx;
|
||||
|
||||
/* Write event code to CPA_EVENT_TYPEx Register */
|
||||
val = readl(cpa_pmu->base + reg);
|
||||
val &= ~(CPA_EVTYPE_MASK << shift);
|
||||
val |= type << shift;
|
||||
writel(val, cpa_pmu->base + reg);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_start_counters(struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
val = readl(cpa_pmu->base + CPA_PERF_CTRL);
|
||||
val |= CPA_PERF_CTRL_EN;
|
||||
writel(val, cpa_pmu->base + CPA_PERF_CTRL);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_stop_counters(struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
val = readl(cpa_pmu->base + CPA_PERF_CTRL);
|
||||
val &= ~(CPA_PERF_CTRL_EN);
|
||||
writel(val, cpa_pmu->base + CPA_PERF_CTRL);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_disable_pm(struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
val = readl(cpa_pmu->base + CPA_CFG_REG);
|
||||
val |= CPA_PM_CTRL;
|
||||
writel(val, cpa_pmu->base + CPA_CFG_REG);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_enable_pm(struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
val = readl(cpa_pmu->base + CPA_CFG_REG);
|
||||
val &= ~(CPA_PM_CTRL);
|
||||
writel(val, cpa_pmu->base + CPA_CFG_REG);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_enable_counter(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
/* Enable counter index in CPA_EVENT_CTRL register */
|
||||
val = readl(cpa_pmu->base + CPA_EVENT_CTRL);
|
||||
val |= 1 << hwc->idx;
|
||||
writel(val, cpa_pmu->base + CPA_EVENT_CTRL);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_disable_counter(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
/* Clear counter index in CPA_EVENT_CTRL register */
|
||||
val = readl(cpa_pmu->base + CPA_EVENT_CTRL);
|
||||
val &= ~(1UL << hwc->idx);
|
||||
writel(val, cpa_pmu->base + CPA_EVENT_CTRL);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_enable_counter_int(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
/* Write 0 to enable interrupt */
|
||||
val = readl(cpa_pmu->base + CPA_INT_MASK);
|
||||
val &= ~(1UL << hwc->idx);
|
||||
writel(val, cpa_pmu->base + CPA_INT_MASK);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_disable_counter_int(struct hisi_pmu *cpa_pmu,
|
||||
struct hw_perf_event *hwc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
/* Write 1 to mask interrupt */
|
||||
val = readl(cpa_pmu->base + CPA_INT_MASK);
|
||||
val |= 1 << hwc->idx;
|
||||
writel(val, cpa_pmu->base + CPA_INT_MASK);
|
||||
}
|
||||
|
||||
static u32 hisi_cpa_pmu_get_int_status(struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
return readl(cpa_pmu->base + CPA_INT_STATUS);
|
||||
}
|
||||
|
||||
static void hisi_cpa_pmu_clear_int_status(struct hisi_pmu *cpa_pmu, int idx)
|
||||
{
|
||||
writel(1 << idx, cpa_pmu->base + CPA_INT_CLEAR);
|
||||
}
|
||||
|
||||
static const struct acpi_device_id hisi_cpa_pmu_acpi_match[] = {
|
||||
{ "HISI0281", },
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(acpi, hisi_cpa_pmu_acpi_match);
|
||||
|
||||
static int hisi_cpa_pmu_init_data(struct platform_device *pdev,
|
||||
struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
if (device_property_read_u32(&pdev->dev, "hisilicon,scl-id",
|
||||
&cpa_pmu->sicl_id)) {
|
||||
dev_err(&pdev->dev, "Can not read sicl-id\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (device_property_read_u32(&pdev->dev, "hisilicon,idx-id",
|
||||
&cpa_pmu->index_id)) {
|
||||
dev_err(&pdev->dev, "Cannot read idx-id\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
cpa_pmu->ccl_id = -1;
|
||||
cpa_pmu->sccl_id = -1;
|
||||
cpa_pmu->base = devm_platform_ioremap_resource(pdev, 0);
|
||||
if (IS_ERR(cpa_pmu->base))
|
||||
return PTR_ERR(cpa_pmu->base);
|
||||
|
||||
cpa_pmu->identifier = readl(cpa_pmu->base + CPA_VERSION);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct attribute *hisi_cpa_pmu_format_attr[] = {
|
||||
HISI_PMU_FORMAT_ATTR(event, "config:0-15"),
|
||||
NULL
|
||||
};
|
||||
|
||||
static const struct attribute_group hisi_cpa_pmu_format_group = {
|
||||
.name = "format",
|
||||
.attrs = hisi_cpa_pmu_format_attr,
|
||||
};
|
||||
|
||||
static struct attribute *hisi_cpa_pmu_events_attr[] = {
|
||||
HISI_PMU_EVENT_ATTR(cpa_cycles, 0x00),
|
||||
HISI_PMU_EVENT_ATTR(cpa_p1_wr_dat, 0x61),
|
||||
HISI_PMU_EVENT_ATTR(cpa_p1_rd_dat, 0x62),
|
||||
HISI_PMU_EVENT_ATTR(cpa_p0_wr_dat, 0xE1),
|
||||
HISI_PMU_EVENT_ATTR(cpa_p0_rd_dat, 0xE2),
|
||||
NULL
|
||||
};
|
||||
|
||||
static const struct attribute_group hisi_cpa_pmu_events_group = {
|
||||
.name = "events",
|
||||
.attrs = hisi_cpa_pmu_events_attr,
|
||||
};
|
||||
|
||||
static DEVICE_ATTR(cpumask, 0444, hisi_cpumask_sysfs_show, NULL);
|
||||
|
||||
static struct attribute *hisi_cpa_pmu_cpumask_attrs[] = {
|
||||
&dev_attr_cpumask.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static const struct attribute_group hisi_cpa_pmu_cpumask_attr_group = {
|
||||
.attrs = hisi_cpa_pmu_cpumask_attrs,
|
||||
};
|
||||
|
||||
static struct device_attribute hisi_cpa_pmu_identifier_attr =
|
||||
__ATTR(identifier, 0444, hisi_uncore_pmu_identifier_attr_show, NULL);
|
||||
|
||||
static struct attribute *hisi_cpa_pmu_identifier_attrs[] = {
|
||||
&hisi_cpa_pmu_identifier_attr.attr,
|
||||
NULL
|
||||
};
|
||||
|
||||
static const struct attribute_group hisi_cpa_pmu_identifier_group = {
|
||||
.attrs = hisi_cpa_pmu_identifier_attrs,
|
||||
};
|
||||
|
||||
static const struct attribute_group *hisi_cpa_pmu_attr_groups[] = {
|
||||
&hisi_cpa_pmu_format_group,
|
||||
&hisi_cpa_pmu_events_group,
|
||||
&hisi_cpa_pmu_cpumask_attr_group,
|
||||
&hisi_cpa_pmu_identifier_group,
|
||||
NULL
|
||||
};
|
||||
|
||||
static const struct hisi_uncore_ops hisi_uncore_cpa_pmu_ops = {
|
||||
.write_evtype = hisi_cpa_pmu_write_evtype,
|
||||
.get_event_idx = hisi_uncore_pmu_get_event_idx,
|
||||
.start_counters = hisi_cpa_pmu_start_counters,
|
||||
.stop_counters = hisi_cpa_pmu_stop_counters,
|
||||
.enable_counter = hisi_cpa_pmu_enable_counter,
|
||||
.disable_counter = hisi_cpa_pmu_disable_counter,
|
||||
.enable_counter_int = hisi_cpa_pmu_enable_counter_int,
|
||||
.disable_counter_int = hisi_cpa_pmu_disable_counter_int,
|
||||
.write_counter = hisi_cpa_pmu_write_counter,
|
||||
.read_counter = hisi_cpa_pmu_read_counter,
|
||||
.get_int_status = hisi_cpa_pmu_get_int_status,
|
||||
.clear_int_status = hisi_cpa_pmu_clear_int_status,
|
||||
};
|
||||
|
||||
static int hisi_cpa_pmu_dev_probe(struct platform_device *pdev,
|
||||
struct hisi_pmu *cpa_pmu)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = hisi_cpa_pmu_init_data(pdev, cpa_pmu);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ret = hisi_uncore_pmu_init_irq(cpa_pmu, pdev);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
cpa_pmu->counter_bits = CPA_COUNTER_BITS;
|
||||
cpa_pmu->check_event = CPA_NR_EVENTS;
|
||||
cpa_pmu->pmu_events.attr_groups = hisi_cpa_pmu_attr_groups;
|
||||
cpa_pmu->ops = &hisi_uncore_cpa_pmu_ops;
|
||||
cpa_pmu->num_counters = CPA_NR_COUNTERS;
|
||||
cpa_pmu->dev = &pdev->dev;
|
||||
cpa_pmu->on_cpu = -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int hisi_cpa_pmu_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct hisi_pmu *cpa_pmu;
|
||||
char *name;
|
||||
int ret;
|
||||
|
||||
cpa_pmu = devm_kzalloc(&pdev->dev, sizeof(*cpa_pmu), GFP_KERNEL);
|
||||
if (!cpa_pmu)
|
||||
return -ENOMEM;
|
||||
|
||||
ret = hisi_cpa_pmu_dev_probe(pdev, cpa_pmu);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "hisi_sicl%d_cpa%u",
|
||||
cpa_pmu->sicl_id, cpa_pmu->index_id);
|
||||
if (!name)
|
||||
return -ENOMEM;
|
||||
|
||||
cpa_pmu->pmu = (struct pmu) {
|
||||
.name = name,
|
||||
.module = THIS_MODULE,
|
||||
.task_ctx_nr = perf_invalid_context,
|
||||
.event_init = hisi_uncore_pmu_event_init,
|
||||
.pmu_enable = hisi_uncore_pmu_enable,
|
||||
.pmu_disable = hisi_uncore_pmu_disable,
|
||||
.add = hisi_uncore_pmu_add,
|
||||
.del = hisi_uncore_pmu_del,
|
||||
.start = hisi_uncore_pmu_start,
|
||||
.stop = hisi_uncore_pmu_stop,
|
||||
.read = hisi_uncore_pmu_read,
|
||||
.attr_groups = cpa_pmu->pmu_events.attr_groups,
|
||||
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
|
||||
};
|
||||
|
||||
/* Power Management should be disabled before using CPA PMU. */
|
||||
hisi_cpa_pmu_disable_pm(cpa_pmu);
|
||||
ret = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE,
|
||||
&cpa_pmu->node);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "Error %d registering hotplug\n", ret);
|
||||
hisi_cpa_pmu_enable_pm(cpa_pmu);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = perf_pmu_register(&cpa_pmu->pmu, name, -1);
|
||||
if (ret) {
|
||||
dev_err(cpa_pmu->dev, "PMU register failed\n");
|
||||
cpuhp_state_remove_instance_nocalls(
|
||||
CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE, &cpa_pmu->node);
|
||||
hisi_cpa_pmu_enable_pm(cpa_pmu);
|
||||
return ret;
|
||||
}
|
||||
|
||||
platform_set_drvdata(pdev, cpa_pmu);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int hisi_cpa_pmu_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct hisi_pmu *cpa_pmu = platform_get_drvdata(pdev);
|
||||
|
||||
perf_pmu_unregister(&cpa_pmu->pmu);
|
||||
cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE,
|
||||
&cpa_pmu->node);
|
||||
hisi_cpa_pmu_enable_pm(cpa_pmu);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct platform_driver hisi_cpa_pmu_driver = {
|
||||
.driver = {
|
||||
.name = "hisi_cpa_pmu",
|
||||
.acpi_match_table = ACPI_PTR(hisi_cpa_pmu_acpi_match),
|
||||
.suppress_bind_attrs = true,
|
||||
},
|
||||
.probe = hisi_cpa_pmu_probe,
|
||||
.remove = hisi_cpa_pmu_remove,
|
||||
};
|
||||
|
||||
static int __init hisi_cpa_pmu_module_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE,
|
||||
"AP_PERF_ARM_HISI_CPA_ONLINE",
|
||||
hisi_uncore_pmu_online_cpu,
|
||||
hisi_uncore_pmu_offline_cpu);
|
||||
if (ret) {
|
||||
pr_err("setup hotplug failed: %d\n", ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = platform_driver_register(&hisi_cpa_pmu_driver);
|
||||
if (ret)
|
||||
cpuhp_remove_multi_state(CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE);
|
||||
|
||||
return ret;
|
||||
}
|
||||
module_init(hisi_cpa_pmu_module_init);
|
||||
|
||||
static void __exit hisi_cpa_pmu_module_exit(void)
|
||||
{
|
||||
platform_driver_unregister(&hisi_cpa_pmu_driver);
|
||||
cpuhp_remove_multi_state(CPUHP_AP_PERF_ARM_HISI_CPA_ONLINE);
|
||||
}
|
||||
module_exit(hisi_cpa_pmu_module_exit);
|
||||
|
||||
MODULE_DESCRIPTION("HiSilicon SoC CPA PMU driver");
|
||||
MODULE_LICENSE("GPL v2");
|
||||
MODULE_AUTHOR("Qi Liu <liuqi115@huawei.com>");
|
@ -258,13 +258,12 @@ static int hisi_pa_pmu_init_data(struct platform_device *pdev,
|
||||
struct hisi_pmu *pa_pmu)
|
||||
{
|
||||
/*
|
||||
* Use the SCCL_ID and the index ID to identify the PA PMU,
|
||||
* while SCCL_ID is the nearst SCCL_ID from this SICL and
|
||||
* CPU core is chosen from this SCCL to manage this PMU.
|
||||
* As PA PMU is in a SICL, use the SICL_ID and the index ID
|
||||
* to identify the PA PMU.
|
||||
*/
|
||||
if (device_property_read_u32(&pdev->dev, "hisilicon,scl-id",
|
||||
&pa_pmu->sccl_id)) {
|
||||
dev_err(&pdev->dev, "Cannot read sccl-id!\n");
|
||||
&pa_pmu->sicl_id)) {
|
||||
dev_err(&pdev->dev, "Cannot read sicl-id!\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
@ -275,6 +274,7 @@ static int hisi_pa_pmu_init_data(struct platform_device *pdev,
|
||||
}
|
||||
|
||||
pa_pmu->ccl_id = -1;
|
||||
pa_pmu->sccl_id = -1;
|
||||
|
||||
pa_pmu->base = devm_platform_ioremap_resource(pdev, 0);
|
||||
if (IS_ERR(pa_pmu->base)) {
|
||||
@ -399,13 +399,9 @@ static int hisi_pa_pmu_probe(struct platform_device *pdev)
|
||||
ret = hisi_pa_pmu_dev_probe(pdev, pa_pmu);
|
||||
if (ret)
|
||||
return ret;
|
||||
/*
|
||||
* PA is attached in SICL and the CPU core is chosen to manage this
|
||||
* PMU which is the nearest SCCL, while its SCCL_ID is greater than
|
||||
* one with the SICL_ID.
|
||||
*/
|
||||
|
||||
name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "hisi_sicl%u_pa%u",
|
||||
pa_pmu->sccl_id - 1, pa_pmu->index_id);
|
||||
pa_pmu->sicl_id, pa_pmu->index_id);
|
||||
if (!name)
|
||||
return -ENOMEM;
|
||||
|
||||
|
@ -458,6 +458,10 @@ static bool hisi_pmu_cpu_is_associated_pmu(struct hisi_pmu *hisi_pmu)
|
||||
{
|
||||
int sccl_id, ccl_id;
|
||||
|
||||
/* If SCCL_ID is -1, the PMU is in a SICL and has no CPU affinity */
|
||||
if (hisi_pmu->sccl_id == -1)
|
||||
return true;
|
||||
|
||||
if (hisi_pmu->ccl_id == -1) {
|
||||
/* If CCL_ID is -1, the PMU only shares the same SCCL */
|
||||
hisi_read_sccl_and_ccl_id(&sccl_id, NULL);
|
||||
|
@ -81,6 +81,7 @@ struct hisi_pmu {
|
||||
struct device *dev;
|
||||
struct hlist_node node;
|
||||
int sccl_id;
|
||||
int sicl_id;
|
||||
int ccl_id;
|
||||
void __iomem *base;
|
||||
/* the ID of the PMU modules */
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user