mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-13 16:50:05 +00:00
powerpc/perf_counter: Add generic support for POWER-family PMU hardware
This provides the architecture-specific functions needed to access PMU hardware on the 64-bit PowerPC processors. It has been designed for the IBM POWER family (POWER 4/4+/5/5+/6 and PPC970) but will hopefully also suit other 64-bit PowerPC machines (although probably not Cell given how different it is in this area). This doesn't include back-ends for any specific processors. This implements a system which allows back-ends to express the constraints that their hardware has on what events can be counted simultaneously. The constraints are expressed as a 64-bit mask + 64-bit value for each event, and the encoding is capable of expressing the constraints arising from having a set of multiplexers feeding an event bus, with some events being available through multiple multiplexer settings, such as we get on POWER4 and PPC970. Furthermore, the back-end can supply alternative event codes for each event, and the constraint checking code will try all possible combinations of alternative event codes to try to find a combination that will fit. Signed-off-by: Paul Mackerras <paulus@samba.org>
This commit is contained in:
parent
93a6d3ce69
commit
4574910e50
@ -8,3 +8,65 @@
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
#include <linux/types.h>
|
||||
|
||||
#define MAX_HWCOUNTERS 8
|
||||
#define MAX_EVENT_ALTERNATIVES 8
|
||||
|
||||
/*
|
||||
* This struct provides the constants and functions needed to
|
||||
* describe the PMU on a particular POWER-family CPU.
|
||||
*/
|
||||
struct power_pmu {
|
||||
int n_counter;
|
||||
int max_alternatives;
|
||||
u64 add_fields;
|
||||
u64 test_adder;
|
||||
int (*compute_mmcr)(unsigned int events[], int n_ev,
|
||||
unsigned int hwc[], u64 mmcr[]);
|
||||
int (*get_constraint)(unsigned int event, u64 *mskp, u64 *valp);
|
||||
int (*get_alternatives)(unsigned int event, unsigned int alt[]);
|
||||
void (*disable_pmc)(unsigned int pmc, u64 mmcr[]);
|
||||
int n_generic;
|
||||
int *generic_events;
|
||||
};
|
||||
|
||||
extern struct power_pmu *ppmu;
|
||||
|
||||
/*
|
||||
* The power_pmu.get_constraint function returns a 64-bit value and
|
||||
* a 64-bit mask that express the constraints between this event and
|
||||
* other events.
|
||||
*
|
||||
* The value and mask are divided up into (non-overlapping) bitfields
|
||||
* of three different types:
|
||||
*
|
||||
* Select field: this expresses the constraint that some set of bits
|
||||
* in MMCR* needs to be set to a specific value for this event. For a
|
||||
* select field, the mask contains 1s in every bit of the field, and
|
||||
* the value contains a unique value for each possible setting of the
|
||||
* MMCR* bits. The constraint checking code will ensure that two events
|
||||
* that set the same field in their masks have the same value in their
|
||||
* value dwords.
|
||||
*
|
||||
* Add field: this expresses the constraint that there can be at most
|
||||
* N events in a particular class. A field of k bits can be used for
|
||||
* N <= 2^(k-1) - 1. The mask has the most significant bit of the field
|
||||
* set (and the other bits 0), and the value has only the least significant
|
||||
* bit of the field set. In addition, the 'add_fields' and 'test_adder'
|
||||
* in the struct power_pmu for this processor come into play. The
|
||||
* add_fields value contains 1 in the LSB of the field, and the
|
||||
* test_adder contains 2^(k-1) - 1 - N in the field.
|
||||
*
|
||||
* NAND field: this expresses the constraint that you may not have events
|
||||
* in all of a set of classes. (For example, on PPC970, you can't select
|
||||
* events from the FPU, ISU and IDU simultaneously, although any two are
|
||||
* possible.) For N classes, the field is N+1 bits wide, and each class
|
||||
* is assigned one bit from the least-significant N bits. The mask has
|
||||
* only the most-significant bit set, and the value has only the bit
|
||||
* for the event's class set. The test_adder has the least significant
|
||||
* bit set in the field.
|
||||
*
|
||||
* If an event is not subject to the constraint expressed by a particular
|
||||
* field, then it will have 0 in both the mask and value for that field.
|
||||
*/
|
||||
|
@ -94,6 +94,7 @@ obj-$(CONFIG_AUDIT) += audit.o
|
||||
obj64-$(CONFIG_AUDIT) += compat_audit.o
|
||||
|
||||
obj-$(CONFIG_DYNAMIC_FTRACE) += ftrace.o
|
||||
obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o
|
||||
|
||||
obj-$(CONFIG_8XX_MINIMAL_FPEMU) += softemu8xx.o
|
||||
|
||||
|
754
arch/powerpc/kernel/perf_counter.c
Normal file
754
arch/powerpc/kernel/perf_counter.c
Normal file
@ -0,0 +1,754 @@
|
||||
/*
|
||||
* Performance counter support - powerpc architecture code
|
||||
*
|
||||
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
* 2 of the License, or (at your option) any later version.
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/perf_counter.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/hardirq.h>
|
||||
#include <asm/reg.h>
|
||||
#include <asm/pmc.h>
|
||||
|
||||
struct cpu_hw_counters {
|
||||
int n_counters;
|
||||
int n_percpu;
|
||||
int disabled;
|
||||
int n_added;
|
||||
struct perf_counter *counter[MAX_HWCOUNTERS];
|
||||
unsigned int events[MAX_HWCOUNTERS];
|
||||
u64 mmcr[3];
|
||||
};
|
||||
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
|
||||
|
||||
struct power_pmu *ppmu;
|
||||
|
||||
void perf_counter_print_debug(void)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
* Return 1 for a software counter, 0 for a hardware counter
|
||||
*/
|
||||
static inline int is_software_counter(struct perf_counter *counter)
|
||||
{
|
||||
return !counter->hw_event.raw && counter->hw_event.type < 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Read one performance monitor counter (PMC).
|
||||
*/
|
||||
static unsigned long read_pmc(int idx)
|
||||
{
|
||||
unsigned long val;
|
||||
|
||||
switch (idx) {
|
||||
case 1:
|
||||
val = mfspr(SPRN_PMC1);
|
||||
break;
|
||||
case 2:
|
||||
val = mfspr(SPRN_PMC2);
|
||||
break;
|
||||
case 3:
|
||||
val = mfspr(SPRN_PMC3);
|
||||
break;
|
||||
case 4:
|
||||
val = mfspr(SPRN_PMC4);
|
||||
break;
|
||||
case 5:
|
||||
val = mfspr(SPRN_PMC5);
|
||||
break;
|
||||
case 6:
|
||||
val = mfspr(SPRN_PMC6);
|
||||
break;
|
||||
case 7:
|
||||
val = mfspr(SPRN_PMC7);
|
||||
break;
|
||||
case 8:
|
||||
val = mfspr(SPRN_PMC8);
|
||||
break;
|
||||
default:
|
||||
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
|
||||
val = 0;
|
||||
}
|
||||
return val;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write one PMC.
|
||||
*/
|
||||
static void write_pmc(int idx, unsigned long val)
|
||||
{
|
||||
switch (idx) {
|
||||
case 1:
|
||||
mtspr(SPRN_PMC1, val);
|
||||
break;
|
||||
case 2:
|
||||
mtspr(SPRN_PMC2, val);
|
||||
break;
|
||||
case 3:
|
||||
mtspr(SPRN_PMC3, val);
|
||||
break;
|
||||
case 4:
|
||||
mtspr(SPRN_PMC4, val);
|
||||
break;
|
||||
case 5:
|
||||
mtspr(SPRN_PMC5, val);
|
||||
break;
|
||||
case 6:
|
||||
mtspr(SPRN_PMC6, val);
|
||||
break;
|
||||
case 7:
|
||||
mtspr(SPRN_PMC7, val);
|
||||
break;
|
||||
case 8:
|
||||
mtspr(SPRN_PMC8, val);
|
||||
break;
|
||||
default:
|
||||
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if a set of events can all go on the PMU at once.
|
||||
* If they can't, this will look at alternative codes for the events
|
||||
* and see if any combination of alternative codes is feasible.
|
||||
* The feasible set is returned in event[].
|
||||
*/
|
||||
static int power_check_constraints(unsigned int event[], int n_ev)
|
||||
{
|
||||
u64 mask, value, nv;
|
||||
unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
||||
u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
||||
u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
||||
u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
|
||||
int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
|
||||
int i, j;
|
||||
u64 addf = ppmu->add_fields;
|
||||
u64 tadd = ppmu->test_adder;
|
||||
|
||||
if (n_ev > ppmu->n_counter)
|
||||
return -1;
|
||||
|
||||
/* First see if the events will go on as-is */
|
||||
for (i = 0; i < n_ev; ++i) {
|
||||
alternatives[i][0] = event[i];
|
||||
if (ppmu->get_constraint(event[i], &amasks[i][0],
|
||||
&avalues[i][0]))
|
||||
return -1;
|
||||
choice[i] = 0;
|
||||
}
|
||||
value = mask = 0;
|
||||
for (i = 0; i < n_ev; ++i) {
|
||||
nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
|
||||
if ((((nv + tadd) ^ value) & mask) != 0 ||
|
||||
(((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
|
||||
break;
|
||||
value = nv;
|
||||
mask |= amasks[i][0];
|
||||
}
|
||||
if (i == n_ev)
|
||||
return 0; /* all OK */
|
||||
|
||||
/* doesn't work, gather alternatives... */
|
||||
if (!ppmu->get_alternatives)
|
||||
return -1;
|
||||
for (i = 0; i < n_ev; ++i) {
|
||||
n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
|
||||
for (j = 1; j < n_alt[i]; ++j)
|
||||
ppmu->get_constraint(alternatives[i][j],
|
||||
&amasks[i][j], &avalues[i][j]);
|
||||
}
|
||||
|
||||
/* enumerate all possibilities and see if any will work */
|
||||
i = 0;
|
||||
j = -1;
|
||||
value = mask = nv = 0;
|
||||
while (i < n_ev) {
|
||||
if (j >= 0) {
|
||||
/* we're backtracking, restore context */
|
||||
value = svalues[i];
|
||||
mask = smasks[i];
|
||||
j = choice[i];
|
||||
}
|
||||
/*
|
||||
* See if any alternative k for event i,
|
||||
* where k > j, will satisfy the constraints.
|
||||
*/
|
||||
while (++j < n_alt[i]) {
|
||||
nv = (value | avalues[i][j]) +
|
||||
(value & avalues[i][j] & addf);
|
||||
if ((((nv + tadd) ^ value) & mask) == 0 &&
|
||||
(((nv + tadd) ^ avalues[i][j])
|
||||
& amasks[i][j]) == 0)
|
||||
break;
|
||||
}
|
||||
if (j >= n_alt[i]) {
|
||||
/*
|
||||
* No feasible alternative, backtrack
|
||||
* to event i-1 and continue enumerating its
|
||||
* alternatives from where we got up to.
|
||||
*/
|
||||
if (--i < 0)
|
||||
return -1;
|
||||
} else {
|
||||
/*
|
||||
* Found a feasible alternative for event i,
|
||||
* remember where we got up to with this event,
|
||||
* go on to the next event, and start with
|
||||
* the first alternative for it.
|
||||
*/
|
||||
choice[i] = j;
|
||||
svalues[i] = value;
|
||||
smasks[i] = mask;
|
||||
value = nv;
|
||||
mask |= amasks[i][j];
|
||||
++i;
|
||||
j = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* OK, we have a feasible combination, tell the caller the solution */
|
||||
for (i = 0; i < n_ev; ++i)
|
||||
event[i] = alternatives[i][choice[i]];
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void power_perf_read(struct perf_counter *counter)
|
||||
{
|
||||
long val, delta, prev;
|
||||
|
||||
if (!counter->hw.idx)
|
||||
return;
|
||||
/*
|
||||
* Performance monitor interrupts come even when interrupts
|
||||
* are soft-disabled, as long as interrupts are hard-enabled.
|
||||
* Therefore we treat them like NMIs.
|
||||
*/
|
||||
do {
|
||||
prev = atomic64_read(&counter->hw.prev_count);
|
||||
barrier();
|
||||
val = read_pmc(counter->hw.idx);
|
||||
} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
|
||||
|
||||
/* The counters are only 32 bits wide */
|
||||
delta = (val - prev) & 0xfffffffful;
|
||||
atomic64_add(delta, &counter->count);
|
||||
atomic64_sub(delta, &counter->hw.period_left);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disable all counters to prevent PMU interrupts and to allow
|
||||
* counters to be added or removed.
|
||||
*/
|
||||
u64 hw_perf_save_disable(void)
|
||||
{
|
||||
struct cpu_hw_counters *cpuhw;
|
||||
unsigned long ret;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
|
||||
ret = cpuhw->disabled;
|
||||
if (!ret) {
|
||||
cpuhw->disabled = 1;
|
||||
cpuhw->n_added = 0;
|
||||
|
||||
/*
|
||||
* Set the 'freeze counters' bit.
|
||||
* The barrier is to make sure the mtspr has been
|
||||
* executed and the PMU has frozen the counters
|
||||
* before we return.
|
||||
*/
|
||||
mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
|
||||
mb();
|
||||
}
|
||||
local_irq_restore(flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Re-enable all counters if disable == 0.
|
||||
* If we were previously disabled and counters were added, then
|
||||
* put the new config on the PMU.
|
||||
*/
|
||||
void hw_perf_restore(u64 disable)
|
||||
{
|
||||
struct perf_counter *counter;
|
||||
struct cpu_hw_counters *cpuhw;
|
||||
unsigned long flags;
|
||||
long i;
|
||||
unsigned long val;
|
||||
s64 left;
|
||||
unsigned int hwc_index[MAX_HWCOUNTERS];
|
||||
|
||||
if (disable)
|
||||
return;
|
||||
local_irq_save(flags);
|
||||
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
cpuhw->disabled = 0;
|
||||
|
||||
/*
|
||||
* If we didn't change anything, or only removed counters,
|
||||
* no need to recalculate MMCR* settings and reset the PMCs.
|
||||
* Just reenable the PMU with the current MMCR* settings
|
||||
* (possibly updated for removal of counters).
|
||||
*/
|
||||
if (!cpuhw->n_added) {
|
||||
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
||||
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
||||
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute MMCR* values for the new set of counters
|
||||
*/
|
||||
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
|
||||
cpuhw->mmcr)) {
|
||||
/* shouldn't ever get here */
|
||||
printk(KERN_ERR "oops compute_mmcr failed\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write the new configuration to MMCR* with the freeze
|
||||
* bit set and set the hardware counters to their initial values.
|
||||
* Then unfreeze the counters.
|
||||
*/
|
||||
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
||||
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
||||
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
|
||||
| MMCR0_FC);
|
||||
|
||||
/*
|
||||
* Read off any pre-existing counters that need to move
|
||||
* to another PMC.
|
||||
*/
|
||||
for (i = 0; i < cpuhw->n_counters; ++i) {
|
||||
counter = cpuhw->counter[i];
|
||||
if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
|
||||
power_perf_read(counter);
|
||||
write_pmc(counter->hw.idx, 0);
|
||||
counter->hw.idx = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the PMCs for all the new and moved counters.
|
||||
*/
|
||||
for (i = 0; i < cpuhw->n_counters; ++i) {
|
||||
counter = cpuhw->counter[i];
|
||||
if (counter->hw.idx)
|
||||
continue;
|
||||
val = 0;
|
||||
if (counter->hw_event.irq_period) {
|
||||
left = atomic64_read(&counter->hw.period_left);
|
||||
if (left < 0x80000000L)
|
||||
val = 0x80000000L - left;
|
||||
}
|
||||
atomic64_set(&counter->hw.prev_count, val);
|
||||
counter->hw.idx = hwc_index[i] + 1;
|
||||
write_pmc(counter->hw.idx, val);
|
||||
}
|
||||
mb();
|
||||
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
|
||||
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
||||
|
||||
out:
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static int collect_events(struct perf_counter *group, int max_count,
|
||||
struct perf_counter *ctrs[], unsigned int *events)
|
||||
{
|
||||
int n = 0;
|
||||
struct perf_counter *counter;
|
||||
|
||||
if (!is_software_counter(group)) {
|
||||
if (n >= max_count)
|
||||
return -1;
|
||||
ctrs[n] = group;
|
||||
events[n++] = group->hw.config;
|
||||
}
|
||||
list_for_each_entry(counter, &group->sibling_list, list_entry) {
|
||||
if (!is_software_counter(counter) &&
|
||||
counter->state != PERF_COUNTER_STATE_OFF) {
|
||||
if (n >= max_count)
|
||||
return -1;
|
||||
ctrs[n] = counter;
|
||||
events[n++] = counter->hw.config;
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
static void counter_sched_in(struct perf_counter *counter, int cpu)
|
||||
{
|
||||
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
||||
counter->oncpu = cpu;
|
||||
if (is_software_counter(counter))
|
||||
counter->hw_ops->enable(counter);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called to enable a whole group of counters.
|
||||
* Returns 1 if the group was enabled, or -EAGAIN if it could not be.
|
||||
* Assumes the caller has disabled interrupts and has
|
||||
* frozen the PMU with hw_perf_save_disable.
|
||||
*/
|
||||
int hw_perf_group_sched_in(struct perf_counter *group_leader,
|
||||
struct perf_cpu_context *cpuctx,
|
||||
struct perf_counter_context *ctx, int cpu)
|
||||
{
|
||||
struct cpu_hw_counters *cpuhw;
|
||||
long i, n, n0;
|
||||
struct perf_counter *sub;
|
||||
|
||||
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
n0 = cpuhw->n_counters;
|
||||
n = collect_events(group_leader, ppmu->n_counter - n0,
|
||||
&cpuhw->counter[n0], &cpuhw->events[n0]);
|
||||
if (n < 0)
|
||||
return -EAGAIN;
|
||||
if (power_check_constraints(cpuhw->events, n + n0))
|
||||
return -EAGAIN;
|
||||
cpuhw->n_counters = n0 + n;
|
||||
cpuhw->n_added += n;
|
||||
|
||||
/*
|
||||
* OK, this group can go on; update counter states etc.,
|
||||
* and enable any software counters
|
||||
*/
|
||||
for (i = n0; i < n0 + n; ++i)
|
||||
cpuhw->counter[i]->hw.config = cpuhw->events[i];
|
||||
n = 1;
|
||||
counter_sched_in(group_leader, cpu);
|
||||
list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
|
||||
if (sub->state != PERF_COUNTER_STATE_OFF) {
|
||||
counter_sched_in(sub, cpu);
|
||||
++n;
|
||||
}
|
||||
}
|
||||
cpuctx->active_oncpu += n;
|
||||
ctx->nr_active += n;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add a counter to the PMU.
|
||||
* If all counters are not already frozen, then we disable and
|
||||
* re-enable the PMU in order to get hw_perf_restore to do the
|
||||
* actual work of reconfiguring the PMU.
|
||||
*/
|
||||
static int power_perf_enable(struct perf_counter *counter)
|
||||
{
|
||||
struct cpu_hw_counters *cpuhw;
|
||||
unsigned long flags;
|
||||
u64 pmudis;
|
||||
int n0;
|
||||
int ret = -EAGAIN;
|
||||
|
||||
local_irq_save(flags);
|
||||
pmudis = hw_perf_save_disable();
|
||||
|
||||
/*
|
||||
* Add the counter to the list (if there is room)
|
||||
* and check whether the total set is still feasible.
|
||||
*/
|
||||
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
n0 = cpuhw->n_counters;
|
||||
if (n0 >= ppmu->n_counter)
|
||||
goto out;
|
||||
cpuhw->counter[n0] = counter;
|
||||
cpuhw->events[n0] = counter->hw.config;
|
||||
if (power_check_constraints(cpuhw->events, n0 + 1))
|
||||
goto out;
|
||||
|
||||
counter->hw.config = cpuhw->events[n0];
|
||||
++cpuhw->n_counters;
|
||||
++cpuhw->n_added;
|
||||
|
||||
ret = 0;
|
||||
out:
|
||||
hw_perf_restore(pmudis);
|
||||
local_irq_restore(flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove a counter from the PMU.
|
||||
*/
|
||||
static void power_perf_disable(struct perf_counter *counter)
|
||||
{
|
||||
struct cpu_hw_counters *cpuhw;
|
||||
long i;
|
||||
u64 pmudis;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
pmudis = hw_perf_save_disable();
|
||||
|
||||
power_perf_read(counter);
|
||||
|
||||
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
for (i = 0; i < cpuhw->n_counters; ++i) {
|
||||
if (counter == cpuhw->counter[i]) {
|
||||
while (++i < cpuhw->n_counters)
|
||||
cpuhw->counter[i-1] = cpuhw->counter[i];
|
||||
--cpuhw->n_counters;
|
||||
ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
|
||||
write_pmc(counter->hw.idx, 0);
|
||||
counter->hw.idx = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (cpuhw->n_counters == 0) {
|
||||
/* disable exceptions if no counters are running */
|
||||
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
|
||||
}
|
||||
|
||||
hw_perf_restore(pmudis);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
struct hw_perf_counter_ops power_perf_ops = {
|
||||
.enable = power_perf_enable,
|
||||
.disable = power_perf_disable,
|
||||
.read = power_perf_read
|
||||
};
|
||||
|
||||
const struct hw_perf_counter_ops *
|
||||
hw_perf_counter_init(struct perf_counter *counter)
|
||||
{
|
||||
unsigned long ev;
|
||||
struct perf_counter *ctrs[MAX_HWCOUNTERS];
|
||||
unsigned int events[MAX_HWCOUNTERS];
|
||||
int n;
|
||||
|
||||
if (!ppmu)
|
||||
return NULL;
|
||||
if ((s64)counter->hw_event.irq_period < 0)
|
||||
return NULL;
|
||||
ev = counter->hw_event.type;
|
||||
if (!counter->hw_event.raw) {
|
||||
if (ev >= ppmu->n_generic ||
|
||||
ppmu->generic_events[ev] == 0)
|
||||
return NULL;
|
||||
ev = ppmu->generic_events[ev];
|
||||
}
|
||||
counter->hw.config_base = ev;
|
||||
counter->hw.idx = 0;
|
||||
|
||||
/*
|
||||
* If this is in a group, check if it can go on with all the
|
||||
* other hardware counters in the group. We assume the counter
|
||||
* hasn't been linked into its leader's sibling list at this point.
|
||||
*/
|
||||
n = 0;
|
||||
if (counter->group_leader != counter) {
|
||||
n = collect_events(counter->group_leader, ppmu->n_counter - 1,
|
||||
ctrs, events);
|
||||
if (n < 0)
|
||||
return NULL;
|
||||
}
|
||||
events[n++] = ev;
|
||||
if (power_check_constraints(events, n))
|
||||
return NULL;
|
||||
|
||||
counter->hw.config = events[n - 1];
|
||||
atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
|
||||
return &power_perf_ops;
|
||||
}
|
||||
|
||||
/*
|
||||
* Handle wakeups.
|
||||
*/
|
||||
void perf_counter_do_pending(void)
|
||||
{
|
||||
int i;
|
||||
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
struct perf_counter *counter;
|
||||
|
||||
set_perf_counter_pending(0);
|
||||
for (i = 0; i < cpuhw->n_counters; ++i) {
|
||||
counter = cpuhw->counter[i];
|
||||
if (counter && counter->wakeup_pending) {
|
||||
counter->wakeup_pending = 0;
|
||||
wake_up(&counter->waitq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Record data for an irq counter.
|
||||
* This function was lifted from the x86 code; maybe it should
|
||||
* go in the core?
|
||||
*/
|
||||
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
|
||||
{
|
||||
struct perf_data *irqdata = counter->irqdata;
|
||||
|
||||
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
|
||||
irqdata->overrun++;
|
||||
} else {
|
||||
u64 *p = (u64 *) &irqdata->data[irqdata->len];
|
||||
|
||||
*p = data;
|
||||
irqdata->len += sizeof(u64);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Record all the values of the counters in a group
|
||||
*/
|
||||
static void perf_handle_group(struct perf_counter *counter)
|
||||
{
|
||||
struct perf_counter *leader, *sub;
|
||||
|
||||
leader = counter->group_leader;
|
||||
list_for_each_entry(sub, &leader->sibling_list, list_entry) {
|
||||
if (sub != counter)
|
||||
sub->hw_ops->read(sub);
|
||||
perf_store_irq_data(counter, sub->hw_event.type);
|
||||
perf_store_irq_data(counter, atomic64_read(&sub->count));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* A counter has overflowed; update its count and record
|
||||
* things if requested. Note that interrupts are hard-disabled
|
||||
* here so there is no possibility of being interrupted.
|
||||
*/
|
||||
static void record_and_restart(struct perf_counter *counter, long val,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
s64 prev, delta, left;
|
||||
int record = 0;
|
||||
|
||||
/* we don't have to worry about interrupts here */
|
||||
prev = atomic64_read(&counter->hw.prev_count);
|
||||
delta = (val - prev) & 0xfffffffful;
|
||||
atomic64_add(delta, &counter->count);
|
||||
|
||||
/*
|
||||
* See if the total period for this counter has expired,
|
||||
* and update for the next period.
|
||||
*/
|
||||
val = 0;
|
||||
left = atomic64_read(&counter->hw.period_left) - delta;
|
||||
if (counter->hw_event.irq_period) {
|
||||
if (left <= 0) {
|
||||
left += counter->hw_event.irq_period;
|
||||
if (left <= 0)
|
||||
left = counter->hw_event.irq_period;
|
||||
record = 1;
|
||||
}
|
||||
if (left < 0x80000000L)
|
||||
val = 0x80000000L - left;
|
||||
}
|
||||
write_pmc(counter->hw.idx, val);
|
||||
atomic64_set(&counter->hw.prev_count, val);
|
||||
atomic64_set(&counter->hw.period_left, left);
|
||||
|
||||
/*
|
||||
* Finally record data if requested.
|
||||
*/
|
||||
if (record) {
|
||||
switch (counter->hw_event.record_type) {
|
||||
case PERF_RECORD_SIMPLE:
|
||||
break;
|
||||
case PERF_RECORD_IRQ:
|
||||
perf_store_irq_data(counter, instruction_pointer(regs));
|
||||
counter->wakeup_pending = 1;
|
||||
break;
|
||||
case PERF_RECORD_GROUP:
|
||||
perf_handle_group(counter);
|
||||
counter->wakeup_pending = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Performance monitor interrupt stuff
|
||||
*/
|
||||
static void perf_counter_interrupt(struct pt_regs *regs)
|
||||
{
|
||||
int i;
|
||||
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
||||
struct perf_counter *counter;
|
||||
long val;
|
||||
int need_wakeup = 0, found = 0;
|
||||
|
||||
for (i = 0; i < cpuhw->n_counters; ++i) {
|
||||
counter = cpuhw->counter[i];
|
||||
val = read_pmc(counter->hw.idx);
|
||||
if ((int)val < 0) {
|
||||
/* counter has overflowed */
|
||||
found = 1;
|
||||
record_and_restart(counter, val, regs);
|
||||
if (counter->wakeup_pending)
|
||||
need_wakeup = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* In case we didn't find and reset the counter that caused
|
||||
* the interrupt, scan all counters and reset any that are
|
||||
* negative, to avoid getting continual interrupts.
|
||||
* Any that we processed in the previous loop will not be negative.
|
||||
*/
|
||||
if (!found) {
|
||||
for (i = 0; i < ppmu->n_counter; ++i) {
|
||||
val = read_pmc(i + 1);
|
||||
if ((int)val < 0)
|
||||
write_pmc(i + 1, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Reset MMCR0 to its normal value. This will set PMXE and
|
||||
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
|
||||
* and thus allow interrupts to occur again.
|
||||
* XXX might want to use MSR.PM to keep the counters frozen until
|
||||
* we get back out of this interrupt.
|
||||
*/
|
||||
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
||||
|
||||
/*
|
||||
* If we need a wakeup, check whether interrupts were soft-enabled
|
||||
* when we took the interrupt. If they were, we can wake stuff up
|
||||
* immediately; otherwise we'll have to set a flag and do the
|
||||
* wakeup when interrupts get soft-enabled.
|
||||
*/
|
||||
if (need_wakeup) {
|
||||
if (regs->softe) {
|
||||
irq_enter();
|
||||
perf_counter_do_pending();
|
||||
irq_exit();
|
||||
} else {
|
||||
set_perf_counter_pending(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int init_perf_counters(void)
|
||||
{
|
||||
if (reserve_pmc_hardware(perf_counter_interrupt)) {
|
||||
printk(KERN_ERR "Couldn't init performance monitor subsystem\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
arch_initcall(init_perf_counters);
|
Loading…
x
Reference in New Issue
Block a user