diff --git a/mm/memory-failure.c b/mm/memory-failure.c index b419170fce20..f679b579d45d 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -1112,7 +1112,6 @@ static int me_pagecache_dirty(struct page_state *ps, struct page *p) struct folio *folio = page_folio(p); struct address_space *mapping = folio_mapping(folio); - SetPageError(p); /* TBD: print more information about the file. */ if (mapping) { /* @@ -1120,34 +1119,6 @@ static int me_pagecache_dirty(struct page_state *ps, struct page *p) * who check the mapping. * This way the application knows that something went * wrong with its dirty file data. - * - * There's one open issue: - * - * The EIO will be only reported on the next IO - * operation and then cleared through the IO map. - * Normally Linux has two mechanisms to pass IO error - * first through the AS_EIO flag in the address space - * and then through the PageError flag in the page. - * Since we drop pages on memory failure handling the - * only mechanism open to use is through AS_AIO. - * - * This has the disadvantage that it gets cleared on - * the first operation that returns an error, while - * the PageError bit is more sticky and only cleared - * when the page is reread or dropped. If an - * application assumes it will always get error on - * fsync, but does other operations on the fd before - * and the page is dropped between then the error - * will not be properly reported. - * - * This can already happen even without hwpoisoned - * pages: first on metadata IO errors (which only - * report through AS_EIO) or when the page is dropped - * at the wrong time. - * - * So right now we assume that the application DTRT on - * the first EIO, but we're not worse than other parts - * of the kernel. */ mapping_set_error(mapping, -EIO); }