mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-09 23:00:21 +00:00
Merge branch 'slub/cleanups' into slab/next
* Fix a merge conflict in mm/slub.c::acquire_slab() due to commit 02d7633 ("slub: fix a memory leak in get_partial_node()"). Conflicts: mm/slub.c Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
commit
23910c50cc
@ -48,7 +48,6 @@ struct kmem_cache_cpu {
|
||||
unsigned long tid; /* Globally unique transaction id */
|
||||
struct page *page; /* The slab from which we are allocating */
|
||||
struct page *partial; /* Partially allocated frozen slabs */
|
||||
int node; /* The node of the page (or -1 for debug) */
|
||||
#ifdef CONFIG_SLUB_STATS
|
||||
unsigned stat[NR_SLUB_STAT_ITEMS];
|
||||
#endif
|
||||
|
173
mm/slub.c
173
mm/slub.c
@ -1490,12 +1490,12 @@ static inline void remove_partial(struct kmem_cache_node *n,
|
||||
}
|
||||
|
||||
/*
|
||||
* Lock slab, remove from the partial list and put the object into the
|
||||
* per cpu freelist.
|
||||
* Remove slab from the partial list, freeze it and
|
||||
* return the pointer to the freelist.
|
||||
*
|
||||
* Returns a list of objects or NULL if it fails.
|
||||
*
|
||||
* Must hold list_lock.
|
||||
* Must hold list_lock since we modify the partial list.
|
||||
*/
|
||||
static inline void *acquire_slab(struct kmem_cache *s,
|
||||
struct kmem_cache_node *n, struct page *page,
|
||||
@ -1510,26 +1510,27 @@ static inline void *acquire_slab(struct kmem_cache *s,
|
||||
* The old freelist is the list of objects for the
|
||||
* per cpu allocation list.
|
||||
*/
|
||||
do {
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
if (mode) {
|
||||
new.inuse = page->objects;
|
||||
new.freelist = NULL;
|
||||
} else {
|
||||
new.freelist = freelist;
|
||||
}
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
if (mode) {
|
||||
new.inuse = page->objects;
|
||||
new.freelist = NULL;
|
||||
} else {
|
||||
new.freelist = freelist;
|
||||
}
|
||||
|
||||
VM_BUG_ON(new.frozen);
|
||||
new.frozen = 1;
|
||||
VM_BUG_ON(new.frozen);
|
||||
new.frozen = 1;
|
||||
|
||||
} while (!__cmpxchg_double_slab(s, page,
|
||||
if (!__cmpxchg_double_slab(s, page,
|
||||
freelist, counters,
|
||||
new.freelist, new.counters,
|
||||
"lock and freeze"));
|
||||
"acquire_slab"))
|
||||
return NULL;
|
||||
|
||||
remove_partial(n, page);
|
||||
WARN_ON(!freelist);
|
||||
return freelist;
|
||||
}
|
||||
|
||||
@ -1563,7 +1564,6 @@ static void *get_partial_node(struct kmem_cache *s,
|
||||
|
||||
if (!object) {
|
||||
c->page = page;
|
||||
c->node = page_to_nid(page);
|
||||
stat(s, ALLOC_FROM_PARTIAL);
|
||||
object = t;
|
||||
available = page->objects - page->inuse;
|
||||
@ -1731,14 +1731,12 @@ void init_kmem_cache_cpus(struct kmem_cache *s)
|
||||
/*
|
||||
* Remove the cpu slab
|
||||
*/
|
||||
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
|
||||
{
|
||||
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
|
||||
struct page *page = c->page;
|
||||
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
|
||||
int lock = 0;
|
||||
enum slab_modes l = M_NONE, m = M_NONE;
|
||||
void *freelist;
|
||||
void *nextfree;
|
||||
int tail = DEACTIVATE_TO_HEAD;
|
||||
struct page new;
|
||||
@ -1749,11 +1747,6 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
tail = DEACTIVATE_TO_TAIL;
|
||||
}
|
||||
|
||||
c->tid = next_tid(c->tid);
|
||||
c->page = NULL;
|
||||
freelist = c->freelist;
|
||||
c->freelist = NULL;
|
||||
|
||||
/*
|
||||
* Stage one: Free all available per cpu objects back
|
||||
* to the page freelist while it is still frozen. Leave the
|
||||
@ -2011,7 +2004,11 @@ int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
|
||||
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
{
|
||||
stat(s, CPUSLAB_FLUSH);
|
||||
deactivate_slab(s, c);
|
||||
deactivate_slab(s, c->page, c->freelist);
|
||||
|
||||
c->tid = next_tid(c->tid);
|
||||
c->page = NULL;
|
||||
c->freelist = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2055,10 +2052,10 @@ static void flush_all(struct kmem_cache *s)
|
||||
* Check if the objects in a per cpu structure fit numa
|
||||
* locality expectations.
|
||||
*/
|
||||
static inline int node_match(struct kmem_cache_cpu *c, int node)
|
||||
static inline int node_match(struct page *page, int node)
|
||||
{
|
||||
#ifdef CONFIG_NUMA
|
||||
if (node != NUMA_NO_NODE && c->node != node)
|
||||
if (node != NUMA_NO_NODE && page_to_nid(page) != node)
|
||||
return 0;
|
||||
#endif
|
||||
return 1;
|
||||
@ -2130,10 +2127,16 @@ slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
|
||||
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
|
||||
int node, struct kmem_cache_cpu **pc)
|
||||
{
|
||||
void *object;
|
||||
struct kmem_cache_cpu *c;
|
||||
struct page *page = new_slab(s, flags, node);
|
||||
void *freelist;
|
||||
struct kmem_cache_cpu *c = *pc;
|
||||
struct page *page;
|
||||
|
||||
freelist = get_partial(s, flags, node, c);
|
||||
|
||||
if (freelist)
|
||||
return freelist;
|
||||
|
||||
page = new_slab(s, flags, node);
|
||||
if (page) {
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
if (c->page)
|
||||
@ -2143,17 +2146,16 @@ static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
|
||||
* No other reference to the page yet so we can
|
||||
* muck around with it freely without cmpxchg
|
||||
*/
|
||||
object = page->freelist;
|
||||
freelist = page->freelist;
|
||||
page->freelist = NULL;
|
||||
|
||||
stat(s, ALLOC_SLAB);
|
||||
c->node = page_to_nid(page);
|
||||
c->page = page;
|
||||
*pc = c;
|
||||
} else
|
||||
object = NULL;
|
||||
freelist = NULL;
|
||||
|
||||
return object;
|
||||
return freelist;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2173,6 +2175,7 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
|
||||
do {
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
|
||||
new.counters = counters;
|
||||
VM_BUG_ON(!new.frozen);
|
||||
|
||||
@ -2206,7 +2209,8 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
|
||||
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
unsigned long addr, struct kmem_cache_cpu *c)
|
||||
{
|
||||
void **object;
|
||||
void *freelist;
|
||||
struct page *page;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
@ -2219,25 +2223,29 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
||||
c = this_cpu_ptr(s->cpu_slab);
|
||||
#endif
|
||||
|
||||
if (!c->page)
|
||||
page = c->page;
|
||||
if (!page)
|
||||
goto new_slab;
|
||||
redo:
|
||||
if (unlikely(!node_match(c, node))) {
|
||||
|
||||
if (unlikely(!node_match(page, node))) {
|
||||
stat(s, ALLOC_NODE_MISMATCH);
|
||||
deactivate_slab(s, c);
|
||||
deactivate_slab(s, page, c->freelist);
|
||||
c->page = NULL;
|
||||
c->freelist = NULL;
|
||||
goto new_slab;
|
||||
}
|
||||
|
||||
/* must check again c->freelist in case of cpu migration or IRQ */
|
||||
object = c->freelist;
|
||||
if (object)
|
||||
freelist = c->freelist;
|
||||
if (freelist)
|
||||
goto load_freelist;
|
||||
|
||||
stat(s, ALLOC_SLOWPATH);
|
||||
|
||||
object = get_freelist(s, c->page);
|
||||
freelist = get_freelist(s, page);
|
||||
|
||||
if (!object) {
|
||||
if (!freelist) {
|
||||
c->page = NULL;
|
||||
stat(s, DEACTIVATE_BYPASS);
|
||||
goto new_slab;
|
||||
@ -2246,50 +2254,50 @@ redo:
|
||||
stat(s, ALLOC_REFILL);
|
||||
|
||||
load_freelist:
|
||||
c->freelist = get_freepointer(s, object);
|
||||
/*
|
||||
* freelist is pointing to the list of objects to be used.
|
||||
* page is pointing to the page from which the objects are obtained.
|
||||
* That page must be frozen for per cpu allocations to work.
|
||||
*/
|
||||
VM_BUG_ON(!c->page->frozen);
|
||||
c->freelist = get_freepointer(s, freelist);
|
||||
c->tid = next_tid(c->tid);
|
||||
local_irq_restore(flags);
|
||||
return object;
|
||||
return freelist;
|
||||
|
||||
new_slab:
|
||||
|
||||
if (c->partial) {
|
||||
c->page = c->partial;
|
||||
c->partial = c->page->next;
|
||||
c->node = page_to_nid(c->page);
|
||||
page = c->page = c->partial;
|
||||
c->partial = page->next;
|
||||
stat(s, CPU_PARTIAL_ALLOC);
|
||||
c->freelist = NULL;
|
||||
goto redo;
|
||||
}
|
||||
|
||||
/* Then do expensive stuff like retrieving pages from the partial lists */
|
||||
object = get_partial(s, gfpflags, node, c);
|
||||
freelist = new_slab_objects(s, gfpflags, node, &c);
|
||||
|
||||
if (unlikely(!object)) {
|
||||
if (unlikely(!freelist)) {
|
||||
if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
|
||||
slab_out_of_memory(s, gfpflags, node);
|
||||
|
||||
object = new_slab_objects(s, gfpflags, node, &c);
|
||||
|
||||
if (unlikely(!object)) {
|
||||
if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
|
||||
slab_out_of_memory(s, gfpflags, node);
|
||||
|
||||
local_irq_restore(flags);
|
||||
return NULL;
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
page = c->page;
|
||||
if (likely(!kmem_cache_debug(s)))
|
||||
goto load_freelist;
|
||||
|
||||
/* Only entered in the debug case */
|
||||
if (!alloc_debug_processing(s, c->page, object, addr))
|
||||
if (!alloc_debug_processing(s, page, freelist, addr))
|
||||
goto new_slab; /* Slab failed checks. Next slab needed */
|
||||
|
||||
c->freelist = get_freepointer(s, object);
|
||||
deactivate_slab(s, c);
|
||||
c->node = NUMA_NO_NODE;
|
||||
deactivate_slab(s, page, get_freepointer(s, freelist));
|
||||
c->page = NULL;
|
||||
c->freelist = NULL;
|
||||
local_irq_restore(flags);
|
||||
return object;
|
||||
return freelist;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2307,6 +2315,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
|
||||
{
|
||||
void **object;
|
||||
struct kmem_cache_cpu *c;
|
||||
struct page *page;
|
||||
unsigned long tid;
|
||||
|
||||
if (slab_pre_alloc_hook(s, gfpflags))
|
||||
@ -2332,7 +2341,8 @@ redo:
|
||||
barrier();
|
||||
|
||||
object = c->freelist;
|
||||
if (unlikely(!object || !node_match(c, node)))
|
||||
page = c->page;
|
||||
if (unlikely(!object || !node_match(page, node)))
|
||||
|
||||
object = __slab_alloc(s, gfpflags, node, addr, c);
|
||||
|
||||
@ -4500,30 +4510,31 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
|
||||
|
||||
for_each_possible_cpu(cpu) {
|
||||
struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
|
||||
int node = ACCESS_ONCE(c->node);
|
||||
int node;
|
||||
struct page *page;
|
||||
|
||||
if (node < 0)
|
||||
continue;
|
||||
page = ACCESS_ONCE(c->page);
|
||||
if (page) {
|
||||
if (flags & SO_TOTAL)
|
||||
x = page->objects;
|
||||
else if (flags & SO_OBJECTS)
|
||||
x = page->inuse;
|
||||
else
|
||||
x = 1;
|
||||
if (!page)
|
||||
continue;
|
||||
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
}
|
||||
page = c->partial;
|
||||
node = page_to_nid(page);
|
||||
if (flags & SO_TOTAL)
|
||||
x = page->objects;
|
||||
else if (flags & SO_OBJECTS)
|
||||
x = page->inuse;
|
||||
else
|
||||
x = 1;
|
||||
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
|
||||
page = ACCESS_ONCE(c->partial);
|
||||
if (page) {
|
||||
x = page->pobjects;
|
||||
total += x;
|
||||
nodes[node] += x;
|
||||
}
|
||||
|
||||
per_cpu[node]++;
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user