mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-29 17:23:36 +00:00
ARM updates for v6.6-rc1
Development updates for v6.6-rc1
- Refactor VFP code and convert to C code (Ard Biesheuvel)
- Fix hardware breakpoint single-stepping using bpf_overflow_handler
- Make SMP stop calls asynchronous allowing panic from irq context to
work
- Fix for kernel-doc warnings for locomo
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEuNNh8scc2k/wOAE+9OeQG+StrGQFAmTwWakACgkQ9OeQG+St
rGRN9Q//RqjMHeJUr1sM8ZNtW2GggBbROnkG6VZLG3yZ4eZcpcwBPmsrSh3bgdtl
pOQBnq++I7bnQjbTkVY/bHAVsQ0utMbhaZIq9/1V561HiVgKtfJhx9FZxe7WzJRv
qB0+2KtIKqy9kKwjr5LOchbcQZnyIBp1b71MuBoTQlyKgaqbF5pvftML42aeBDgs
ALTLZ7y9yTdcu2/tUXdxmbQiFc0uKLm7K84wS2bXvgR6p6IexcZP6e/UGoPT3OJ8
4rUuwSQr725remsXns2wJvlAosN2JQgVuT4+cUMm7/hRbeIn3QfBL7qSykBHgoc2
BiGhHyt4/idS3oxF9sSqTkXLQe1b7a8bnwYXfx+JRZcCx8m24sTCDIQXUp2ODPeK
6LIZja0nIocc0Y/r5vw/is8kaoNQJ+O5siogaRkNODEpaMxEYNNN8+SWJQf5i4hk
2MDWfVFGdSZ2cZ9oqicTUuEwpID/LpPfDFbnMwvIKO7yo5yAEwjtIwTSyrGoyGIi
A8vtvHvGv6nFckQybT5myVPQekCoDl3g6lTLIUK9dA0Vc8zeL6uO6qfyjy53Mj0B
FMnGVG4fT41gyuryX8ZoVR5edtBF5WnVflWMI9QzH9PdWgJK3Q4A+nVtTFGo+e5B
o1NfY0TKTlS2ZA1MfZPUcog/IzxBhysrk8VwwIXjzV4h87Yx7o0=
=2/CL
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:
- Refactor VFP code and convert to C code (Ard Biesheuvel)
- Fix hardware breakpoint single-stepping using bpf_overflow_handler
- Make SMP stop calls asynchronous allowing panic from irq context to
work
- Fix for kernel-doc warnings for locomo
* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
Revert part of ae1f8d793a
("ARM: 9304/1: add prototype for function called only from asm")
ARM: 9318/1: locomo: move kernel-doc to prevent warnings
ARM: 9317/1: kexec: Make smp stop calls asynchronous
ARM: 9316/1: hw_breakpoint: fix single-stepping when using bpf_overflow_handler
ARM: entry: Make asm coproc dispatch code NWFPE only
ARM: iwmmxt: Use undef hook to enable coprocessor for task
ARM: entry: Disregard Thumb undef exception in coproc dispatch
ARM: vfp: Use undef hook for handling VFP exceptions
ARM: kernel: Get rid of thread_info::used_cp[] array
ARM: vfp: Reimplement VFP exception entry in C code
ARM: vfp: Remove workaround for Feroceon CPUs
ARM: vfp: Record VFP bounces as perf emulation faults
This commit is contained in:
commit
87dfd85c38
@ -350,19 +350,6 @@ static int locomo_resume(struct platform_device *dev)
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* locomo_probe - probe for a single LoCoMo chip.
|
||||
* @phys_addr: physical address of device.
|
||||
*
|
||||
* Probe for a LoCoMo chip. This must be called
|
||||
* before any other locomo-specific code.
|
||||
*
|
||||
* Returns:
|
||||
* %-ENODEV device not found.
|
||||
* %-EBUSY physical address already marked in-use.
|
||||
* %0 successful.
|
||||
*/
|
||||
static int
|
||||
__locomo_probe(struct device *me, struct resource *mem, int irq)
|
||||
{
|
||||
@ -479,6 +466,21 @@ static void __locomo_remove(struct locomo *lchip)
|
||||
kfree(lchip);
|
||||
}
|
||||
|
||||
/**
|
||||
* locomo_probe - probe for a single LoCoMo chip.
|
||||
* @dev: platform device
|
||||
*
|
||||
* Probe for a LoCoMo chip. This must be called
|
||||
* before any other locomo-specific code.
|
||||
*
|
||||
* Returns:
|
||||
* * %-EINVAL - device's IORESOURCE_MEM not found
|
||||
* * %-ENXIO - could not allocate an IRQ for the device
|
||||
* * %-ENODEV - device not found.
|
||||
* * %-EBUSY - physical address already marked in-use.
|
||||
* * %-ENOMEM - could not allocate or iomap memory.
|
||||
* * %0 - successful.
|
||||
*/
|
||||
static int locomo_probe(struct platform_device *dev)
|
||||
{
|
||||
struct resource *mem;
|
||||
|
@ -40,6 +40,7 @@ struct task_struct;
|
||||
DECLARE_PER_CPU(struct task_struct *, __entry_task);
|
||||
|
||||
#include <asm/types.h>
|
||||
#include <asm/traps.h>
|
||||
|
||||
struct cpu_context_save {
|
||||
__u32 r4;
|
||||
@ -66,7 +67,6 @@ struct thread_info {
|
||||
__u32 cpu_domain; /* cpu domain */
|
||||
struct cpu_context_save cpu_context; /* cpu context */
|
||||
__u32 abi_syscall; /* ABI type and syscall nr */
|
||||
__u8 used_cp[16]; /* thread used copro */
|
||||
unsigned long tp_value[2]; /* TLS registers */
|
||||
union fp_state fpstate __attribute__((aligned(8)));
|
||||
union vfp_state vfpstate;
|
||||
@ -105,6 +105,21 @@ extern void iwmmxt_task_restore(struct thread_info *, void *);
|
||||
extern void iwmmxt_task_release(struct thread_info *);
|
||||
extern void iwmmxt_task_switch(struct thread_info *);
|
||||
|
||||
extern int iwmmxt_undef_handler(struct pt_regs *, u32);
|
||||
|
||||
static inline void register_iwmmxt_undef_handler(void)
|
||||
{
|
||||
static struct undef_hook iwmmxt_undef_hook = {
|
||||
.instr_mask = 0x0c000e00,
|
||||
.instr_val = 0x0c000000,
|
||||
.cpsr_mask = MODE_MASK | PSR_T_BIT,
|
||||
.cpsr_val = USR_MODE,
|
||||
.fn = iwmmxt_undef_handler,
|
||||
};
|
||||
|
||||
register_undef_hook(&iwmmxt_undef_hook);
|
||||
}
|
||||
|
||||
extern void vfp_sync_hwstate(struct thread_info *);
|
||||
extern void vfp_flush_hwstate(struct thread_info *);
|
||||
|
||||
|
@ -102,7 +102,6 @@
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
void vfp_disable(void);
|
||||
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs);
|
||||
#endif
|
||||
|
||||
#endif /* __ASM_VFP_H */
|
||||
|
@ -47,7 +47,6 @@ int main(void)
|
||||
DEFINE(TI_CPU_DOMAIN, offsetof(struct thread_info, cpu_domain));
|
||||
DEFINE(TI_CPU_SAVE, offsetof(struct thread_info, cpu_context));
|
||||
DEFINE(TI_ABI_SYSCALL, offsetof(struct thread_info, abi_syscall));
|
||||
DEFINE(TI_USED_CP, offsetof(struct thread_info, used_cp));
|
||||
DEFINE(TI_TP_VALUE, offsetof(struct thread_info, tp_value));
|
||||
DEFINE(TI_FPSTATE, offsetof(struct thread_info, fpstate));
|
||||
#ifdef CONFIG_VFP
|
||||
|
@ -446,258 +446,26 @@ ENDPROC(__irq_usr)
|
||||
__und_usr:
|
||||
usr_entry uaccess=0
|
||||
|
||||
mov r2, r4
|
||||
mov r3, r5
|
||||
|
||||
@ r2 = regs->ARM_pc, which is either 2 or 4 bytes ahead of the
|
||||
@ faulting instruction depending on Thumb mode.
|
||||
@ r3 = regs->ARM_cpsr
|
||||
@
|
||||
@ The emulation code returns using r9 if it has emulated the
|
||||
@ instruction, or the more conventional lr if we are to treat
|
||||
@ this as a real undefined instruction
|
||||
@
|
||||
badr r9, ret_from_exception
|
||||
|
||||
@ IRQs must be enabled before attempting to read the instruction from
|
||||
@ user space since that could cause a page/translation fault if the
|
||||
@ page table was modified by another CPU.
|
||||
enable_irq
|
||||
|
||||
tst r3, #PSR_T_BIT @ Thumb mode?
|
||||
bne __und_usr_thumb
|
||||
sub r4, r2, #4 @ ARM instr at LR - 4
|
||||
1: ldrt r0, [r4]
|
||||
ARM_BE8(rev r0, r0) @ little endian instruction
|
||||
|
||||
tst r5, #PSR_T_BIT @ Thumb mode?
|
||||
mov r1, #2 @ set insn size to 2 for Thumb
|
||||
bne 0f @ handle as Thumb undef exception
|
||||
#ifdef CONFIG_FPE_NWFPE
|
||||
adr r9, ret_from_exception
|
||||
bl call_fpe @ returns via R9 on success
|
||||
#endif
|
||||
mov r1, #4 @ set insn size to 4 for ARM
|
||||
0: mov r0, sp
|
||||
uaccess_disable ip
|
||||
|
||||
@ r0 = 32-bit ARM instruction which caused the exception
|
||||
@ r2 = PC value for the following instruction (:= regs->ARM_pc)
|
||||
@ r4 = PC value for the faulting instruction
|
||||
@ lr = 32-bit undefined instruction function
|
||||
badr lr, __und_usr_fault_32
|
||||
b call_fpe
|
||||
|
||||
__und_usr_thumb:
|
||||
@ Thumb instruction
|
||||
sub r4, r2, #2 @ First half of thumb instr at LR - 2
|
||||
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
|
||||
/*
|
||||
* Thumb-2 instruction handling. Note that because pre-v6 and >= v6 platforms
|
||||
* can never be supported in a single kernel, this code is not applicable at
|
||||
* all when __LINUX_ARM_ARCH__ < 6. This allows simplifying assumptions to be
|
||||
* made about .arch directives.
|
||||
*/
|
||||
#if __LINUX_ARM_ARCH__ < 7
|
||||
/* If the target CPU may not be Thumb-2-capable, a run-time check is needed: */
|
||||
ldr_va r5, cpu_architecture
|
||||
cmp r5, #CPU_ARCH_ARMv7
|
||||
blo __und_usr_fault_16 @ 16bit undefined instruction
|
||||
/*
|
||||
* The following code won't get run unless the running CPU really is v7, so
|
||||
* coding round the lack of ldrht on older arches is pointless. Temporarily
|
||||
* override the assembler target arch with the minimum required instead:
|
||||
*/
|
||||
.arch armv6t2
|
||||
#endif
|
||||
2: ldrht r5, [r4]
|
||||
ARM_BE8(rev16 r5, r5) @ little endian instruction
|
||||
cmp r5, #0xe800 @ 32bit instruction if xx != 0
|
||||
blo __und_usr_fault_16_pan @ 16bit undefined instruction
|
||||
3: ldrht r0, [r2]
|
||||
ARM_BE8(rev16 r0, r0) @ little endian instruction
|
||||
uaccess_disable ip
|
||||
add r2, r2, #2 @ r2 is PC + 2, make it PC + 4
|
||||
str r2, [sp, #S_PC] @ it's a 2x16bit instr, update
|
||||
orr r0, r0, r5, lsl #16
|
||||
badr lr, __und_usr_fault_32
|
||||
@ r0 = the two 16-bit Thumb instructions which caused the exception
|
||||
@ r2 = PC value for the following Thumb instruction (:= regs->ARM_pc)
|
||||
@ r4 = PC value for the first 16-bit Thumb instruction
|
||||
@ lr = 32bit undefined instruction function
|
||||
|
||||
#if __LINUX_ARM_ARCH__ < 7
|
||||
/* If the target arch was overridden, change it back: */
|
||||
#ifdef CONFIG_CPU_32v6K
|
||||
.arch armv6k
|
||||
#else
|
||||
.arch armv6
|
||||
#endif
|
||||
#endif /* __LINUX_ARM_ARCH__ < 7 */
|
||||
#else /* !(CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7) */
|
||||
b __und_usr_fault_16
|
||||
#endif
|
||||
bl __und_fault
|
||||
b ret_from_exception
|
||||
UNWIND(.fnend)
|
||||
ENDPROC(__und_usr)
|
||||
|
||||
/*
|
||||
* The out of line fixup for the ldrt instructions above.
|
||||
*/
|
||||
.pushsection .text.fixup, "ax"
|
||||
.align 2
|
||||
4: str r4, [sp, #S_PC] @ retry current instruction
|
||||
ret r9
|
||||
.popsection
|
||||
.pushsection __ex_table,"a"
|
||||
.long 1b, 4b
|
||||
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
|
||||
.long 2b, 4b
|
||||
.long 3b, 4b
|
||||
#endif
|
||||
.popsection
|
||||
|
||||
/*
|
||||
* Check whether the instruction is a co-processor instruction.
|
||||
* If yes, we need to call the relevant co-processor handler.
|
||||
*
|
||||
* Note that we don't do a full check here for the co-processor
|
||||
* instructions; all instructions with bit 27 set are well
|
||||
* defined. The only instructions that should fault are the
|
||||
* co-processor instructions. However, we have to watch out
|
||||
* for the ARM6/ARM7 SWI bug.
|
||||
*
|
||||
* NEON is a special case that has to be handled here. Not all
|
||||
* NEON instructions are co-processor instructions, so we have
|
||||
* to make a special case of checking for them. Plus, there's
|
||||
* five groups of them, so we have a table of mask/opcode pairs
|
||||
* to check against, and if any match then we branch off into the
|
||||
* NEON handler code.
|
||||
*
|
||||
* Emulators may wish to make use of the following registers:
|
||||
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
* r2 = PC value to resume execution after successful emulation
|
||||
* r9 = normal "successful" return address
|
||||
* r10 = this threads thread_info structure
|
||||
* lr = unrecognised instruction return address
|
||||
* IRQs enabled, FIQs enabled.
|
||||
*/
|
||||
@
|
||||
@ Fall-through from Thumb-2 __und_usr
|
||||
@
|
||||
#ifdef CONFIG_NEON
|
||||
get_thread_info r10 @ get current thread
|
||||
adr r6, .LCneon_thumb_opcodes
|
||||
b 2f
|
||||
#endif
|
||||
call_fpe:
|
||||
get_thread_info r10 @ get current thread
|
||||
#ifdef CONFIG_NEON
|
||||
adr r6, .LCneon_arm_opcodes
|
||||
2: ldr r5, [r6], #4 @ mask value
|
||||
ldr r7, [r6], #4 @ opcode bits matching in mask
|
||||
cmp r5, #0 @ end mask?
|
||||
beq 1f
|
||||
and r8, r0, r5
|
||||
cmp r8, r7 @ NEON instruction?
|
||||
bne 2b
|
||||
mov r7, #1
|
||||
strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used
|
||||
strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used
|
||||
b do_vfp @ let VFP handler handle this
|
||||
1:
|
||||
#endif
|
||||
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
|
||||
tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2
|
||||
reteq lr
|
||||
and r8, r0, #0x00000f00 @ mask out CP number
|
||||
mov r7, #1
|
||||
add r6, r10, r8, lsr #8 @ add used_cp[] array offset first
|
||||
strb r7, [r6, #TI_USED_CP] @ set appropriate used_cp[]
|
||||
#ifdef CONFIG_IWMMXT
|
||||
@ Test if we need to give access to iWMMXt coprocessors
|
||||
ldr r5, [r10, #TI_FLAGS]
|
||||
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
|
||||
movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1)
|
||||
bcs iwmmxt_task_enable
|
||||
#endif
|
||||
ARM( add pc, pc, r8, lsr #6 )
|
||||
THUMB( lsr r8, r8, #6 )
|
||||
THUMB( add pc, r8 )
|
||||
nop
|
||||
|
||||
ret.w lr @ CP#0
|
||||
W(b) do_fpe @ CP#1 (FPE)
|
||||
W(b) do_fpe @ CP#2 (FPE)
|
||||
ret.w lr @ CP#3
|
||||
ret.w lr @ CP#4
|
||||
ret.w lr @ CP#5
|
||||
ret.w lr @ CP#6
|
||||
ret.w lr @ CP#7
|
||||
ret.w lr @ CP#8
|
||||
ret.w lr @ CP#9
|
||||
#ifdef CONFIG_VFP
|
||||
W(b) do_vfp @ CP#10 (VFP)
|
||||
W(b) do_vfp @ CP#11 (VFP)
|
||||
#else
|
||||
ret.w lr @ CP#10 (VFP)
|
||||
ret.w lr @ CP#11 (VFP)
|
||||
#endif
|
||||
ret.w lr @ CP#12
|
||||
ret.w lr @ CP#13
|
||||
ret.w lr @ CP#14 (Debug)
|
||||
ret.w lr @ CP#15 (Control)
|
||||
|
||||
#ifdef CONFIG_NEON
|
||||
.align 6
|
||||
|
||||
.LCneon_arm_opcodes:
|
||||
.word 0xfe000000 @ mask
|
||||
.word 0xf2000000 @ opcode
|
||||
|
||||
.word 0xff100000 @ mask
|
||||
.word 0xf4000000 @ opcode
|
||||
|
||||
.word 0x00000000 @ mask
|
||||
.word 0x00000000 @ opcode
|
||||
|
||||
.LCneon_thumb_opcodes:
|
||||
.word 0xef000000 @ mask
|
||||
.word 0xef000000 @ opcode
|
||||
|
||||
.word 0xff100000 @ mask
|
||||
.word 0xf9000000 @ opcode
|
||||
|
||||
.word 0x00000000 @ mask
|
||||
.word 0x00000000 @ opcode
|
||||
#endif
|
||||
|
||||
do_fpe:
|
||||
add r10, r10, #TI_FPSTATE @ r10 = workspace
|
||||
ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point
|
||||
|
||||
/*
|
||||
* The FP module is called with these registers set:
|
||||
* r0 = instruction
|
||||
* r2 = PC+4
|
||||
* r9 = normal "successful" return address
|
||||
* r10 = FP workspace
|
||||
* lr = unrecognised FP instruction return address
|
||||
*/
|
||||
|
||||
.pushsection .data
|
||||
.align 2
|
||||
ENTRY(fp_enter)
|
||||
.word no_fp
|
||||
.popsection
|
||||
|
||||
ENTRY(no_fp)
|
||||
ret lr
|
||||
ENDPROC(no_fp)
|
||||
|
||||
__und_usr_fault_32:
|
||||
mov r1, #4
|
||||
b 1f
|
||||
__und_usr_fault_16_pan:
|
||||
uaccess_disable ip
|
||||
__und_usr_fault_16:
|
||||
mov r1, #2
|
||||
1: mov r0, sp
|
||||
badr lr, ret_from_exception
|
||||
b __und_fault
|
||||
ENDPROC(__und_usr_fault_32)
|
||||
ENDPROC(__und_usr_fault_16)
|
||||
|
||||
.align 5
|
||||
__pabt_usr:
|
||||
usr_entry
|
||||
|
@ -58,9 +58,19 @@
|
||||
.text
|
||||
.arm
|
||||
|
||||
ENTRY(iwmmxt_undef_handler)
|
||||
push {r9, r10, lr}
|
||||
get_thread_info r10
|
||||
mov r9, pc
|
||||
b iwmmxt_task_enable
|
||||
mov r0, #0
|
||||
pop {r9, r10, pc}
|
||||
ENDPROC(iwmmxt_undef_handler)
|
||||
|
||||
/*
|
||||
* Lazy switching of Concan coprocessor context
|
||||
*
|
||||
* r0 = struct pt_regs pointer
|
||||
* r10 = struct thread_info pointer
|
||||
* r9 = ret_from_exception
|
||||
* lr = undefined instr exit
|
||||
@ -84,12 +94,12 @@ ENTRY(iwmmxt_task_enable)
|
||||
PJ4(mcr p15, 0, r2, c1, c0, 2)
|
||||
|
||||
ldr r3, =concan_owner
|
||||
add r0, r10, #TI_IWMMXT_STATE @ get task Concan save area
|
||||
ldr r2, [sp, #60] @ current task pc value
|
||||
ldr r2, [r0, #S_PC] @ current task pc value
|
||||
ldr r1, [r3] @ get current Concan owner
|
||||
str r0, [r3] @ this task now owns Concan regs
|
||||
sub r2, r2, #4 @ adjust pc back
|
||||
str r2, [sp, #60]
|
||||
str r2, [r0, #S_PC]
|
||||
add r0, r10, #TI_IWMMXT_STATE @ get task Concan save area
|
||||
str r0, [r3] @ this task now owns Concan regs
|
||||
|
||||
mrc p15, 0, r2, c2, c0, 0
|
||||
mov r2, r2 @ cpwait
|
||||
|
@ -94,16 +94,28 @@ static void machine_crash_nonpanic_core(void *unused)
|
||||
}
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(call_single_data_t, cpu_stop_csd) =
|
||||
CSD_INIT(machine_crash_nonpanic_core, NULL);
|
||||
|
||||
void crash_smp_send_stop(void)
|
||||
{
|
||||
static int cpus_stopped;
|
||||
unsigned long msecs;
|
||||
call_single_data_t *csd;
|
||||
int cpu, this_cpu = raw_smp_processor_id();
|
||||
|
||||
if (cpus_stopped)
|
||||
return;
|
||||
|
||||
atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
|
||||
smp_call_function(machine_crash_nonpanic_core, NULL, false);
|
||||
for_each_online_cpu(cpu) {
|
||||
if (cpu == this_cpu)
|
||||
continue;
|
||||
|
||||
csd = &per_cpu(cpu_stop_csd, cpu);
|
||||
smp_call_function_single_async(cpu, csd);
|
||||
}
|
||||
|
||||
msecs = 1000; /* Wait at most a second for the other cpus to stop */
|
||||
while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) {
|
||||
mdelay(1);
|
||||
|
@ -126,6 +126,7 @@ static int __init pj4_cp0_init(void)
|
||||
pr_info("PJ4 iWMMXt v%d coprocessor enabled.\n", vers);
|
||||
elf_hwcap |= HWCAP_IWMMXT;
|
||||
thread_register_notifier(&iwmmxt_notifier_block);
|
||||
register_iwmmxt_undef_handler();
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
|
@ -222,7 +222,6 @@ void flush_thread(void)
|
||||
|
||||
flush_ptrace_hw_breakpoint(tsk);
|
||||
|
||||
memset(thread->used_cp, 0, sizeof(thread->used_cp));
|
||||
memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
|
||||
memset(&thread->fpstate, 0, sizeof(union fp_state));
|
||||
|
||||
|
@ -584,8 +584,6 @@ static int fpa_set(struct task_struct *target,
|
||||
{
|
||||
struct thread_info *thread = task_thread_info(target);
|
||||
|
||||
thread->used_cp[1] = thread->used_cp[2] = 1;
|
||||
|
||||
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
&thread->fpstate,
|
||||
0, sizeof(struct user_fp));
|
||||
|
@ -166,6 +166,7 @@ static int __init xscale_cp0_init(void)
|
||||
pr_info("XScale iWMMXt coprocessor detected.\n");
|
||||
elf_hwcap |= HWCAP_IWMMXT;
|
||||
thread_register_notifier(&iwmmxt_notifier_block);
|
||||
register_iwmmxt_undef_handler();
|
||||
#endif
|
||||
} else {
|
||||
pr_info("XScale DSP coprocessor detected.\n");
|
||||
|
@ -56,6 +56,10 @@ ENTRY(cpu_feroceon_proc_init)
|
||||
movne r2, r2, lsr #2 @ turned into # of sets
|
||||
sub r2, r2, #(1 << 5)
|
||||
stmia r1, {r2, r3}
|
||||
#ifdef CONFIG_VFP
|
||||
mov r1, #1 @ disable quirky VFP
|
||||
str_l r1, VFP_arch_feroceon, r2
|
||||
#endif
|
||||
ret lr
|
||||
|
||||
/*
|
||||
|
@ -7,6 +7,7 @@
|
||||
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
|
||||
|
||||
*/
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/opcodes.h>
|
||||
|
||||
@ -104,6 +105,7 @@ next:
|
||||
@ plain LDR instruction. Weird, but it seems harmless.
|
||||
.pushsection .text.fixup,"ax"
|
||||
.align 2
|
||||
.Lrep: str r4, [sp, #S_PC] @ retry current instruction
|
||||
.Lfix: ret r9 @ let the user eat segfaults
|
||||
.popsection
|
||||
|
||||
@ -111,3 +113,78 @@ next:
|
||||
.align 3
|
||||
.long .Lx1, .Lfix
|
||||
.popsection
|
||||
|
||||
@
|
||||
@ Check whether the instruction is a co-processor instruction.
|
||||
@ If yes, we need to call the relevant co-processor handler.
|
||||
@ Only FPE instructions are dispatched here, everything else
|
||||
@ is handled by undef hooks.
|
||||
@
|
||||
@ Emulators may wish to make use of the following registers:
|
||||
@ r4 = PC value to resume execution after successful emulation
|
||||
@ r9 = normal "successful" return address
|
||||
@ lr = unrecognised instruction return address
|
||||
@ IRQs enabled, FIQs enabled.
|
||||
@
|
||||
ENTRY(call_fpe)
|
||||
mov r2, r4
|
||||
sub r4, r4, #4 @ ARM instruction at user PC - 4
|
||||
USERL( .Lrep, ldrt r0, [r4]) @ load opcode from user space
|
||||
ARM_BE8(rev r0, r0) @ little endian instruction
|
||||
|
||||
uaccess_disable ip
|
||||
|
||||
get_thread_info r10 @ get current thread
|
||||
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
|
||||
reteq lr
|
||||
and r8, r0, #0x00000f00 @ mask out CP number
|
||||
#ifdef CONFIG_IWMMXT
|
||||
@ Test if we need to give access to iWMMXt coprocessors
|
||||
ldr r5, [r10, #TI_FLAGS]
|
||||
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
|
||||
movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1)
|
||||
movcs r0, sp @ pass struct pt_regs
|
||||
bcs iwmmxt_task_enable
|
||||
#endif
|
||||
add pc, pc, r8, lsr #6
|
||||
nop
|
||||
|
||||
ret lr @ CP#0
|
||||
b do_fpe @ CP#1 (FPE)
|
||||
b do_fpe @ CP#2 (FPE)
|
||||
ret lr @ CP#3
|
||||
ret lr @ CP#4
|
||||
ret lr @ CP#5
|
||||
ret lr @ CP#6
|
||||
ret lr @ CP#7
|
||||
ret lr @ CP#8
|
||||
ret lr @ CP#9
|
||||
ret lr @ CP#10 (VFP)
|
||||
ret lr @ CP#11 (VFP)
|
||||
ret lr @ CP#12
|
||||
ret lr @ CP#13
|
||||
ret lr @ CP#14 (Debug)
|
||||
ret lr @ CP#15 (Control)
|
||||
|
||||
do_fpe:
|
||||
add r10, r10, #TI_FPSTATE @ r10 = workspace
|
||||
ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point
|
||||
|
||||
@
|
||||
@ The FP module is called with these registers set:
|
||||
@ r0 = instruction
|
||||
@ r2 = PC+4
|
||||
@ r9 = normal "successful" return address
|
||||
@ r10 = FP workspace
|
||||
@ lr = unrecognised FP instruction return address
|
||||
@
|
||||
|
||||
.pushsection .data
|
||||
.align 2
|
||||
ENTRY(fp_enter)
|
||||
.word no_fp
|
||||
.popsection
|
||||
|
||||
no_fp:
|
||||
ret lr
|
||||
ENDPROC(no_fp)
|
||||
|
@ -8,4 +8,4 @@
|
||||
# ccflags-y := -DDEBUG
|
||||
# asflags-y := -DDEBUG
|
||||
|
||||
obj-y += vfpmodule.o entry.o vfphw.o vfpsingle.o vfpdouble.o
|
||||
obj-y += vfpmodule.o vfphw.o vfpsingle.o vfpdouble.o
|
||||
|
@ -1,31 +0,0 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* linux/arch/arm/vfp/entry.S
|
||||
*
|
||||
* Copyright (C) 2004 ARM Limited.
|
||||
* Written by Deep Blue Solutions Limited.
|
||||
*/
|
||||
#include <linux/init.h>
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/thread_info.h>
|
||||
#include <asm/vfpmacros.h>
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
|
||||
@ VFP entry point.
|
||||
@
|
||||
@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
@ r2 = PC value to resume execution after successful emulation
|
||||
@ r9 = normal "successful" return address
|
||||
@ r10 = this threads thread_info structure
|
||||
@ lr = unrecognised instruction return address
|
||||
@ IRQs enabled.
|
||||
@
|
||||
ENTRY(do_vfp)
|
||||
mov r1, r10
|
||||
str lr, [sp, #-8]!
|
||||
add r3, sp, #4
|
||||
str r9, [r3]
|
||||
bl vfp_entry
|
||||
ldr pc, [sp], #8
|
||||
ENDPROC(do_vfp)
|
@ -375,3 +375,4 @@ struct op {
|
||||
};
|
||||
|
||||
asmlinkage void vfp_save_state(void *location, u32 fpexc);
|
||||
asmlinkage u32 vfp_load_state(const void *location);
|
||||
|
@ -4,12 +4,6 @@
|
||||
*
|
||||
* Copyright (C) 2004 ARM Limited.
|
||||
* Written by Deep Blue Solutions Limited.
|
||||
*
|
||||
* This code is called from the kernel's undefined instruction trap.
|
||||
* r1 holds the thread_info pointer
|
||||
* r3 holds the return address for successful handling.
|
||||
* lr holds the return address for unrecognised instructions.
|
||||
* sp points to a struct pt_regs (as defined in include/asm/proc/ptrace.h)
|
||||
*/
|
||||
#include <linux/init.h>
|
||||
#include <linux/linkage.h>
|
||||
@ -19,20 +13,6 @@
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/asm-offsets.h>
|
||||
|
||||
.macro DBGSTR, str
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
ldr r0, =1f
|
||||
bl _printk
|
||||
ldmfd sp!, {r0-r3, ip, lr}
|
||||
|
||||
.pushsection .rodata, "a"
|
||||
1: .ascii KERN_DEBUG "VFP: \str\n"
|
||||
.byte 0
|
||||
.previous
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.macro DBGSTR1, str, arg
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
@ -48,181 +28,25 @@
|
||||
#endif
|
||||
.endm
|
||||
|
||||
.macro DBGSTR3, str, arg1, arg2, arg3
|
||||
#ifdef DEBUG
|
||||
stmfd sp!, {r0-r3, ip, lr}
|
||||
mov r3, \arg3
|
||||
mov r2, \arg2
|
||||
mov r1, \arg1
|
||||
ldr r0, =1f
|
||||
bl _printk
|
||||
ldmfd sp!, {r0-r3, ip, lr}
|
||||
|
||||
.pushsection .rodata, "a"
|
||||
1: .ascii KERN_DEBUG "VFP: \str\n"
|
||||
.byte 0
|
||||
.previous
|
||||
#endif
|
||||
.endm
|
||||
|
||||
|
||||
@ VFP hardware support entry point.
|
||||
@
|
||||
@ r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
@ r1 = thread_info pointer
|
||||
@ r2 = PC value to resume execution after successful emulation
|
||||
@ r3 = normal "successful" return address
|
||||
@ lr = unrecognised instruction return address
|
||||
@ IRQs enabled.
|
||||
ENTRY(vfp_support_entry)
|
||||
ldr r11, [r1, #TI_CPU] @ CPU number
|
||||
add r10, r1, #TI_VFPSTATE @ r10 = workspace
|
||||
|
||||
DBGSTR3 "instr %08x pc %08x state %p", r0, r2, r10
|
||||
|
||||
.fpu vfpv2
|
||||
VFPFMRX r1, FPEXC @ Is the VFP enabled?
|
||||
DBGSTR1 "fpexc %08x", r1
|
||||
tst r1, #FPEXC_EN
|
||||
bne look_for_VFP_exceptions @ VFP is already enabled
|
||||
|
||||
DBGSTR1 "enable %x", r10
|
||||
ldr r9, vfp_current_hw_state_address
|
||||
orr r1, r1, #FPEXC_EN @ user FPEXC has the enable bit set
|
||||
ldr r4, [r9, r11, lsl #2] @ vfp_current_hw_state pointer
|
||||
bic r5, r1, #FPEXC_EX @ make sure exceptions are disabled
|
||||
cmp r4, r10 @ this thread owns the hw context?
|
||||
#ifndef CONFIG_SMP
|
||||
@ For UP, checking that this thread owns the hw context is
|
||||
@ sufficient to determine that the hardware state is valid.
|
||||
beq vfp_hw_state_valid
|
||||
|
||||
@ On UP, we lazily save the VFP context. As a different
|
||||
@ thread wants ownership of the VFP hardware, save the old
|
||||
@ state if there was a previous (valid) owner.
|
||||
|
||||
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
|
||||
@ exceptions, so we can get at the
|
||||
@ rest of it
|
||||
|
||||
DBGSTR1 "save old state %p", r4
|
||||
cmp r4, #0 @ if the vfp_current_hw_state is NULL
|
||||
beq vfp_reload_hw @ then the hw state needs reloading
|
||||
VFPFSTMIA r4, r5 @ save the working registers
|
||||
VFPFMRX r5, FPSCR @ current status
|
||||
#ifndef CONFIG_CPU_FEROCEON
|
||||
tst r1, #FPEXC_EX @ is there additional state to save?
|
||||
beq 1f
|
||||
VFPFMRX r6, FPINST @ FPINST (only if FPEXC.EX is set)
|
||||
tst r1, #FPEXC_FP2V @ is there an FPINST2 to read?
|
||||
beq 1f
|
||||
VFPFMRX r8, FPINST2 @ FPINST2 if needed (and present)
|
||||
1:
|
||||
#endif
|
||||
stmia r4, {r1, r5, r6, r8} @ save FPEXC, FPSCR, FPINST, FPINST2
|
||||
vfp_reload_hw:
|
||||
|
||||
#else
|
||||
@ For SMP, if this thread does not own the hw context, then we
|
||||
@ need to reload it. No need to save the old state as on SMP,
|
||||
@ we always save the state when we switch away from a thread.
|
||||
bne vfp_reload_hw
|
||||
|
||||
@ This thread has ownership of the current hardware context.
|
||||
@ However, it may have been migrated to another CPU, in which
|
||||
@ case the saved state is newer than the hardware context.
|
||||
@ Check this by looking at the CPU number which the state was
|
||||
@ last loaded onto.
|
||||
ldr ip, [r10, #VFP_CPU]
|
||||
teq ip, r11
|
||||
beq vfp_hw_state_valid
|
||||
|
||||
vfp_reload_hw:
|
||||
@ We're loading this threads state into the VFP hardware. Update
|
||||
@ the CPU number which contains the most up to date VFP context.
|
||||
str r11, [r10, #VFP_CPU]
|
||||
|
||||
VFPFMXR FPEXC, r5 @ enable VFP, disable any pending
|
||||
@ exceptions, so we can get at the
|
||||
@ rest of it
|
||||
#endif
|
||||
|
||||
DBGSTR1 "load state %p", r10
|
||||
str r10, [r9, r11, lsl #2] @ update the vfp_current_hw_state pointer
|
||||
ENTRY(vfp_load_state)
|
||||
@ Load the current VFP state
|
||||
@ r0 - load location
|
||||
@ returns FPEXC
|
||||
DBGSTR1 "load VFP state %p", r0
|
||||
@ Load the saved state back into the VFP
|
||||
VFPFLDMIA r10, r5 @ reload the working registers while
|
||||
VFPFLDMIA r0, r1 @ reload the working registers while
|
||||
@ FPEXC is in a safe state
|
||||
ldmia r10, {r1, r5, r6, r8} @ load FPEXC, FPSCR, FPINST, FPINST2
|
||||
#ifndef CONFIG_CPU_FEROCEON
|
||||
tst r1, #FPEXC_EX @ is there additional state to restore?
|
||||
ldmia r0, {r0-r3} @ load FPEXC, FPSCR, FPINST, FPINST2
|
||||
tst r0, #FPEXC_EX @ is there additional state to restore?
|
||||
beq 1f
|
||||
VFPFMXR FPINST, r6 @ restore FPINST (only if FPEXC.EX is set)
|
||||
tst r1, #FPEXC_FP2V @ is there an FPINST2 to write?
|
||||
VFPFMXR FPINST, r2 @ restore FPINST (only if FPEXC.EX is set)
|
||||
tst r0, #FPEXC_FP2V @ is there an FPINST2 to write?
|
||||
beq 1f
|
||||
VFPFMXR FPINST2, r8 @ FPINST2 if needed (and present)
|
||||
VFPFMXR FPINST2, r3 @ FPINST2 if needed (and present)
|
||||
1:
|
||||
#endif
|
||||
VFPFMXR FPSCR, r5 @ restore status
|
||||
|
||||
@ The context stored in the VFP hardware is up to date with this thread
|
||||
vfp_hw_state_valid:
|
||||
tst r1, #FPEXC_EX
|
||||
bne process_exception @ might as well handle the pending
|
||||
@ exception before retrying branch
|
||||
@ out before setting an FPEXC that
|
||||
@ stops us reading stuff
|
||||
VFPFMXR FPEXC, r1 @ Restore FPEXC last
|
||||
mov sp, r3 @ we think we have handled things
|
||||
pop {lr}
|
||||
sub r2, r2, #4 @ Retry current instruction - if Thumb
|
||||
str r2, [sp, #S_PC] @ mode it's two 16-bit instructions,
|
||||
@ else it's one 32-bit instruction, so
|
||||
@ always subtract 4 from the following
|
||||
@ instruction address.
|
||||
|
||||
local_bh_enable_and_ret:
|
||||
adr r0, .
|
||||
mov r1, #SOFTIRQ_DISABLE_OFFSET
|
||||
b __local_bh_enable_ip @ tail call
|
||||
|
||||
look_for_VFP_exceptions:
|
||||
@ Check for synchronous or asynchronous exception
|
||||
tst r1, #FPEXC_EX | FPEXC_DEX
|
||||
bne process_exception
|
||||
@ On some implementations of the VFP subarch 1, setting FPSCR.IXE
|
||||
@ causes all the CDP instructions to be bounced synchronously without
|
||||
@ setting the FPEXC.EX bit
|
||||
VFPFMRX r5, FPSCR
|
||||
tst r5, #FPSCR_IXE
|
||||
bne process_exception
|
||||
|
||||
tst r5, #FPSCR_LENGTH_MASK
|
||||
beq skip
|
||||
orr r1, r1, #FPEXC_DEX
|
||||
b process_exception
|
||||
skip:
|
||||
|
||||
@ Fall into hand on to next handler - appropriate coproc instr
|
||||
@ not recognised by VFP
|
||||
|
||||
DBGSTR "not VFP"
|
||||
b local_bh_enable_and_ret
|
||||
|
||||
process_exception:
|
||||
DBGSTR "bounce"
|
||||
mov sp, r3 @ setup for a return to the user code.
|
||||
pop {lr}
|
||||
mov r2, sp @ nothing stacked - regdump is at TOS
|
||||
|
||||
@ Now call the C code to package up the bounce to the support code
|
||||
@ r0 holds the trigger instruction
|
||||
@ r1 holds the FPEXC value
|
||||
@ r2 pointer to register dump
|
||||
b VFP_bounce @ we have handled this - the support
|
||||
@ code will raise an exception if
|
||||
@ required. If not, the user code will
|
||||
@ retry the faulted instruction
|
||||
ENDPROC(vfp_support_entry)
|
||||
VFPFMXR FPSCR, r1 @ restore status
|
||||
ret lr
|
||||
ENDPROC(vfp_load_state)
|
||||
|
||||
ENTRY(vfp_save_state)
|
||||
@ Save the current VFP state
|
||||
@ -242,10 +66,6 @@ ENTRY(vfp_save_state)
|
||||
ret lr
|
||||
ENDPROC(vfp_save_state)
|
||||
|
||||
.align
|
||||
vfp_current_hw_state_address:
|
||||
.word vfp_current_hw_state
|
||||
|
||||
.macro tbl_branch, base, tmp, shift
|
||||
#ifdef CONFIG_THUMB2_KERNEL
|
||||
adr \tmp, 1f
|
||||
|
@ -18,6 +18,7 @@
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/user.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/perf_event.h>
|
||||
|
||||
#include <asm/cp15.h>
|
||||
#include <asm/cputype.h>
|
||||
@ -30,11 +31,6 @@
|
||||
#include "vfpinstr.h"
|
||||
#include "vfp.h"
|
||||
|
||||
/*
|
||||
* Our undef handlers (in entry.S)
|
||||
*/
|
||||
asmlinkage void vfp_support_entry(u32, void *, u32, u32);
|
||||
|
||||
static bool have_vfp __ro_after_init;
|
||||
|
||||
/*
|
||||
@ -42,7 +38,11 @@ static bool have_vfp __ro_after_init;
|
||||
* Used in startup: set to non-zero if VFP checks fail
|
||||
* After startup, holds VFP architecture
|
||||
*/
|
||||
static unsigned int __initdata VFP_arch;
|
||||
static unsigned int VFP_arch;
|
||||
|
||||
#ifdef CONFIG_CPU_FEROCEON
|
||||
extern unsigned int VFP_arch_feroceon __alias(VFP_arch);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The pointer to the vfpstate structure of the thread which currently
|
||||
@ -314,13 +314,14 @@ static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
||||
* emulate it.
|
||||
*/
|
||||
}
|
||||
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, regs->ARM_pc);
|
||||
return exceptions & ~VFP_NAN_FLAG;
|
||||
}
|
||||
|
||||
/*
|
||||
* Package up a bounce condition.
|
||||
*/
|
||||
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
static void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
{
|
||||
u32 fpscr, orig_fpscr, fpsid, exceptions;
|
||||
|
||||
@ -356,14 +357,12 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
}
|
||||
|
||||
if (fpexc & FPEXC_EX) {
|
||||
#ifndef CONFIG_CPU_FEROCEON
|
||||
/*
|
||||
* Asynchronous exception. The instruction is read from FPINST
|
||||
* and the interrupted instruction has to be restarted.
|
||||
*/
|
||||
trigger = fmrx(FPINST);
|
||||
regs->ARM_pc -= 4;
|
||||
#endif
|
||||
} else if (!(fpexc & FPEXC_DEX)) {
|
||||
/*
|
||||
* Illegal combination of bits. It can be caused by an
|
||||
@ -371,7 +370,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
* on VFP subarch 1.
|
||||
*/
|
||||
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
|
||||
goto exit;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -402,7 +401,7 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
|
||||
*/
|
||||
if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
|
||||
goto exit;
|
||||
return;
|
||||
|
||||
/*
|
||||
* The barrier() here prevents fpinst2 being read
|
||||
@ -415,8 +414,6 @@ void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||||
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
|
||||
if (exceptions)
|
||||
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||||
exit:
|
||||
local_bh_enable();
|
||||
}
|
||||
|
||||
static void vfp_enable(void *unused)
|
||||
@ -645,27 +642,6 @@ static int vfp_starting_cpu(unsigned int unused)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Entered with:
|
||||
*
|
||||
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
|
||||
* r1 = thread_info pointer
|
||||
* r2 = PC value to resume execution after successful emulation
|
||||
* r3 = normal "successful" return address
|
||||
* lr = unrecognised instruction return address
|
||||
*/
|
||||
asmlinkage void vfp_entry(u32 trigger, struct thread_info *ti, u32 resume_pc,
|
||||
u32 resume_return_address)
|
||||
{
|
||||
if (unlikely(!have_vfp))
|
||||
return;
|
||||
|
||||
local_bh_disable();
|
||||
vfp_support_entry(trigger, ti, resume_pc, resume_return_address);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_KERNEL_MODE_NEON
|
||||
|
||||
static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
|
||||
{
|
||||
/*
|
||||
@ -688,47 +664,151 @@ static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
|
||||
return 1;
|
||||
}
|
||||
|
||||
static struct undef_hook vfp_kmode_exception_hook[] = {{
|
||||
/*
|
||||
* vfp_support_entry - Handle VFP exception
|
||||
*
|
||||
* @regs: pt_regs structure holding the register state at exception entry
|
||||
* @trigger: The opcode of the instruction that triggered the exception
|
||||
*
|
||||
* Returns 0 if the exception was handled, or an error code otherwise.
|
||||
*/
|
||||
static int vfp_support_entry(struct pt_regs *regs, u32 trigger)
|
||||
{
|
||||
struct thread_info *ti = current_thread_info();
|
||||
u32 fpexc;
|
||||
|
||||
if (unlikely(!have_vfp))
|
||||
return -ENODEV;
|
||||
|
||||
if (!user_mode(regs))
|
||||
return vfp_kmode_exception(regs, trigger);
|
||||
|
||||
local_bh_disable();
|
||||
fpexc = fmrx(FPEXC);
|
||||
|
||||
/*
|
||||
* If the VFP unit was not enabled yet, we have to check whether the
|
||||
* VFP state in the CPU's registers is the most recent VFP state
|
||||
* associated with the process. On UP systems, we don't save the VFP
|
||||
* state eagerly on a context switch, so we may need to save the
|
||||
* VFP state to memory first, as it may belong to another process.
|
||||
*/
|
||||
if (!(fpexc & FPEXC_EN)) {
|
||||
/*
|
||||
* Enable the VFP unit but mask the FP exception flag for the
|
||||
* time being, so we can access all the registers.
|
||||
*/
|
||||
fpexc |= FPEXC_EN;
|
||||
fmxr(FPEXC, fpexc & ~FPEXC_EX);
|
||||
|
||||
/*
|
||||
* Check whether or not the VFP state in the CPU's registers is
|
||||
* the most recent VFP state associated with this task. On SMP,
|
||||
* migration may result in multiple CPUs holding VFP states
|
||||
* that belong to the same task, but only the most recent one
|
||||
* is valid.
|
||||
*/
|
||||
if (!vfp_state_in_hw(ti->cpu, ti)) {
|
||||
if (!IS_ENABLED(CONFIG_SMP) &&
|
||||
vfp_current_hw_state[ti->cpu] != NULL) {
|
||||
/*
|
||||
* This CPU is currently holding the most
|
||||
* recent VFP state associated with another
|
||||
* task, and we must save that to memory first.
|
||||
*/
|
||||
vfp_save_state(vfp_current_hw_state[ti->cpu],
|
||||
fpexc);
|
||||
}
|
||||
|
||||
/*
|
||||
* We can now proceed with loading the task's VFP state
|
||||
* from memory into the CPU registers.
|
||||
*/
|
||||
fpexc = vfp_load_state(&ti->vfpstate);
|
||||
vfp_current_hw_state[ti->cpu] = &ti->vfpstate;
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Record that this CPU is now the one holding the most
|
||||
* recent VFP state of the task.
|
||||
*/
|
||||
ti->vfpstate.hard.cpu = ti->cpu;
|
||||
#endif
|
||||
}
|
||||
|
||||
if (fpexc & FPEXC_EX)
|
||||
/*
|
||||
* Might as well handle the pending exception before
|
||||
* retrying branch out before setting an FPEXC that
|
||||
* stops us reading stuff.
|
||||
*/
|
||||
goto bounce;
|
||||
|
||||
/*
|
||||
* No FP exception is pending: just enable the VFP and
|
||||
* replay the instruction that trapped.
|
||||
*/
|
||||
fmxr(FPEXC, fpexc);
|
||||
} else {
|
||||
/* Check for synchronous or asynchronous exceptions */
|
||||
if (!(fpexc & (FPEXC_EX | FPEXC_DEX))) {
|
||||
u32 fpscr = fmrx(FPSCR);
|
||||
|
||||
/*
|
||||
* On some implementations of the VFP subarch 1,
|
||||
* setting FPSCR.IXE causes all the CDP instructions to
|
||||
* be bounced synchronously without setting the
|
||||
* FPEXC.EX bit
|
||||
*/
|
||||
if (!(fpscr & FPSCR_IXE)) {
|
||||
if (!(fpscr & FPSCR_LENGTH_MASK)) {
|
||||
pr_debug("not VFP\n");
|
||||
local_bh_enable();
|
||||
return -ENOEXEC;
|
||||
}
|
||||
fpexc |= FPEXC_DEX;
|
||||
}
|
||||
}
|
||||
bounce: regs->ARM_pc += 4;
|
||||
VFP_bounce(trigger, fpexc, regs);
|
||||
}
|
||||
|
||||
local_bh_enable();
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct undef_hook neon_support_hook[] = {{
|
||||
.instr_mask = 0xfe000000,
|
||||
.instr_val = 0xf2000000,
|
||||
.cpsr_mask = MODE_MASK | PSR_T_BIT,
|
||||
.cpsr_val = SVC_MODE,
|
||||
.fn = vfp_kmode_exception,
|
||||
.cpsr_mask = PSR_T_BIT,
|
||||
.cpsr_val = 0,
|
||||
.fn = vfp_support_entry,
|
||||
}, {
|
||||
.instr_mask = 0xff100000,
|
||||
.instr_val = 0xf4000000,
|
||||
.cpsr_mask = MODE_MASK | PSR_T_BIT,
|
||||
.cpsr_val = SVC_MODE,
|
||||
.fn = vfp_kmode_exception,
|
||||
.cpsr_mask = PSR_T_BIT,
|
||||
.cpsr_val = 0,
|
||||
.fn = vfp_support_entry,
|
||||
}, {
|
||||
.instr_mask = 0xef000000,
|
||||
.instr_val = 0xef000000,
|
||||
.cpsr_mask = MODE_MASK | PSR_T_BIT,
|
||||
.cpsr_val = SVC_MODE | PSR_T_BIT,
|
||||
.fn = vfp_kmode_exception,
|
||||
.cpsr_mask = PSR_T_BIT,
|
||||
.cpsr_val = PSR_T_BIT,
|
||||
.fn = vfp_support_entry,
|
||||
}, {
|
||||
.instr_mask = 0xff100000,
|
||||
.instr_val = 0xf9000000,
|
||||
.cpsr_mask = MODE_MASK | PSR_T_BIT,
|
||||
.cpsr_val = SVC_MODE | PSR_T_BIT,
|
||||
.fn = vfp_kmode_exception,
|
||||
}, {
|
||||
.instr_mask = 0x0c000e00,
|
||||
.instr_val = 0x0c000a00,
|
||||
.cpsr_mask = MODE_MASK,
|
||||
.cpsr_val = SVC_MODE,
|
||||
.fn = vfp_kmode_exception,
|
||||
.cpsr_mask = PSR_T_BIT,
|
||||
.cpsr_val = PSR_T_BIT,
|
||||
.fn = vfp_support_entry,
|
||||
}};
|
||||
|
||||
static int __init vfp_kmode_exception_hook_init(void)
|
||||
{
|
||||
int i;
|
||||
static struct undef_hook vfp_support_hook = {
|
||||
.instr_mask = 0x0c000e00,
|
||||
.instr_val = 0x0c000a00,
|
||||
.fn = vfp_support_entry,
|
||||
};
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
|
||||
register_undef_hook(&vfp_kmode_exception_hook[i]);
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(vfp_kmode_exception_hook_init);
|
||||
#ifdef CONFIG_KERNEL_MODE_NEON
|
||||
|
||||
/*
|
||||
* Kernel-side NEON support functions
|
||||
@ -833,8 +913,11 @@ static int __init vfp_init(void)
|
||||
* for NEON if the hardware has the MVFR registers.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_NEON) &&
|
||||
(fmrx(MVFR1) & 0x000fff00) == 0x00011100)
|
||||
(fmrx(MVFR1) & 0x000fff00) == 0x00011100) {
|
||||
elf_hwcap |= HWCAP_NEON;
|
||||
for (int i = 0; i < ARRAY_SIZE(neon_support_hook); i++)
|
||||
register_undef_hook(&neon_support_hook[i]);
|
||||
}
|
||||
|
||||
if (IS_ENABLED(CONFIG_VFPv3)) {
|
||||
u32 mvfr0 = fmrx(MVFR0);
|
||||
@ -903,6 +986,7 @@ static int __init vfp_init(void)
|
||||
|
||||
have_vfp = true;
|
||||
|
||||
register_undef_hook(&vfp_support_hook);
|
||||
thread_register_notifier(&vfp_notifier_block);
|
||||
vfp_pm_init();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user