mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-01 18:53:30 +00:00
ipc/sem: add hysteresis
sysv sem has two lock modes: One with per-semaphore locks, one lock mode with a single global lock for the whole array. When switching from the per-semaphore locks to the global lock, all per-semaphore locks must be scanned for ongoing operations. The patch adds a hysteresis for switching from the global lock to the per semaphore locks. This reduces how often the per-semaphore locks must be scanned. Compared to the initial patch, this is a simplified solution: Setting USE_GLOBAL_LOCK_HYSTERESIS to 1 restores the current behavior. In theory, a workload with exactly 10 simple sops and then one complex op now scales a bit worse, but this is pure theory: If there is concurrency, the it won't be exactly 10:1:10:1:10:1:... If there is no concurrency, then there is no need for scalability. Link: http://lkml.kernel.org/r/1476851896-3590-3-git-send-email-manfred@colorfullife.com Signed-off-by: Manfred Spraul <manfred@colorfullife.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: <1vier1@web.de> Cc: kernel test robot <xiaolong.ye@intel.com> Cc: <felixh@informatik.uni-bremen.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
27d7be1801
commit
9de5ab8a2e
@ -21,7 +21,7 @@ struct sem_array {
|
||||
struct list_head list_id; /* undo requests on this array */
|
||||
int sem_nsems; /* no. of semaphores in array */
|
||||
int complex_count; /* pending complex operations */
|
||||
bool complex_mode; /* no parallel simple ops */
|
||||
unsigned int use_global_lock;/* >0: global lock required */
|
||||
};
|
||||
|
||||
#ifdef CONFIG_SYSVIPC
|
||||
|
86
ipc/sem.c
86
ipc/sem.c
@ -158,23 +158,43 @@ static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
|
||||
#define SEMMSL_FAST 256 /* 512 bytes on stack */
|
||||
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
|
||||
|
||||
/*
|
||||
* Switching from the mode suitable for simple ops
|
||||
* to the mode for complex ops is costly. Therefore:
|
||||
* use some hysteresis
|
||||
*/
|
||||
#define USE_GLOBAL_LOCK_HYSTERESIS 10
|
||||
|
||||
/*
|
||||
* Locking:
|
||||
* a) global sem_lock() for read/write
|
||||
* sem_undo.id_next,
|
||||
* sem_array.complex_count,
|
||||
* sem_array.complex_mode
|
||||
* sem_array.pending{_alter,_const},
|
||||
* sem_array.sem_undo
|
||||
*
|
||||
* b) global or semaphore sem_lock() for read/write:
|
||||
* sem_array.sem_base[i].pending_{const,alter}:
|
||||
* sem_array.complex_mode (for read)
|
||||
*
|
||||
* c) special:
|
||||
* sem_undo_list.list_proc:
|
||||
* * undo_list->lock for write
|
||||
* * rcu for read
|
||||
* use_global_lock:
|
||||
* * global sem_lock() for write
|
||||
* * either local or global sem_lock() for read.
|
||||
*
|
||||
* Memory ordering:
|
||||
* Most ordering is enforced by using spin_lock() and spin_unlock().
|
||||
* The special case is use_global_lock:
|
||||
* Setting it from non-zero to 0 is a RELEASE, this is ensured by
|
||||
* using smp_store_release().
|
||||
* Testing if it is non-zero is an ACQUIRE, this is ensured by using
|
||||
* smp_load_acquire().
|
||||
* Setting it from 0 to non-zero must be ordered with regards to
|
||||
* this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
|
||||
* is inside a spin_lock() and after a write from 0 to non-zero a
|
||||
* spin_lock()+spin_unlock() is done.
|
||||
*/
|
||||
|
||||
#define sc_semmsl sem_ctls[0]
|
||||
@ -273,12 +293,16 @@ static void complexmode_enter(struct sem_array *sma)
|
||||
int i;
|
||||
struct sem *sem;
|
||||
|
||||
if (sma->complex_mode) {
|
||||
/* We are already in complex_mode. Nothing to do */
|
||||
if (sma->use_global_lock > 0) {
|
||||
/*
|
||||
* We are already in global lock mode.
|
||||
* Nothing to do, just reset the
|
||||
* counter until we return to simple mode.
|
||||
*/
|
||||
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
|
||||
return;
|
||||
}
|
||||
|
||||
sma->complex_mode = true;
|
||||
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
|
||||
|
||||
for (i = 0; i < sma->sem_nsems; i++) {
|
||||
sem = sma->sem_base + i;
|
||||
@ -299,13 +323,17 @@ static void complexmode_tryleave(struct sem_array *sma)
|
||||
*/
|
||||
return;
|
||||
}
|
||||
/*
|
||||
* Immediately after setting complex_mode to false,
|
||||
* a simple op can start. Thus: all memory writes
|
||||
* performed by the current operation must be visible
|
||||
* before we set complex_mode to false.
|
||||
*/
|
||||
smp_store_release(&sma->complex_mode, false);
|
||||
if (sma->use_global_lock == 1) {
|
||||
/*
|
||||
* Immediately after setting use_global_lock to 0,
|
||||
* a simple op can start. Thus: all memory writes
|
||||
* performed by the current operation must be visible
|
||||
* before we set use_global_lock to 0.
|
||||
*/
|
||||
smp_store_release(&sma->use_global_lock, 0);
|
||||
} else {
|
||||
sma->use_global_lock--;
|
||||
}
|
||||
}
|
||||
|
||||
#define SEM_GLOBAL_LOCK (-1)
|
||||
@ -335,22 +363,23 @@ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
|
||||
* Optimized locking is possible if no complex operation
|
||||
* is either enqueued or processed right now.
|
||||
*
|
||||
* Both facts are tracked by complex_mode.
|
||||
* Both facts are tracked by use_global_mode.
|
||||
*/
|
||||
sem = sma->sem_base + sops->sem_num;
|
||||
|
||||
/*
|
||||
* Initial check for complex_mode. Just an optimization,
|
||||
* Initial check for use_global_lock. Just an optimization,
|
||||
* no locking, no memory barrier.
|
||||
*/
|
||||
if (!sma->complex_mode) {
|
||||
if (!sma->use_global_lock) {
|
||||
/*
|
||||
* It appears that no complex operation is around.
|
||||
* Acquire the per-semaphore lock.
|
||||
*/
|
||||
spin_lock(&sem->lock);
|
||||
|
||||
if (!smp_load_acquire(&sma->complex_mode)) {
|
||||
/* pairs with smp_store_release() */
|
||||
if (!smp_load_acquire(&sma->use_global_lock)) {
|
||||
/* fast path successful! */
|
||||
return sops->sem_num;
|
||||
}
|
||||
@ -360,19 +389,26 @@ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
|
||||
/* slow path: acquire the full lock */
|
||||
ipc_lock_object(&sma->sem_perm);
|
||||
|
||||
if (sma->complex_count == 0) {
|
||||
/* False alarm:
|
||||
* There is no complex operation, thus we can switch
|
||||
* back to the fast path.
|
||||
if (sma->use_global_lock == 0) {
|
||||
/*
|
||||
* The use_global_lock mode ended while we waited for
|
||||
* sma->sem_perm.lock. Thus we must switch to locking
|
||||
* with sem->lock.
|
||||
* Unlike in the fast path, there is no need to recheck
|
||||
* sma->use_global_lock after we have acquired sem->lock:
|
||||
* We own sma->sem_perm.lock, thus use_global_lock cannot
|
||||
* change.
|
||||
*/
|
||||
spin_lock(&sem->lock);
|
||||
|
||||
ipc_unlock_object(&sma->sem_perm);
|
||||
return sops->sem_num;
|
||||
} else {
|
||||
/* Not a false alarm, thus complete the sequence for a
|
||||
* full lock.
|
||||
/*
|
||||
* Not a false alarm, thus continue to use the global lock
|
||||
* mode. No need for complexmode_enter(), this was done by
|
||||
* the caller that has set use_global_mode to non-zero.
|
||||
*/
|
||||
complexmode_enter(sma);
|
||||
return SEM_GLOBAL_LOCK;
|
||||
}
|
||||
}
|
||||
@ -476,7 +512,7 @@ static int newary(struct ipc_namespace *ns, struct ipc_params *params)
|
||||
}
|
||||
|
||||
sma->complex_count = 0;
|
||||
sma->complex_mode = true; /* dropped by sem_unlock below */
|
||||
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
|
||||
INIT_LIST_HEAD(&sma->pending_alter);
|
||||
INIT_LIST_HEAD(&sma->pending_const);
|
||||
INIT_LIST_HEAD(&sma->list_id);
|
||||
|
Loading…
Reference in New Issue
Block a user