block: remove the rsxx driver

This driver was for rare and shortlived high end enterprise hardware
and hasn't been maintained since 2014, which also means it never got
converted to use blk-mq.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit is contained in:
Christoph Hellwig 2021-12-16 09:42:44 +01:00 committed by Jens Axboe
parent ac6f6548fc
commit 3427f2b2c5
12 changed files with 0 additions and 4026 deletions

View File

@ -7425,12 +7425,6 @@ F: Documentation/firmware_class/
F: drivers/base/firmware_loader/
F: include/linux/firmware.h
FLASH ADAPTER DRIVER (IBM Flash Adapter 900GB Full Height PCI Flash Card)
M: Joshua Morris <josh.h.morris@us.ibm.com>
M: Philip Kelleher <pjk1939@linux.ibm.com>
S: Maintained
F: drivers/block/rsxx/
FLEXTIMER FTM-QUADDEC DRIVER
M: Patrick Havelange <patrick.havelange@essensium.com>
L: linux-iio@vger.kernel.org

View File

@ -392,17 +392,6 @@ config BLK_DEV_RBD
If unsure, say N.
config BLK_DEV_RSXX
tristate "IBM Flash Adapter 900GB Full Height PCIe Device Driver"
depends on PCI
select CRC32
help
Device driver for IBM's high speed PCIe SSD
storage device: Flash Adapter 900GB Full Height.
To compile this driver as a module, choose M here: the
module will be called rsxx.
source "drivers/block/rnbd/Kconfig"
endif # BLK_DEV

View File

@ -34,7 +34,6 @@ obj-$(CONFIG_BLK_DEV_DRBD) += drbd/
obj-$(CONFIG_BLK_DEV_RBD) += rbd.o
obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX) += mtip32xx/
obj-$(CONFIG_BLK_DEV_RSXX) += rsxx/
obj-$(CONFIG_ZRAM) += zram/
obj-$(CONFIG_BLK_DEV_RNBD) += rnbd/

View File

@ -1,3 +0,0 @@
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_BLK_DEV_RSXX) += rsxx.o
rsxx-objs := config.o core.o cregs.o dev.o dma.o

View File

@ -1,197 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Filename: config.c
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#include <linux/types.h>
#include <linux/crc32.h>
#include <linux/swab.h>
#include "rsxx_priv.h"
#include "rsxx_cfg.h"
static void initialize_config(struct rsxx_card_cfg *cfg)
{
cfg->hdr.version = RSXX_CFG_VERSION;
cfg->data.block_size = RSXX_HW_BLK_SIZE;
cfg->data.stripe_size = RSXX_HW_BLK_SIZE;
cfg->data.vendor_id = RSXX_VENDOR_ID_IBM;
cfg->data.cache_order = (-1);
cfg->data.intr_coal.mode = RSXX_INTR_COAL_DISABLED;
cfg->data.intr_coal.count = 0;
cfg->data.intr_coal.latency = 0;
}
static u32 config_data_crc32(struct rsxx_card_cfg *cfg)
{
/*
* Return the compliment of the CRC to ensure compatibility
* (i.e. this is how early rsxx drivers did it.)
*/
return ~crc32(~0, &cfg->data, sizeof(cfg->data));
}
/*----------------- Config Byte Swap Functions -------------------*/
static void config_hdr_be_to_cpu(struct card_cfg_hdr *hdr)
{
hdr->version = be32_to_cpu((__force __be32) hdr->version);
hdr->crc = be32_to_cpu((__force __be32) hdr->crc);
}
static void config_hdr_cpu_to_be(struct card_cfg_hdr *hdr)
{
hdr->version = (__force u32) cpu_to_be32(hdr->version);
hdr->crc = (__force u32) cpu_to_be32(hdr->crc);
}
static void config_data_swab(struct rsxx_card_cfg *cfg)
{
u32 *data = (u32 *) &cfg->data;
int i;
for (i = 0; i < (sizeof(cfg->data) / 4); i++)
data[i] = swab32(data[i]);
}
static void config_data_le_to_cpu(struct rsxx_card_cfg *cfg)
{
u32 *data = (u32 *) &cfg->data;
int i;
for (i = 0; i < (sizeof(cfg->data) / 4); i++)
data[i] = le32_to_cpu((__force __le32) data[i]);
}
static void config_data_cpu_to_le(struct rsxx_card_cfg *cfg)
{
u32 *data = (u32 *) &cfg->data;
int i;
for (i = 0; i < (sizeof(cfg->data) / 4); i++)
data[i] = (__force u32) cpu_to_le32(data[i]);
}
/*----------------- Config Operations ------------------*/
static int rsxx_save_config(struct rsxx_cardinfo *card)
{
struct rsxx_card_cfg cfg;
int st;
memcpy(&cfg, &card->config, sizeof(cfg));
if (unlikely(cfg.hdr.version != RSXX_CFG_VERSION)) {
dev_err(CARD_TO_DEV(card),
"Cannot save config with invalid version %d\n",
cfg.hdr.version);
return -EINVAL;
}
/* Convert data to little endian for the CRC calculation. */
config_data_cpu_to_le(&cfg);
cfg.hdr.crc = config_data_crc32(&cfg);
/*
* Swap the data from little endian to big endian so it can be
* stored.
*/
config_data_swab(&cfg);
config_hdr_cpu_to_be(&cfg.hdr);
st = rsxx_creg_write(card, CREG_ADD_CONFIG, sizeof(cfg), &cfg, 1);
if (st)
return st;
return 0;
}
int rsxx_load_config(struct rsxx_cardinfo *card)
{
int st;
u32 crc;
st = rsxx_creg_read(card, CREG_ADD_CONFIG, sizeof(card->config),
&card->config, 1);
if (st) {
dev_err(CARD_TO_DEV(card),
"Failed reading card config.\n");
return st;
}
config_hdr_be_to_cpu(&card->config.hdr);
if (card->config.hdr.version == RSXX_CFG_VERSION) {
/*
* We calculate the CRC with the data in little endian, because
* early drivers did not take big endian CPUs into account.
* The data is always stored in big endian, so we need to byte
* swap it before calculating the CRC.
*/
config_data_swab(&card->config);
/* Check the CRC */
crc = config_data_crc32(&card->config);
if (crc != card->config.hdr.crc) {
dev_err(CARD_TO_DEV(card),
"Config corruption detected!\n");
dev_info(CARD_TO_DEV(card),
"CRC (sb x%08x is x%08x)\n",
card->config.hdr.crc, crc);
return -EIO;
}
/* Convert the data to CPU byteorder */
config_data_le_to_cpu(&card->config);
} else if (card->config.hdr.version != 0) {
dev_err(CARD_TO_DEV(card),
"Invalid config version %d.\n",
card->config.hdr.version);
/*
* Config version changes require special handling from the
* user
*/
return -EINVAL;
} else {
dev_info(CARD_TO_DEV(card),
"Initializing card configuration.\n");
initialize_config(&card->config);
st = rsxx_save_config(card);
if (st)
return st;
}
card->config_valid = 1;
dev_dbg(CARD_TO_DEV(card), "version: x%08x\n",
card->config.hdr.version);
dev_dbg(CARD_TO_DEV(card), "crc: x%08x\n",
card->config.hdr.crc);
dev_dbg(CARD_TO_DEV(card), "block_size: x%08x\n",
card->config.data.block_size);
dev_dbg(CARD_TO_DEV(card), "stripe_size: x%08x\n",
card->config.data.stripe_size);
dev_dbg(CARD_TO_DEV(card), "vendor_id: x%08x\n",
card->config.data.vendor_id);
dev_dbg(CARD_TO_DEV(card), "cache_order: x%08x\n",
card->config.data.cache_order);
dev_dbg(CARD_TO_DEV(card), "mode: x%08x\n",
card->config.data.intr_coal.mode);
dev_dbg(CARD_TO_DEV(card), "count: x%08x\n",
card->config.data.intr_coal.count);
dev_dbg(CARD_TO_DEV(card), "latency: x%08x\n",
card->config.data.intr_coal.latency);
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,789 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Filename: cregs.c
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#include <linux/completion.h>
#include <linux/slab.h>
#include "rsxx_priv.h"
#define CREG_TIMEOUT_MSEC 10000
typedef void (*creg_cmd_cb)(struct rsxx_cardinfo *card,
struct creg_cmd *cmd,
int st);
struct creg_cmd {
struct list_head list;
creg_cmd_cb cb;
void *cb_private;
unsigned int op;
unsigned int addr;
int cnt8;
void *buf;
unsigned int stream;
unsigned int status;
};
static struct kmem_cache *creg_cmd_pool;
/*------------ Private Functions --------------*/
#if defined(__LITTLE_ENDIAN)
#define LITTLE_ENDIAN 1
#elif defined(__BIG_ENDIAN)
#define LITTLE_ENDIAN 0
#else
#error Unknown endianess!!! Aborting...
#endif
static int copy_to_creg_data(struct rsxx_cardinfo *card,
int cnt8,
void *buf,
unsigned int stream)
{
int i = 0;
u32 *data = buf;
if (unlikely(card->eeh_state))
return -EIO;
for (i = 0; cnt8 > 0; i++, cnt8 -= 4) {
/*
* Firmware implementation makes it necessary to byte swap on
* little endian processors.
*/
if (LITTLE_ENDIAN && stream)
iowrite32be(data[i], card->regmap + CREG_DATA(i));
else
iowrite32(data[i], card->regmap + CREG_DATA(i));
}
return 0;
}
static int copy_from_creg_data(struct rsxx_cardinfo *card,
int cnt8,
void *buf,
unsigned int stream)
{
int i = 0;
u32 *data = buf;
if (unlikely(card->eeh_state))
return -EIO;
for (i = 0; cnt8 > 0; i++, cnt8 -= 4) {
/*
* Firmware implementation makes it necessary to byte swap on
* little endian processors.
*/
if (LITTLE_ENDIAN && stream)
data[i] = ioread32be(card->regmap + CREG_DATA(i));
else
data[i] = ioread32(card->regmap + CREG_DATA(i));
}
return 0;
}
static void creg_issue_cmd(struct rsxx_cardinfo *card, struct creg_cmd *cmd)
{
int st;
if (unlikely(card->eeh_state))
return;
iowrite32(cmd->addr, card->regmap + CREG_ADD);
iowrite32(cmd->cnt8, card->regmap + CREG_CNT);
if (cmd->op == CREG_OP_WRITE) {
if (cmd->buf) {
st = copy_to_creg_data(card, cmd->cnt8,
cmd->buf, cmd->stream);
if (st)
return;
}
}
if (unlikely(card->eeh_state))
return;
/* Setting the valid bit will kick off the command. */
iowrite32(cmd->op, card->regmap + CREG_CMD);
}
static void creg_kick_queue(struct rsxx_cardinfo *card)
{
if (card->creg_ctrl.active || list_empty(&card->creg_ctrl.queue))
return;
card->creg_ctrl.active = 1;
card->creg_ctrl.active_cmd = list_first_entry(&card->creg_ctrl.queue,
struct creg_cmd, list);
list_del(&card->creg_ctrl.active_cmd->list);
card->creg_ctrl.q_depth--;
/*
* We have to set the timer before we push the new command. Otherwise,
* we could create a race condition that would occur if the timer
* was not canceled, and expired after the new command was pushed,
* but before the command was issued to hardware.
*/
mod_timer(&card->creg_ctrl.cmd_timer,
jiffies + msecs_to_jiffies(CREG_TIMEOUT_MSEC));
creg_issue_cmd(card, card->creg_ctrl.active_cmd);
}
static int creg_queue_cmd(struct rsxx_cardinfo *card,
unsigned int op,
unsigned int addr,
unsigned int cnt8,
void *buf,
int stream,
creg_cmd_cb callback,
void *cb_private)
{
struct creg_cmd *cmd;
/* Don't queue stuff up if we're halted. */
if (unlikely(card->halt))
return -EINVAL;
if (card->creg_ctrl.reset)
return -EAGAIN;
if (cnt8 > MAX_CREG_DATA8)
return -EINVAL;
cmd = kmem_cache_alloc(creg_cmd_pool, GFP_KERNEL);
if (!cmd)
return -ENOMEM;
INIT_LIST_HEAD(&cmd->list);
cmd->op = op;
cmd->addr = addr;
cmd->cnt8 = cnt8;
cmd->buf = buf;
cmd->stream = stream;
cmd->cb = callback;
cmd->cb_private = cb_private;
cmd->status = 0;
spin_lock_bh(&card->creg_ctrl.lock);
list_add_tail(&cmd->list, &card->creg_ctrl.queue);
card->creg_ctrl.q_depth++;
creg_kick_queue(card);
spin_unlock_bh(&card->creg_ctrl.lock);
return 0;
}
static void creg_cmd_timed_out(struct timer_list *t)
{
struct rsxx_cardinfo *card = from_timer(card, t, creg_ctrl.cmd_timer);
struct creg_cmd *cmd;
spin_lock(&card->creg_ctrl.lock);
cmd = card->creg_ctrl.active_cmd;
card->creg_ctrl.active_cmd = NULL;
spin_unlock(&card->creg_ctrl.lock);
if (cmd == NULL) {
card->creg_ctrl.creg_stats.creg_timeout++;
dev_warn(CARD_TO_DEV(card),
"No active command associated with timeout!\n");
return;
}
if (cmd->cb)
cmd->cb(card, cmd, -ETIMEDOUT);
kmem_cache_free(creg_cmd_pool, cmd);
spin_lock(&card->creg_ctrl.lock);
card->creg_ctrl.active = 0;
creg_kick_queue(card);
spin_unlock(&card->creg_ctrl.lock);
}
static void creg_cmd_done(struct work_struct *work)
{
struct rsxx_cardinfo *card;
struct creg_cmd *cmd;
int st = 0;
card = container_of(work, struct rsxx_cardinfo,
creg_ctrl.done_work);
/*
* The timer could not be cancelled for some reason,
* race to pop the active command.
*/
if (del_timer_sync(&card->creg_ctrl.cmd_timer) == 0)
card->creg_ctrl.creg_stats.failed_cancel_timer++;
spin_lock_bh(&card->creg_ctrl.lock);
cmd = card->creg_ctrl.active_cmd;
card->creg_ctrl.active_cmd = NULL;
spin_unlock_bh(&card->creg_ctrl.lock);
if (cmd == NULL) {
dev_err(CARD_TO_DEV(card),
"Spurious creg interrupt!\n");
return;
}
card->creg_ctrl.creg_stats.stat = ioread32(card->regmap + CREG_STAT);
cmd->status = card->creg_ctrl.creg_stats.stat;
if ((cmd->status & CREG_STAT_STATUS_MASK) == 0) {
dev_err(CARD_TO_DEV(card),
"Invalid status on creg command\n");
/*
* At this point we're probably reading garbage from HW. Don't
* do anything else that could mess up the system and let
* the sync function return an error.
*/
st = -EIO;
goto creg_done;
} else if (cmd->status & CREG_STAT_ERROR) {
st = -EIO;
}
if (cmd->op == CREG_OP_READ) {
unsigned int cnt8 = ioread32(card->regmap + CREG_CNT);
/* Paranoid Sanity Checks */
if (!cmd->buf) {
dev_err(CARD_TO_DEV(card),
"Buffer not given for read.\n");
st = -EIO;
goto creg_done;
}
if (cnt8 != cmd->cnt8) {
dev_err(CARD_TO_DEV(card),
"count mismatch\n");
st = -EIO;
goto creg_done;
}
st = copy_from_creg_data(card, cnt8, cmd->buf, cmd->stream);
}
creg_done:
if (cmd->cb)
cmd->cb(card, cmd, st);
kmem_cache_free(creg_cmd_pool, cmd);
spin_lock_bh(&card->creg_ctrl.lock);
card->creg_ctrl.active = 0;
creg_kick_queue(card);
spin_unlock_bh(&card->creg_ctrl.lock);
}
static void creg_reset(struct rsxx_cardinfo *card)
{
struct creg_cmd *cmd = NULL;
struct creg_cmd *tmp;
unsigned long flags;
/*
* mutex_trylock is used here because if reset_lock is taken then a
* reset is already happening. So, we can just go ahead and return.
*/
if (!mutex_trylock(&card->creg_ctrl.reset_lock))
return;
card->creg_ctrl.reset = 1;
spin_lock_irqsave(&card->irq_lock, flags);
rsxx_disable_ier_and_isr(card, CR_INTR_CREG | CR_INTR_EVENT);
spin_unlock_irqrestore(&card->irq_lock, flags);
dev_warn(CARD_TO_DEV(card),
"Resetting creg interface for recovery\n");
/* Cancel outstanding commands */
spin_lock_bh(&card->creg_ctrl.lock);
list_for_each_entry_safe(cmd, tmp, &card->creg_ctrl.queue, list) {
list_del(&cmd->list);
card->creg_ctrl.q_depth--;
if (cmd->cb)
cmd->cb(card, cmd, -ECANCELED);
kmem_cache_free(creg_cmd_pool, cmd);
}
cmd = card->creg_ctrl.active_cmd;
card->creg_ctrl.active_cmd = NULL;
if (cmd) {
if (timer_pending(&card->creg_ctrl.cmd_timer))
del_timer_sync(&card->creg_ctrl.cmd_timer);
if (cmd->cb)
cmd->cb(card, cmd, -ECANCELED);
kmem_cache_free(creg_cmd_pool, cmd);
card->creg_ctrl.active = 0;
}
spin_unlock_bh(&card->creg_ctrl.lock);
card->creg_ctrl.reset = 0;
spin_lock_irqsave(&card->irq_lock, flags);
rsxx_enable_ier_and_isr(card, CR_INTR_CREG | CR_INTR_EVENT);
spin_unlock_irqrestore(&card->irq_lock, flags);
mutex_unlock(&card->creg_ctrl.reset_lock);
}
/* Used for synchronous accesses */
struct creg_completion {
struct completion *cmd_done;
int st;
u32 creg_status;
};
static void creg_cmd_done_cb(struct rsxx_cardinfo *card,
struct creg_cmd *cmd,
int st)
{
struct creg_completion *cmd_completion;
cmd_completion = cmd->cb_private;
BUG_ON(!cmd_completion);
cmd_completion->st = st;
cmd_completion->creg_status = cmd->status;
complete(cmd_completion->cmd_done);
}
static int __issue_creg_rw(struct rsxx_cardinfo *card,
unsigned int op,
unsigned int addr,
unsigned int cnt8,
void *buf,
int stream,
unsigned int *hw_stat)
{
DECLARE_COMPLETION_ONSTACK(cmd_done);
struct creg_completion completion;
unsigned long timeout;
int st;
completion.cmd_done = &cmd_done;
completion.st = 0;
completion.creg_status = 0;
st = creg_queue_cmd(card, op, addr, cnt8, buf, stream, creg_cmd_done_cb,
&completion);
if (st)
return st;
/*
* This timeout is necessary for unresponsive hardware. The additional
* 20 seconds to used to guarantee that each cregs requests has time to
* complete.
*/
timeout = msecs_to_jiffies(CREG_TIMEOUT_MSEC *
card->creg_ctrl.q_depth + 20000);
/*
* The creg interface is guaranteed to complete. It has a timeout
* mechanism that will kick in if hardware does not respond.
*/
st = wait_for_completion_timeout(completion.cmd_done, timeout);
if (st == 0) {
/*
* This is really bad, because the kernel timer did not
* expire and notify us of a timeout!
*/
dev_crit(CARD_TO_DEV(card),
"cregs timer failed\n");
creg_reset(card);
return -EIO;
}
*hw_stat = completion.creg_status;
if (completion.st) {
/*
* This read is needed to verify that there has not been any
* extreme errors that might have occurred, i.e. EEH. The
* function iowrite32 will not detect EEH errors, so it is
* necessary that we recover if such an error is the reason
* for the timeout. This is a dummy read.
*/
ioread32(card->regmap + SCRATCH);
dev_warn(CARD_TO_DEV(card),
"creg command failed(%d x%08x)\n",
completion.st, addr);
return completion.st;
}
return 0;
}
static int issue_creg_rw(struct rsxx_cardinfo *card,
u32 addr,
unsigned int size8,
void *data,
int stream,
int read)
{
unsigned int hw_stat;
unsigned int xfer;
unsigned int op;
int st;
op = read ? CREG_OP_READ : CREG_OP_WRITE;
do {
xfer = min_t(unsigned int, size8, MAX_CREG_DATA8);
st = __issue_creg_rw(card, op, addr, xfer,
data, stream, &hw_stat);
if (st)
return st;
data = (char *)data + xfer;
addr += xfer;
size8 -= xfer;
} while (size8);
return 0;
}
/* ---------------------------- Public API ---------------------------------- */
int rsxx_creg_write(struct rsxx_cardinfo *card,
u32 addr,
unsigned int size8,
void *data,
int byte_stream)
{
return issue_creg_rw(card, addr, size8, data, byte_stream, 0);
}
int rsxx_creg_read(struct rsxx_cardinfo *card,
u32 addr,
unsigned int size8,
void *data,
int byte_stream)
{
return issue_creg_rw(card, addr, size8, data, byte_stream, 1);
}
int rsxx_get_card_state(struct rsxx_cardinfo *card, unsigned int *state)
{
return rsxx_creg_read(card, CREG_ADD_CARD_STATE,
sizeof(*state), state, 0);
}
int rsxx_get_card_size8(struct rsxx_cardinfo *card, u64 *size8)
{
unsigned int size;
int st;
st = rsxx_creg_read(card, CREG_ADD_CARD_SIZE,
sizeof(size), &size, 0);
if (st)
return st;
*size8 = (u64)size * RSXX_HW_BLK_SIZE;
return 0;
}
int rsxx_get_num_targets(struct rsxx_cardinfo *card,
unsigned int *n_targets)
{
return rsxx_creg_read(card, CREG_ADD_NUM_TARGETS,
sizeof(*n_targets), n_targets, 0);
}
int rsxx_get_card_capabilities(struct rsxx_cardinfo *card,
u32 *capabilities)
{
return rsxx_creg_read(card, CREG_ADD_CAPABILITIES,
sizeof(*capabilities), capabilities, 0);
}
int rsxx_issue_card_cmd(struct rsxx_cardinfo *card, u32 cmd)
{
return rsxx_creg_write(card, CREG_ADD_CARD_CMD,
sizeof(cmd), &cmd, 0);
}
/*----------------- HW Log Functions -------------------*/
static void hw_log_msg(struct rsxx_cardinfo *card, const char *str, int len)
{
static char level;
/*
* New messages start with "<#>", where # is the log level. Messages
* that extend past the log buffer will use the previous level
*/
if ((len > 3) && (str[0] == '<') && (str[2] == '>')) {
level = str[1];
str += 3; /* Skip past the log level. */
len -= 3;
}
switch (level) {
case '0':
dev_emerg(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '1':
dev_alert(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '2':
dev_crit(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '3':
dev_err(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '4':
dev_warn(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '5':
dev_notice(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '6':
dev_info(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
case '7':
dev_dbg(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
default:
dev_info(CARD_TO_DEV(card), "HW: %.*s", len, str);
break;
}
}
/*
* The substrncpy function copies the src string (which includes the
* terminating '\0' character), up to the count into the dest pointer.
* Returns the number of bytes copied to dest.
*/
static int substrncpy(char *dest, const char *src, int count)
{
int max_cnt = count;
while (count) {
count--;
*dest = *src;
if (*dest == '\0')
break;
src++;
dest++;
}
return max_cnt - count;
}
static void read_hw_log_done(struct rsxx_cardinfo *card,
struct creg_cmd *cmd,
int st)
{
char *buf;
char *log_str;
int cnt;
int len;
int off;
buf = cmd->buf;
off = 0;
/* Failed getting the log message */
if (st)
return;
while (off < cmd->cnt8) {
log_str = &card->log.buf[card->log.buf_len];
cnt = min(cmd->cnt8 - off, LOG_BUF_SIZE8 - card->log.buf_len);
len = substrncpy(log_str, &buf[off], cnt);
off += len;
card->log.buf_len += len;
/*
* Flush the log if we've hit the end of a message or if we've
* run out of buffer space.
*/
if ((log_str[len - 1] == '\0') ||
(card->log.buf_len == LOG_BUF_SIZE8)) {
if (card->log.buf_len != 1) /* Don't log blank lines. */
hw_log_msg(card, card->log.buf,
card->log.buf_len);
card->log.buf_len = 0;
}
}
if (cmd->status & CREG_STAT_LOG_PENDING)
rsxx_read_hw_log(card);
}
int rsxx_read_hw_log(struct rsxx_cardinfo *card)
{
int st;
st = creg_queue_cmd(card, CREG_OP_READ, CREG_ADD_LOG,
sizeof(card->log.tmp), card->log.tmp,
1, read_hw_log_done, NULL);
if (st)
dev_err(CARD_TO_DEV(card),
"Failed getting log text\n");
return st;
}
/*-------------- IOCTL REG Access ------------------*/
static int issue_reg_cmd(struct rsxx_cardinfo *card,
struct rsxx_reg_access *cmd,
int read)
{
unsigned int op = read ? CREG_OP_READ : CREG_OP_WRITE;
return __issue_creg_rw(card, op, cmd->addr, cmd->cnt, cmd->data,
cmd->stream, &cmd->stat);
}
int rsxx_reg_access(struct rsxx_cardinfo *card,
struct rsxx_reg_access __user *ucmd,
int read)
{
struct rsxx_reg_access cmd;
int st;
st = copy_from_user(&cmd, ucmd, sizeof(cmd));
if (st)
return -EFAULT;
if (cmd.cnt > RSXX_MAX_REG_CNT)
return -EFAULT;
st = issue_reg_cmd(card, &cmd, read);
if (st)
return st;
st = put_user(cmd.stat, &ucmd->stat);
if (st)
return -EFAULT;
if (read) {
st = copy_to_user(ucmd->data, cmd.data, cmd.cnt);
if (st)
return -EFAULT;
}
return 0;
}
void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card)
{
struct creg_cmd *cmd = NULL;
cmd = card->creg_ctrl.active_cmd;
card->creg_ctrl.active_cmd = NULL;
if (cmd) {
del_timer_sync(&card->creg_ctrl.cmd_timer);
spin_lock_bh(&card->creg_ctrl.lock);
list_add(&cmd->list, &card->creg_ctrl.queue);
card->creg_ctrl.q_depth++;
card->creg_ctrl.active = 0;
spin_unlock_bh(&card->creg_ctrl.lock);
}
}
void rsxx_kick_creg_queue(struct rsxx_cardinfo *card)
{
spin_lock_bh(&card->creg_ctrl.lock);
if (!list_empty(&card->creg_ctrl.queue))
creg_kick_queue(card);
spin_unlock_bh(&card->creg_ctrl.lock);
}
/*------------ Initialization & Setup --------------*/
int rsxx_creg_setup(struct rsxx_cardinfo *card)
{
card->creg_ctrl.active_cmd = NULL;
card->creg_ctrl.creg_wq =
create_singlethread_workqueue(DRIVER_NAME"_creg");
if (!card->creg_ctrl.creg_wq)
return -ENOMEM;
INIT_WORK(&card->creg_ctrl.done_work, creg_cmd_done);
mutex_init(&card->creg_ctrl.reset_lock);
INIT_LIST_HEAD(&card->creg_ctrl.queue);
spin_lock_init(&card->creg_ctrl.lock);
timer_setup(&card->creg_ctrl.cmd_timer, creg_cmd_timed_out, 0);
return 0;
}
void rsxx_creg_destroy(struct rsxx_cardinfo *card)
{
struct creg_cmd *cmd;
struct creg_cmd *tmp;
int cnt = 0;
/* Cancel outstanding commands */
spin_lock_bh(&card->creg_ctrl.lock);
list_for_each_entry_safe(cmd, tmp, &card->creg_ctrl.queue, list) {
list_del(&cmd->list);
if (cmd->cb)
cmd->cb(card, cmd, -ECANCELED);
kmem_cache_free(creg_cmd_pool, cmd);
cnt++;
}
if (cnt)
dev_info(CARD_TO_DEV(card),
"Canceled %d queue creg commands\n", cnt);
cmd = card->creg_ctrl.active_cmd;
card->creg_ctrl.active_cmd = NULL;
if (cmd) {
if (timer_pending(&card->creg_ctrl.cmd_timer))
del_timer_sync(&card->creg_ctrl.cmd_timer);
if (cmd->cb)
cmd->cb(card, cmd, -ECANCELED);
dev_info(CARD_TO_DEV(card),
"Canceled active creg command\n");
kmem_cache_free(creg_cmd_pool, cmd);
}
spin_unlock_bh(&card->creg_ctrl.lock);
cancel_work_sync(&card->creg_ctrl.done_work);
}
int rsxx_creg_init(void)
{
creg_cmd_pool = KMEM_CACHE(creg_cmd, SLAB_HWCACHE_ALIGN);
if (!creg_cmd_pool)
return -ENOMEM;
return 0;
}
void rsxx_creg_cleanup(void)
{
kmem_cache_destroy(creg_cmd_pool);
}

View File

@ -1,306 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Filename: dev.c
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/hdreg.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/fs.h>
#include "rsxx_priv.h"
static unsigned int blkdev_minors = 64;
module_param(blkdev_minors, uint, 0444);
MODULE_PARM_DESC(blkdev_minors, "Number of minors(partitions)");
/*
* For now I'm making this tweakable in case any applications hit this limit.
* If you see a "bio too big" error in the log you will need to raise this
* value.
*/
static unsigned int blkdev_max_hw_sectors = 1024;
module_param(blkdev_max_hw_sectors, uint, 0444);
MODULE_PARM_DESC(blkdev_max_hw_sectors, "Max hw sectors for a single BIO");
static unsigned int enable_blkdev = 1;
module_param(enable_blkdev , uint, 0444);
MODULE_PARM_DESC(enable_blkdev, "Enable block device interfaces");
struct rsxx_bio_meta {
struct bio *bio;
atomic_t pending_dmas;
atomic_t error;
unsigned long start_time;
};
static struct kmem_cache *bio_meta_pool;
static void rsxx_submit_bio(struct bio *bio);
/*----------------- Block Device Operations -----------------*/
static int rsxx_blkdev_ioctl(struct block_device *bdev,
fmode_t mode,
unsigned int cmd,
unsigned long arg)
{
struct rsxx_cardinfo *card = bdev->bd_disk->private_data;
switch (cmd) {
case RSXX_GETREG:
return rsxx_reg_access(card, (void __user *)arg, 1);
case RSXX_SETREG:
return rsxx_reg_access(card, (void __user *)arg, 0);
}
return -ENOTTY;
}
static int rsxx_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct rsxx_cardinfo *card = bdev->bd_disk->private_data;
u64 blocks = card->size8 >> 9;
/*
* get geometry: Fake it. I haven't found any drivers that set
* geo->start, so we won't either.
*/
if (card->size8) {
geo->heads = 64;
geo->sectors = 16;
do_div(blocks, (geo->heads * geo->sectors));
geo->cylinders = blocks;
} else {
geo->heads = 0;
geo->sectors = 0;
geo->cylinders = 0;
}
return 0;
}
static const struct block_device_operations rsxx_fops = {
.owner = THIS_MODULE,
.submit_bio = rsxx_submit_bio,
.getgeo = rsxx_getgeo,
.ioctl = rsxx_blkdev_ioctl,
};
static void bio_dma_done_cb(struct rsxx_cardinfo *card,
void *cb_data,
unsigned int error)
{
struct rsxx_bio_meta *meta = cb_data;
if (error)
atomic_set(&meta->error, 1);
if (atomic_dec_and_test(&meta->pending_dmas)) {
if (!card->eeh_state && card->gendisk)
bio_end_io_acct(meta->bio, meta->start_time);
if (atomic_read(&meta->error))
bio_io_error(meta->bio);
else
bio_endio(meta->bio);
kmem_cache_free(bio_meta_pool, meta);
}
}
static void rsxx_submit_bio(struct bio *bio)
{
struct rsxx_cardinfo *card = bio->bi_bdev->bd_disk->private_data;
struct rsxx_bio_meta *bio_meta;
blk_status_t st = BLK_STS_IOERR;
blk_queue_split(&bio);
might_sleep();
if (!card)
goto req_err;
if (bio_end_sector(bio) > get_capacity(card->gendisk))
goto req_err;
if (unlikely(card->halt))
goto req_err;
if (unlikely(card->dma_fault))
goto req_err;
if (bio->bi_iter.bi_size == 0) {
dev_err(CARD_TO_DEV(card), "size zero BIO!\n");
goto req_err;
}
bio_meta = kmem_cache_alloc(bio_meta_pool, GFP_KERNEL);
if (!bio_meta) {
st = BLK_STS_RESOURCE;
goto req_err;
}
bio_meta->bio = bio;
atomic_set(&bio_meta->error, 0);
atomic_set(&bio_meta->pending_dmas, 0);
if (!unlikely(card->halt))
bio_meta->start_time = bio_start_io_acct(bio);
dev_dbg(CARD_TO_DEV(card), "BIO[%c]: meta: %p addr8: x%llx size: %d\n",
bio_data_dir(bio) ? 'W' : 'R', bio_meta,
(u64)bio->bi_iter.bi_sector << 9, bio->bi_iter.bi_size);
st = rsxx_dma_queue_bio(card, bio, &bio_meta->pending_dmas,
bio_dma_done_cb, bio_meta);
if (st)
goto queue_err;
return;
queue_err:
kmem_cache_free(bio_meta_pool, bio_meta);
req_err:
if (st)
bio->bi_status = st;
bio_endio(bio);
}
/*----------------- Device Setup -------------------*/
static bool rsxx_discard_supported(struct rsxx_cardinfo *card)
{
unsigned char pci_rev;
pci_read_config_byte(card->dev, PCI_REVISION_ID, &pci_rev);
return (pci_rev >= RSXX_DISCARD_SUPPORT);
}
int rsxx_attach_dev(struct rsxx_cardinfo *card)
{
int err = 0;
mutex_lock(&card->dev_lock);
/* The block device requires the stripe size from the config. */
if (enable_blkdev) {
if (card->config_valid)
set_capacity(card->gendisk, card->size8 >> 9);
else
set_capacity(card->gendisk, 0);
err = device_add_disk(CARD_TO_DEV(card), card->gendisk, NULL);
if (err == 0)
card->bdev_attached = 1;
}
mutex_unlock(&card->dev_lock);
if (err)
blk_cleanup_disk(card->gendisk);
return err;
}
void rsxx_detach_dev(struct rsxx_cardinfo *card)
{
mutex_lock(&card->dev_lock);
if (card->bdev_attached) {
del_gendisk(card->gendisk);
card->bdev_attached = 0;
}
mutex_unlock(&card->dev_lock);
}
int rsxx_setup_dev(struct rsxx_cardinfo *card)
{
unsigned short blk_size;
mutex_init(&card->dev_lock);
if (!enable_blkdev)
return 0;
card->major = register_blkdev(0, DRIVER_NAME);
if (card->major < 0) {
dev_err(CARD_TO_DEV(card), "Failed to get major number\n");
return -ENOMEM;
}
card->gendisk = blk_alloc_disk(blkdev_minors);
if (!card->gendisk) {
dev_err(CARD_TO_DEV(card), "Failed disk alloc\n");
unregister_blkdev(card->major, DRIVER_NAME);
return -ENOMEM;
}
if (card->config_valid) {
blk_size = card->config.data.block_size;
blk_queue_dma_alignment(card->gendisk->queue, blk_size - 1);
blk_queue_logical_block_size(card->gendisk->queue, blk_size);
}
blk_queue_max_hw_sectors(card->gendisk->queue, blkdev_max_hw_sectors);
blk_queue_physical_block_size(card->gendisk->queue, RSXX_HW_BLK_SIZE);
blk_queue_flag_set(QUEUE_FLAG_NONROT, card->gendisk->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, card->gendisk->queue);
if (rsxx_discard_supported(card)) {
blk_queue_flag_set(QUEUE_FLAG_DISCARD, card->gendisk->queue);
blk_queue_max_discard_sectors(card->gendisk->queue,
RSXX_HW_BLK_SIZE >> 9);
card->gendisk->queue->limits.discard_granularity =
RSXX_HW_BLK_SIZE;
card->gendisk->queue->limits.discard_alignment =
RSXX_HW_BLK_SIZE;
}
snprintf(card->gendisk->disk_name, sizeof(card->gendisk->disk_name),
"rsxx%d", card->disk_id);
card->gendisk->major = card->major;
card->gendisk->minors = blkdev_minors;
card->gendisk->fops = &rsxx_fops;
card->gendisk->private_data = card;
return 0;
}
void rsxx_destroy_dev(struct rsxx_cardinfo *card)
{
if (!enable_blkdev)
return;
blk_cleanup_disk(card->gendisk);
card->gendisk = NULL;
unregister_blkdev(card->major, DRIVER_NAME);
}
int rsxx_dev_init(void)
{
bio_meta_pool = KMEM_CACHE(rsxx_bio_meta, SLAB_HWCACHE_ALIGN);
if (!bio_meta_pool)
return -ENOMEM;
return 0;
}
void rsxx_dev_cleanup(void)
{
kmem_cache_destroy(bio_meta_pool);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,33 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Filename: rsxx.h
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#ifndef __RSXX_H__
#define __RSXX_H__
/*----------------- IOCTL Definitions -------------------*/
#define RSXX_MAX_DATA 8
struct rsxx_reg_access {
__u32 addr;
__u32 cnt;
__u32 stat;
__u32 stream;
__u32 data[RSXX_MAX_DATA];
};
#define RSXX_MAX_REG_CNT (RSXX_MAX_DATA * (sizeof(__u32)))
#define RSXX_IOC_MAGIC 'r'
#define RSXX_GETREG _IOWR(RSXX_IOC_MAGIC, 0x20, struct rsxx_reg_access)
#define RSXX_SETREG _IOWR(RSXX_IOC_MAGIC, 0x21, struct rsxx_reg_access)
#endif /* __RSXX_H_ */

View File

@ -1,58 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Filename: rsXX_cfg.h
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#ifndef __RSXX_CFG_H__
#define __RSXX_CFG_H__
/* NOTE: Config values will be saved in network byte order (i.e. Big endian) */
#include <linux/types.h>
/*
* The card config version must match the driver's expected version. If it does
* not, the DMA interfaces will not be attached and the user will need to
* initialize/upgrade the card configuration using the card config utility.
*/
#define RSXX_CFG_VERSION 4
struct card_cfg_hdr {
__u32 version;
__u32 crc;
};
struct card_cfg_data {
__u32 block_size;
__u32 stripe_size;
__u32 vendor_id;
__u32 cache_order;
struct {
__u32 mode; /* Disabled, manual, auto-tune... */
__u32 count; /* Number of intr to coalesce */
__u32 latency;/* Max wait time (in ns) */
} intr_coal;
};
struct rsxx_card_cfg {
struct card_cfg_hdr hdr;
struct card_cfg_data data;
};
/* Vendor ID Values */
#define RSXX_VENDOR_ID_IBM 0
#define RSXX_VENDOR_ID_DSI 1
#define RSXX_VENDOR_COUNT 2
/* Interrupt Coalescing Values */
#define RSXX_INTR_COAL_DISABLED 0
#define RSXX_INTR_COAL_EXPLICIT 1
#define RSXX_INTR_COAL_AUTO_TUNE 2
#endif /* __RSXX_CFG_H__ */

View File

@ -1,418 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Filename: rsxx_priv.h
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
* Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*/
#ifndef __RSXX_PRIV_H__
#define __RSXX_PRIV_H__
#include <linux/semaphore.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
#include <linux/workqueue.h>
#include <linux/bio.h>
#include <linux/vmalloc.h>
#include <linux/timer.h>
#include <linux/ioctl.h>
#include <linux/delay.h>
#include "rsxx.h"
#include "rsxx_cfg.h"
struct proc_cmd;
#define PCI_DEVICE_ID_FS70_FLASH 0x04A9
#define PCI_DEVICE_ID_FS80_FLASH 0x04AA
#define RS70_PCI_REV_SUPPORTED 4
#define DRIVER_NAME "rsxx"
#define DRIVER_VERSION "4.0.3.2516"
/* Block size is 4096 */
#define RSXX_HW_BLK_SHIFT 12
#define RSXX_HW_BLK_SIZE (1 << RSXX_HW_BLK_SHIFT)
#define RSXX_HW_BLK_MASK (RSXX_HW_BLK_SIZE - 1)
#define MAX_CREG_DATA8 32
#define LOG_BUF_SIZE8 128
#define RSXX_MAX_OUTSTANDING_CMDS 255
#define RSXX_CS_IDX_MASK 0xff
#define STATUS_BUFFER_SIZE8 4096
#define COMMAND_BUFFER_SIZE8 4096
#define RSXX_MAX_TARGETS 8
struct dma_tracker_list;
/* DMA Command/Status Buffer structure */
struct rsxx_cs_buffer {
dma_addr_t dma_addr;
void *buf;
u32 idx;
};
struct rsxx_dma_stats {
u32 crc_errors;
u32 hard_errors;
u32 soft_errors;
u32 writes_issued;
u32 writes_failed;
u32 reads_issued;
u32 reads_failed;
u32 reads_retried;
u32 discards_issued;
u32 discards_failed;
u32 done_rescheduled;
u32 issue_rescheduled;
u32 dma_sw_err;
u32 dma_hw_fault;
u32 dma_cancelled;
u32 sw_q_depth; /* Number of DMAs on the SW queue. */
atomic_t hw_q_depth; /* Number of DMAs queued to HW. */
};
struct rsxx_dma_ctrl {
struct rsxx_cardinfo *card;
int id;
void __iomem *regmap;
struct rsxx_cs_buffer status;
struct rsxx_cs_buffer cmd;
u16 e_cnt;
spinlock_t queue_lock;
struct list_head queue;
struct workqueue_struct *issue_wq;
struct work_struct issue_dma_work;
struct workqueue_struct *done_wq;
struct work_struct dma_done_work;
struct timer_list activity_timer;
struct dma_tracker_list *trackers;
struct rsxx_dma_stats stats;
struct mutex work_lock;
};
struct rsxx_cardinfo {
struct pci_dev *dev;
unsigned int halt;
unsigned int eeh_state;
void __iomem *regmap;
spinlock_t irq_lock;
unsigned int isr_mask;
unsigned int ier_mask;
struct rsxx_card_cfg config;
int config_valid;
/* Embedded CPU Communication */
struct {
spinlock_t lock;
bool active;
struct creg_cmd *active_cmd;
struct workqueue_struct *creg_wq;
struct work_struct done_work;
struct list_head queue;
unsigned int q_depth;
/* Cache the creg status to prevent ioreads */
struct {
u32 stat;
u32 failed_cancel_timer;
u32 creg_timeout;
} creg_stats;
struct timer_list cmd_timer;
struct mutex reset_lock;
int reset;
} creg_ctrl;
struct {
char tmp[MAX_CREG_DATA8];
char buf[LOG_BUF_SIZE8]; /* terminated */
int buf_len;
} log;
struct workqueue_struct *event_wq;
struct work_struct event_work;
unsigned int state;
u64 size8;
/* Lock the device attach/detach function */
struct mutex dev_lock;
/* Block Device Variables */
bool bdev_attached;
int disk_id;
int major;
struct gendisk *gendisk;
struct {
/* Used to convert a byte address to a device address. */
u64 lower_mask;
u64 upper_shift;
u64 upper_mask;
u64 target_mask;
u64 target_shift;
} _stripe;
unsigned int dma_fault;
int scrub_hard;
int n_targets;
struct rsxx_dma_ctrl *ctrl;
struct dentry *debugfs_dir;
};
enum rsxx_pci_regmap {
HWID = 0x00, /* Hardware Identification Register */
SCRATCH = 0x04, /* Scratch/Debug Register */
RESET = 0x08, /* Reset Register */
ISR = 0x10, /* Interrupt Status Register */
IER = 0x14, /* Interrupt Enable Register */
IPR = 0x18, /* Interrupt Poll Register */
CB_ADD_LO = 0x20, /* Command Host Buffer Address [31:0] */
CB_ADD_HI = 0x24, /* Command Host Buffer Address [63:32]*/
HW_CMD_IDX = 0x28, /* Hardware Processed Command Index */
SW_CMD_IDX = 0x2C, /* Software Processed Command Index */
SB_ADD_LO = 0x30, /* Status Host Buffer Address [31:0] */
SB_ADD_HI = 0x34, /* Status Host Buffer Address [63:32] */
HW_STATUS_CNT = 0x38, /* Hardware Status Counter */
SW_STATUS_CNT = 0x3C, /* Deprecated */
CREG_CMD = 0x40, /* CPU Command Register */
CREG_ADD = 0x44, /* CPU Address Register */
CREG_CNT = 0x48, /* CPU Count Register */
CREG_STAT = 0x4C, /* CPU Status Register */
CREG_DATA0 = 0x50, /* CPU Data Registers */
CREG_DATA1 = 0x54,
CREG_DATA2 = 0x58,
CREG_DATA3 = 0x5C,
CREG_DATA4 = 0x60,
CREG_DATA5 = 0x64,
CREG_DATA6 = 0x68,
CREG_DATA7 = 0x6c,
INTR_COAL = 0x70, /* Interrupt Coalescing Register */
HW_ERROR = 0x74, /* Card Error Register */
PCI_DEBUG0 = 0x78, /* PCI Debug Registers */
PCI_DEBUG1 = 0x7C,
PCI_DEBUG2 = 0x80,
PCI_DEBUG3 = 0x84,
PCI_DEBUG4 = 0x88,
PCI_DEBUG5 = 0x8C,
PCI_DEBUG6 = 0x90,
PCI_DEBUG7 = 0x94,
PCI_POWER_THROTTLE = 0x98,
PERF_CTRL = 0x9c,
PERF_TIMER_LO = 0xa0,
PERF_TIMER_HI = 0xa4,
PERF_RD512_LO = 0xa8,
PERF_RD512_HI = 0xac,
PERF_WR512_LO = 0xb0,
PERF_WR512_HI = 0xb4,
PCI_RECONFIG = 0xb8,
};
enum rsxx_intr {
CR_INTR_DMA0 = 0x00000001,
CR_INTR_CREG = 0x00000002,
CR_INTR_DMA1 = 0x00000004,
CR_INTR_EVENT = 0x00000008,
CR_INTR_DMA2 = 0x00000010,
CR_INTR_DMA3 = 0x00000020,
CR_INTR_DMA4 = 0x00000040,
CR_INTR_DMA5 = 0x00000080,
CR_INTR_DMA6 = 0x00000100,
CR_INTR_DMA7 = 0x00000200,
CR_INTR_ALL_C = 0x0000003f,
CR_INTR_ALL_G = 0x000003ff,
CR_INTR_DMA_ALL = 0x000003f5,
CR_INTR_ALL = 0xffffffff,
};
static inline int CR_INTR_DMA(int N)
{
static const unsigned int _CR_INTR_DMA[] = {
CR_INTR_DMA0, CR_INTR_DMA1, CR_INTR_DMA2, CR_INTR_DMA3,
CR_INTR_DMA4, CR_INTR_DMA5, CR_INTR_DMA6, CR_INTR_DMA7
};
return _CR_INTR_DMA[N];
}
enum rsxx_pci_reset {
DMA_QUEUE_RESET = 0x00000001,
};
enum rsxx_hw_fifo_flush {
RSXX_FLUSH_BUSY = 0x00000002,
RSXX_FLUSH_TIMEOUT = 0x00000004,
};
enum rsxx_pci_revision {
RSXX_DISCARD_SUPPORT = 2,
RSXX_EEH_SUPPORT = 3,
};
enum rsxx_creg_cmd {
CREG_CMD_TAG_MASK = 0x0000FF00,
CREG_OP_WRITE = 0x000000C0,
CREG_OP_READ = 0x000000E0,
};
enum rsxx_creg_addr {
CREG_ADD_CARD_CMD = 0x80001000,
CREG_ADD_CARD_STATE = 0x80001004,
CREG_ADD_CARD_SIZE = 0x8000100c,
CREG_ADD_CAPABILITIES = 0x80001050,
CREG_ADD_LOG = 0x80002000,
CREG_ADD_NUM_TARGETS = 0x80003000,
CREG_ADD_CRAM = 0xA0000000,
CREG_ADD_CONFIG = 0xB0000000,
};
enum rsxx_creg_card_cmd {
CARD_CMD_STARTUP = 1,
CARD_CMD_SHUTDOWN = 2,
CARD_CMD_LOW_LEVEL_FORMAT = 3,
CARD_CMD_FPGA_RECONFIG_BR = 4,
CARD_CMD_FPGA_RECONFIG_MAIN = 5,
CARD_CMD_BACKUP = 6,
CARD_CMD_RESET = 7,
CARD_CMD_deprecated = 8,
CARD_CMD_UNINITIALIZE = 9,
CARD_CMD_DSTROY_EMERGENCY = 10,
CARD_CMD_DSTROY_NORMAL = 11,
CARD_CMD_DSTROY_EXTENDED = 12,
CARD_CMD_DSTROY_ABORT = 13,
};
enum rsxx_card_state {
CARD_STATE_SHUTDOWN = 0x00000001,
CARD_STATE_STARTING = 0x00000002,
CARD_STATE_FORMATTING = 0x00000004,
CARD_STATE_UNINITIALIZED = 0x00000008,
CARD_STATE_GOOD = 0x00000010,
CARD_STATE_SHUTTING_DOWN = 0x00000020,
CARD_STATE_FAULT = 0x00000040,
CARD_STATE_RD_ONLY_FAULT = 0x00000080,
CARD_STATE_DSTROYING = 0x00000100,
};
enum rsxx_led {
LED_DEFAULT = 0x0,
LED_IDENTIFY = 0x1,
LED_SOAK = 0x2,
};
enum rsxx_creg_flash_lock {
CREG_FLASH_LOCK = 1,
CREG_FLASH_UNLOCK = 2,
};
enum rsxx_card_capabilities {
CARD_CAP_SUBPAGE_WRITES = 0x00000080,
};
enum rsxx_creg_stat {
CREG_STAT_STATUS_MASK = 0x00000003,
CREG_STAT_SUCCESS = 0x1,
CREG_STAT_ERROR = 0x2,
CREG_STAT_CHAR_PENDING = 0x00000004, /* Character I/O pending bit */
CREG_STAT_LOG_PENDING = 0x00000008, /* HW log message pending bit */
CREG_STAT_TAG_MASK = 0x0000ff00,
};
enum rsxx_dma_finish {
FREE_DMA = 0x0,
COMPLETE_DMA = 0x1,
};
static inline unsigned int CREG_DATA(int N)
{
return CREG_DATA0 + (N << 2);
}
/*----------------- Convenient Log Wrappers -------------------*/
#define CARD_TO_DEV(__CARD) (&(__CARD)->dev->dev)
/***** config.c *****/
int rsxx_load_config(struct rsxx_cardinfo *card);
/***** core.c *****/
void rsxx_enable_ier(struct rsxx_cardinfo *card, unsigned int intr);
void rsxx_disable_ier(struct rsxx_cardinfo *card, unsigned int intr);
void rsxx_enable_ier_and_isr(struct rsxx_cardinfo *card,
unsigned int intr);
void rsxx_disable_ier_and_isr(struct rsxx_cardinfo *card,
unsigned int intr);
/***** dev.c *****/
int rsxx_attach_dev(struct rsxx_cardinfo *card);
void rsxx_detach_dev(struct rsxx_cardinfo *card);
int rsxx_setup_dev(struct rsxx_cardinfo *card);
void rsxx_destroy_dev(struct rsxx_cardinfo *card);
int rsxx_dev_init(void);
void rsxx_dev_cleanup(void);
/***** dma.c ****/
typedef void (*rsxx_dma_cb)(struct rsxx_cardinfo *card,
void *cb_data,
unsigned int status);
int rsxx_dma_setup(struct rsxx_cardinfo *card);
void rsxx_dma_destroy(struct rsxx_cardinfo *card);
int rsxx_dma_init(void);
int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl,
struct list_head *q,
unsigned int done);
int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl);
void rsxx_dma_cleanup(void);
void rsxx_dma_queue_reset(struct rsxx_cardinfo *card);
int rsxx_dma_configure(struct rsxx_cardinfo *card);
blk_status_t rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
struct bio *bio,
atomic_t *n_dmas,
rsxx_dma_cb cb,
void *cb_data);
int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl);
int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card);
int rsxx_eeh_remap_dmas(struct rsxx_cardinfo *card);
/***** cregs.c *****/
int rsxx_creg_write(struct rsxx_cardinfo *card, u32 addr,
unsigned int size8,
void *data,
int byte_stream);
int rsxx_creg_read(struct rsxx_cardinfo *card,
u32 addr,
unsigned int size8,
void *data,
int byte_stream);
int rsxx_read_hw_log(struct rsxx_cardinfo *card);
int rsxx_get_card_state(struct rsxx_cardinfo *card,
unsigned int *state);
int rsxx_get_card_size8(struct rsxx_cardinfo *card, u64 *size8);
int rsxx_get_num_targets(struct rsxx_cardinfo *card,
unsigned int *n_targets);
int rsxx_get_card_capabilities(struct rsxx_cardinfo *card,
u32 *capabilities);
int rsxx_issue_card_cmd(struct rsxx_cardinfo *card, u32 cmd);
int rsxx_creg_setup(struct rsxx_cardinfo *card);
void rsxx_creg_destroy(struct rsxx_cardinfo *card);
int rsxx_creg_init(void);
void rsxx_creg_cleanup(void);
int rsxx_reg_access(struct rsxx_cardinfo *card,
struct rsxx_reg_access __user *ucmd,
int read);
void rsxx_eeh_save_issued_creg(struct rsxx_cardinfo *card);
void rsxx_kick_creg_queue(struct rsxx_cardinfo *card);
#endif /* __DRIVERS_BLOCK_RSXX_H__ */