media: cx25821: remove cx25821-audio-upstream.c and cx25821-video-upstream.c

Those two files are unused since commit 486a7a2813c7 ("[media] cx25821: remove cx25821-audio-upstream.c")
and commit b6f21dc3541a ("[media] cx25821: remove video output support")
Remove them from tree.

Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
This commit is contained in:
Corentin Labbe 2018-06-07 16:02:21 -04:00 committed by Mauro Carvalho Chehab
parent 152e0bf602
commit cc00f5845a
5 changed files with 0 additions and 1557 deletions

View File

@ -1,679 +0,0 @@
/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "cx25821-video.h"
#include "cx25821-audio-upstream.h"
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <linux/file.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
MODULE_DESCRIPTION("v4l2 driver module for cx25821 based TV cards");
MODULE_AUTHOR("Hiep Huynh <hiep.huynh@conexant.com>");
MODULE_LICENSE("GPL");
static int _intr_msk = FLD_AUD_SRC_RISCI1 | FLD_AUD_SRC_OF |
FLD_AUD_SRC_SYNC | FLD_AUD_SRC_OPC_ERR;
static int cx25821_sram_channel_setup_upstream_audio(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc)
{
unsigned int i, lines;
u32 cdt;
if (ch->cmds_start == 0) {
cx_write(ch->ptr1_reg, 0);
cx_write(ch->ptr2_reg, 0);
cx_write(ch->cnt2_reg, 0);
cx_write(ch->cnt1_reg, 0);
return 0;
}
bpl = (bpl + 7) & ~7; /* alignment */
cdt = ch->cdt;
lines = ch->fifo_size / bpl;
if (lines > 3)
lines = 3;
BUG_ON(lines < 2);
/* write CDT */
for (i = 0; i < lines; i++) {
cx_write(cdt + 16 * i, ch->fifo_start + bpl * i);
cx_write(cdt + 16 * i + 4, 0);
cx_write(cdt + 16 * i + 8, 0);
cx_write(cdt + 16 * i + 12, 0);
}
/* write CMDS */
cx_write(ch->cmds_start + 0, risc);
cx_write(ch->cmds_start + 4, 0);
cx_write(ch->cmds_start + 8, cdt);
cx_write(ch->cmds_start + 12, AUDIO_CDT_SIZE_QW);
cx_write(ch->cmds_start + 16, ch->ctrl_start);
/* IQ size */
cx_write(ch->cmds_start + 20, AUDIO_IQ_SIZE_DW);
for (i = 24; i < 80; i += 4)
cx_write(ch->cmds_start + i, 0);
/* fill registers */
cx_write(ch->ptr1_reg, ch->fifo_start);
cx_write(ch->ptr2_reg, cdt);
cx_write(ch->cnt2_reg, AUDIO_CDT_SIZE_QW);
cx_write(ch->cnt1_reg, AUDIO_CLUSTER_SIZE_QW - 1);
return 0;
}
static __le32 *cx25821_risc_field_upstream_audio(struct cx25821_dev *dev,
__le32 *rp,
dma_addr_t databuf_phys_addr,
unsigned int bpl,
int fifo_enable)
{
unsigned int line;
const struct sram_channel *sram_ch =
dev->channels[dev->_audio_upstream_channel].sram_channels;
int offset = 0;
/* scan lines */
for (line = 0; line < LINES_PER_AUDIO_BUFFER; line++) {
*(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl);
*(rp++) = cpu_to_le32(databuf_phys_addr + offset);
*(rp++) = cpu_to_le32(0); /* bits 63-32 */
/* Check if we need to enable the FIFO
* after the first 3 lines.
* For the upstream audio channel,
* the risc engine will enable the FIFO */
if (fifo_enable && line == 2) {
*(rp++) = RISC_WRITECR;
*(rp++) = sram_ch->dma_ctl;
*(rp++) = sram_ch->fld_aud_fifo_en;
*(rp++) = 0x00000020;
}
offset += AUDIO_LINE_SIZE;
}
return rp;
}
static int cx25821_risc_buffer_upstream_audio(struct cx25821_dev *dev,
struct pci_dev *pci,
unsigned int bpl, unsigned int lines)
{
__le32 *rp;
int fifo_enable = 0;
int frame = 0, i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int databuf_offset = 0;
int risc_flag = RISC_CNT_INC;
dma_addr_t risc_phys_jump_addr;
/* Virtual address of Risc buffer program */
rp = dev->_risc_virt_addr;
/* sync instruction */
*(rp++) = cpu_to_le32(RISC_RESYNC | AUDIO_SYNC_LINE);
for (frame = 0; frame < NUM_AUDIO_FRAMES; frame++) {
databuf_offset = frame_size * frame;
if (frame == 0) {
fifo_enable = 1;
risc_flag = RISC_CNT_RESET;
} else {
fifo_enable = 0;
risc_flag = RISC_CNT_INC;
}
/* Calculate physical jump address */
if ((frame + 1) == NUM_AUDIO_FRAMES) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE;
} else {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE * (frame + 1);
}
rp = cx25821_risc_field_upstream_audio(dev, rp,
dev->_audiodata_buf_phys_addr + databuf_offset,
bpl, fifo_enable);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++)
*(rp++) = cpu_to_le32(RISC_NOOP);
}
/* Loop to (Nth)FrameRISC or to Start of Risc program &
* generate IRQ */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | risc_flag);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
/* Recalculate virtual address based on frame index */
rp = dev->_risc_virt_addr + RISC_SYNC_INSTRUCTION_SIZE / 4 +
(AUDIO_RISC_DMA_BUF_SIZE * (frame + 1) / 4);
}
return 0;
}
static void cx25821_free_memory_audio(struct cx25821_dev *dev)
{
if (dev->_risc_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiorisc_size,
dev->_risc_virt_addr, dev->_risc_phys_addr);
dev->_risc_virt_addr = NULL;
}
if (dev->_audiodata_buf_virt_addr) {
pci_free_consistent(dev->pci, dev->_audiodata_buf_size,
dev->_audiodata_buf_virt_addr,
dev->_audiodata_buf_phys_addr);
dev->_audiodata_buf_virt_addr = NULL;
}
}
void cx25821_stop_upstream_audio(struct cx25821_dev *dev)
{
const struct sram_channel *sram_ch =
dev->channels[AUDIO_UPSTREAM_SRAM_CHANNEL_B].sram_channels;
u32 tmp = 0;
if (!dev->_audio_is_running) {
printk(KERN_DEBUG
pr_fmt("No audio file is currently running so return!\n"));
return;
}
/* Disable RISC interrupts */
cx_write(sram_ch->int_msk, 0);
/* Turn OFF risc and fifo enable in AUD_DMA_CNTRL */
tmp = cx_read(sram_ch->dma_ctl);
cx_write(sram_ch->dma_ctl,
tmp & ~(sram_ch->fld_aud_fifo_en | sram_ch->fld_aud_risc_en));
/* Clear data buffer memory */
if (dev->_audiodata_buf_virt_addr)
memset(dev->_audiodata_buf_virt_addr, 0,
dev->_audiodata_buf_size);
dev->_audio_is_running = 0;
dev->_is_first_audio_frame = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = END_OF_FILE;
flush_work(&dev->_audio_work_entry);
kfree(dev->_audiofilename);
}
void cx25821_free_mem_upstream_audio(struct cx25821_dev *dev)
{
if (dev->_audio_is_running)
cx25821_stop_upstream_audio(dev);
cx25821_free_memory_audio(dev);
}
static int cx25821_get_audio_data(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
struct file *file;
int frame_index_temp = dev->_audioframe_index;
int i = 0;
int frame_size = AUDIO_DATA_BUF_SZ;
int frame_offset = frame_size * frame_index_temp;
char mybuf[AUDIO_LINE_SIZE];
loff_t file_offset = dev->_audioframe_count * frame_size;
char *p = NULL;
if (dev->_audiofile_status == END_OF_FILE)
return 0;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, -PTR_ERR(file));
return PTR_ERR(file);
}
if (dev->_audiodata_buf_virt_addr)
p = (char *)dev->_audiodata_buf_virt_addr + frame_offset;
for (i = 0; i < dev->_audio_lines_count; i++) {
int n = kernel_read(file, mybuf, AUDIO_LINE_SIZE, &file_offset);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
dev->_audiofile_status = IN_PROGRESS;
if (p) {
memcpy(p, mybuf, n);
p += n;
}
}
dev->_audioframe_count++;
fput(file);
return 0;
}
static void cx25821_audioups_handler(struct work_struct *work)
{
struct cx25821_dev *dev = container_of(work, struct cx25821_dev,
_audio_work_entry);
if (!dev) {
pr_err("ERROR %s(): since container_of(work_struct) FAILED!\n",
__func__);
return;
}
cx25821_get_audio_data(dev, dev->channels[dev->_audio_upstream_channel].
sram_channels);
}
static int cx25821_openfile_audio(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
char *p = (void *)dev->_audiodata_buf_virt_addr;
struct file *file;
loff_t file_offset = 0;
int i, j;
file = filp_open(dev->_audiofilename, O_RDONLY | O_LARGEFILE, 0);
if (IS_ERR(file)) {
pr_err("%s(): ERROR opening file(%s) with errno = %ld!\n",
__func__, dev->_audiofilename, PTR_ERR(file));
return PTR_ERR(file);
}
for (j = 0; j < NUM_AUDIO_FRAMES; j++) {
for (i = 0; i < dev->_audio_lines_count; i++) {
char buf[AUDIO_LINE_SIZE];
loff_t offset = file_offset;
int n = kernel_read(file, buf, AUDIO_LINE_SIZE, &file_offset);
if (n < AUDIO_LINE_SIZE) {
pr_info("Done: exit %s() since no more bytes to read from Audio file\n",
__func__);
dev->_audiofile_status = END_OF_FILE;
fput(file);
return 0;
}
if (p)
memcpy(p + offset, buf, n);
}
dev->_audioframe_count++;
}
dev->_audiofile_status = IN_PROGRESS;
fput(file);
return 0;
}
static int cx25821_audio_upstream_buffer_prepare(struct cx25821_dev *dev,
const struct sram_channel *sram_ch,
int bpl)
{
int ret = 0;
dma_addr_t dma_addr;
dma_addr_t data_dma_addr;
cx25821_free_memory_audio(dev);
dev->_risc_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_riscbuf_size, &dma_addr);
dev->_risc_virt_start_addr = dev->_risc_virt_addr;
dev->_risc_phys_start_addr = dma_addr;
dev->_risc_phys_addr = dma_addr;
dev->_audiorisc_size = dev->audio_upstream_riscbuf_size;
if (!dev->_risc_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for RISC program! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_risc_virt_addr, 0, dev->_audiorisc_size);
/* For Audio Data buffer allocation */
dev->_audiodata_buf_virt_addr = pci_alloc_consistent(dev->pci,
dev->audio_upstream_databuf_size, &data_dma_addr);
dev->_audiodata_buf_phys_addr = data_dma_addr;
dev->_audiodata_buf_size = dev->audio_upstream_databuf_size;
if (!dev->_audiodata_buf_virt_addr) {
printk(KERN_DEBUG
pr_fmt("ERROR: pci_alloc_consistent() FAILED to allocate memory for data buffer! Returning\n"));
return -ENOMEM;
}
/* Clear out memory at address */
memset(dev->_audiodata_buf_virt_addr, 0, dev->_audiodata_buf_size);
ret = cx25821_openfile_audio(dev, sram_ch);
if (ret < 0)
return ret;
/* Creating RISC programs */
ret = cx25821_risc_buffer_upstream_audio(dev, dev->pci, bpl,
dev->_audio_lines_count);
if (ret < 0) {
printk(KERN_DEBUG
pr_fmt("ERROR creating audio upstream RISC programs!\n"));
goto error;
}
return 0;
error:
return ret;
}
static int cx25821_audio_upstream_irq(struct cx25821_dev *dev, int chan_num,
u32 status)
{
int i = 0;
u32 int_msk_tmp;
const struct sram_channel *channel = dev->channels[chan_num].sram_channels;
dma_addr_t risc_phys_jump_addr;
__le32 *rp;
if (status & FLD_AUD_SRC_RISCI1) {
/* Get interrupt_index of the program that interrupted */
u32 prog_cnt = cx_read(channel->gpcnt);
/* Since we've identified our IRQ, clear our bits from the
* interrupt mask and interrupt status registers */
cx_write(channel->int_msk, 0);
cx_write(channel->int_stat, cx_read(channel->int_stat));
spin_lock(&dev->slock);
while (prog_cnt != dev->_last_index_irq) {
/* Update _last_index_irq */
if (dev->_last_index_irq < (NUMBER_OF_PROGRAMS - 1))
dev->_last_index_irq++;
else
dev->_last_index_irq = 0;
dev->_audioframe_index = dev->_last_index_irq;
schedule_work(&dev->_audio_work_entry);
}
if (dev->_is_first_audio_frame) {
dev->_is_first_audio_frame = 0;
if (dev->_risc_virt_start_addr != NULL) {
risc_phys_jump_addr =
dev->_risc_phys_start_addr +
RISC_SYNC_INSTRUCTION_SIZE +
AUDIO_RISC_DMA_BUF_SIZE;
rp = cx25821_risc_field_upstream_audio(dev,
dev->_risc_virt_start_addr + 1,
dev->_audiodata_buf_phys_addr,
AUDIO_LINE_SIZE, FIFO_DISABLE);
if (USE_RISC_NOOP_AUDIO) {
for (i = 0; i < NUM_NO_OPS; i++) {
*(rp++) =
cpu_to_le32(RISC_NOOP);
}
}
/* Jump to 2nd Audio Frame */
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 |
RISC_CNT_RESET);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
}
}
spin_unlock(&dev->slock);
} else {
if (status & FLD_AUD_SRC_OF)
pr_warn("%s(): Audio Received Overflow Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_SYNC)
pr_warn("%s(): Audio Received Sync Error Interrupt!\n",
__func__);
if (status & FLD_AUD_SRC_OPC_ERR)
pr_warn("%s(): Audio Received OpCode Error Interrupt!\n",
__func__);
/* Read and write back the interrupt status register to clear
* our bits */
cx_write(channel->int_stat, cx_read(channel->int_stat));
}
if (dev->_audiofile_status == END_OF_FILE) {
pr_warn("EOF Channel Audio Framecount = %d\n",
dev->_audioframe_count);
return -1;
}
/* ElSE, set the interrupt mask register, re-enable irq. */
int_msk_tmp = cx_read(channel->int_msk);
cx_write(channel->int_msk, int_msk_tmp |= _intr_msk);
return 0;
}
static irqreturn_t cx25821_upstream_irq_audio(int irq, void *dev_id)
{
struct cx25821_dev *dev = dev_id;
u32 audio_status;
int handled = 0;
const struct sram_channel *sram_ch;
if (!dev)
return -1;
sram_ch = dev->channels[dev->_audio_upstream_channel].sram_channels;
audio_status = cx_read(sram_ch->int_stat);
/* Only deal with our interrupt */
if (audio_status) {
handled = cx25821_audio_upstream_irq(dev,
dev->_audio_upstream_channel, audio_status);
}
if (handled < 0)
cx25821_stop_upstream_audio(dev);
else
handled += handled;
return IRQ_RETVAL(handled);
}
static void cx25821_wait_fifo_enable(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
int count = 0;
u32 tmp;
do {
/* Wait 10 microsecond before checking to see if the FIFO is
* turned ON. */
udelay(10);
tmp = cx_read(sram_ch->dma_ctl);
/* 10 millisecond timeout */
if (count++ > 1000) {
pr_err("ERROR: %s() fifo is NOT turned on. Timeout!\n",
__func__);
return;
}
} while (!(tmp & sram_ch->fld_aud_fifo_en));
}
static int cx25821_start_audio_dma_upstream(struct cx25821_dev *dev,
const struct sram_channel *sram_ch)
{
u32 tmp = 0;
int err = 0;
/* Set the physical start address of the RISC program in the initial
* program counter(IPC) member of the CMDS. */
cx_write(sram_ch->cmds_start + 0, dev->_risc_phys_addr);
/* Risc IPC High 64 bits 63-32 */
cx_write(sram_ch->cmds_start + 4, 0);
/* reset counter */
cx_write(sram_ch->gpcnt_ctl, 3);
/* Set the line length (It looks like we do not need to set the
* line length) */
cx_write(sram_ch->aud_length, AUDIO_LINE_SIZE & FLD_AUD_DST_LN_LNGTH);
/* Set the input mode to 16-bit */
tmp = cx_read(sram_ch->aud_cfg);
tmp |= FLD_AUD_SRC_ENABLE | FLD_AUD_DST_PK_MODE | FLD_AUD_CLK_ENABLE |
FLD_AUD_MASTER_MODE | FLD_AUD_CLK_SELECT_PLL_D |
FLD_AUD_SONY_MODE;
cx_write(sram_ch->aud_cfg, tmp);
/* Read and write back the interrupt status register to clear it */
tmp = cx_read(sram_ch->int_stat);
cx_write(sram_ch->int_stat, tmp);
/* Clear our bits from the interrupt status register. */
cx_write(sram_ch->int_stat, _intr_msk);
/* Set the interrupt mask register, enable irq. */
cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) | (1 << sram_ch->irq_bit));
tmp = cx_read(sram_ch->int_msk);
cx_write(sram_ch->int_msk, tmp |= _intr_msk);
err = request_irq(dev->pci->irq, cx25821_upstream_irq_audio,
IRQF_SHARED, dev->name, dev);
if (err < 0) {
pr_err("%s: can't get upstream IRQ %d\n", dev->name,
dev->pci->irq);
goto fail_irq;
}
/* Start the DMA engine */
tmp = cx_read(sram_ch->dma_ctl);
cx_set(sram_ch->dma_ctl, tmp | sram_ch->fld_aud_risc_en);
dev->_audio_is_running = 1;
dev->_is_first_audio_frame = 1;
/* The fifo_en bit turns on by the first Risc program */
cx25821_wait_fifo_enable(dev, sram_ch);
return 0;
fail_irq:
cx25821_dev_unregister(dev);
return err;
}
int cx25821_audio_upstream_init(struct cx25821_dev *dev, int channel_select)
{
const struct sram_channel *sram_ch;
int err = 0;
if (dev->_audio_is_running) {
pr_warn("Audio Channel is still running so return!\n");
return 0;
}
dev->_audio_upstream_channel = channel_select;
sram_ch = dev->channels[channel_select].sram_channels;
/* Work queue */
INIT_WORK(&dev->_audio_work_entry, cx25821_audioups_handler);
dev->_last_index_irq = 0;
dev->_audio_is_running = 0;
dev->_audioframe_count = 0;
dev->_audiofile_status = RESET_STATUS;
dev->_audio_lines_count = LINES_PER_AUDIO_BUFFER;
_line_size = AUDIO_LINE_SIZE;
if ((dev->input_audiofilename) &&
(strcmp(dev->input_audiofilename, "") != 0))
dev->_audiofilename = kstrdup(dev->input_audiofilename,
GFP_KERNEL);
else
dev->_audiofilename = kstrdup(_defaultAudioName,
GFP_KERNEL);
if (!dev->_audiofilename) {
err = -ENOMEM;
goto error;
}
cx25821_sram_channel_setup_upstream_audio(dev, sram_ch,
_line_size, 0);
dev->audio_upstream_riscbuf_size =
AUDIO_RISC_DMA_BUF_SIZE * NUM_AUDIO_PROGS +
RISC_SYNC_INSTRUCTION_SIZE;
dev->audio_upstream_databuf_size = AUDIO_DATA_BUF_SZ * NUM_AUDIO_PROGS;
/* Allocating buffers and prepare RISC program */
err = cx25821_audio_upstream_buffer_prepare(dev, sram_ch,
_line_size);
if (err < 0) {
pr_err("%s: Failed to set up Audio upstream buffers!\n",
dev->name);
goto error;
}
/* Start RISC engine */
cx25821_start_audio_dma_upstream(dev, sram_ch);
return 0;
error:
cx25821_dev_unregister(dev);
return err;
}

View File

@ -1,58 +0,0 @@
/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#include <linux/mutex.h>
#include <linux/workqueue.h>
#define NUM_AUDIO_PROGS 8
#define NUM_AUDIO_FRAMES 8
#define END_OF_FILE 0
#define IN_PROGRESS 1
#define RESET_STATUS -1
#define FIFO_DISABLE 0
#define FIFO_ENABLE 1
#define NUM_NO_OPS 4
#define RISC_READ_INSTRUCTION_SIZE 12
#define RISC_JUMP_INSTRUCTION_SIZE 12
#define RISC_WRITECR_INSTRUCTION_SIZE 16
#define RISC_SYNC_INSTRUCTION_SIZE 4
#define DWORD_SIZE 4
#define AUDIO_SYNC_LINE 4
#define LINES_PER_AUDIO_BUFFER 15
#define AUDIO_LINE_SIZE 128
#define AUDIO_DATA_BUF_SZ (AUDIO_LINE_SIZE * LINES_PER_AUDIO_BUFFER)
#define USE_RISC_NOOP_AUDIO 1
#ifdef USE_RISC_NOOP_AUDIO
#define AUDIO_RISC_DMA_BUF_SIZE \
(LINES_PER_AUDIO_BUFFER * RISC_READ_INSTRUCTION_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + NUM_NO_OPS * DWORD_SIZE + \
RISC_JUMP_INSTRUCTION_SIZE)
#endif
#ifndef USE_RISC_NOOP_AUDIO
#define AUDIO_RISC_DMA_BUF_SIZE \
(LINES_PER_AUDIO_BUFFER * RISC_READ_INSTRUCTION_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + RISC_JUMP_INSTRUCTION_SIZE)
#endif
static int _line_size;
char *_defaultAudioName = "/root/audioGOOD.wav";

View File

@ -1,673 +0,0 @@
/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "cx25821-video.h"
#include "cx25821-video-upstream.h"
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
MODULE_DESCRIPTION("v4l2 driver module for cx25821 based TV cards");
MODULE_AUTHOR("Hiep Huynh <hiep.huynh@conexant.com>");
MODULE_LICENSE("GPL");
static int _intr_msk = FLD_VID_SRC_RISC1 | FLD_VID_SRC_UF | FLD_VID_SRC_SYNC |
FLD_VID_SRC_OPC_ERR;
int cx25821_sram_channel_setup_upstream(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc)
{
unsigned int i, lines;
u32 cdt;
if (ch->cmds_start == 0) {
cx_write(ch->ptr1_reg, 0);
cx_write(ch->ptr2_reg, 0);
cx_write(ch->cnt2_reg, 0);
cx_write(ch->cnt1_reg, 0);
return 0;
}
bpl = (bpl + 7) & ~7; /* alignment */
cdt = ch->cdt;
lines = ch->fifo_size / bpl;
if (lines > 4)
lines = 4;
BUG_ON(lines < 2);
/* write CDT */
for (i = 0; i < lines; i++) {
cx_write(cdt + 16 * i, ch->fifo_start + bpl * i);
cx_write(cdt + 16 * i + 4, 0);
cx_write(cdt + 16 * i + 8, 0);
cx_write(cdt + 16 * i + 12, 0);
}
/* write CMDS */
cx_write(ch->cmds_start + 0, risc);
cx_write(ch->cmds_start + 4, 0);
cx_write(ch->cmds_start + 8, cdt);
cx_write(ch->cmds_start + 12, (lines * 16) >> 3);
cx_write(ch->cmds_start + 16, ch->ctrl_start);
cx_write(ch->cmds_start + 20, VID_IQ_SIZE_DW);
for (i = 24; i < 80; i += 4)
cx_write(ch->cmds_start + i, 0);
/* fill registers */
cx_write(ch->ptr1_reg, ch->fifo_start);
cx_write(ch->ptr2_reg, cdt);
cx_write(ch->cnt2_reg, (lines * 16) >> 3);
cx_write(ch->cnt1_reg, (bpl >> 3) - 1);
return 0;
}
static __le32 *cx25821_update_riscprogram(struct cx25821_channel *chan,
__le32 *rp, unsigned int offset,
unsigned int bpl, u32 sync_line,
unsigned int lines, int fifo_enable,
int field_type)
{
struct cx25821_video_out_data *out = chan->out;
unsigned int line, i;
int dist_betwn_starts = bpl * 2;
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
if (USE_RISC_NOOP_VIDEO) {
for (i = 0; i < NUM_NO_OPS; i++)
*(rp++) = cpu_to_le32(RISC_NOOP);
}
/* scan lines */
for (line = 0; line < lines; line++) {
*(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl);
*(rp++) = cpu_to_le32(out->_data_buf_phys_addr + offset);
*(rp++) = cpu_to_le32(0); /* bits 63-32 */
if ((lines <= NTSC_FIELD_HEIGHT)
|| (line < (NTSC_FIELD_HEIGHT - 1)) || !(out->is_60hz)) {
offset += dist_betwn_starts;
}
}
return rp;
}
static __le32 *cx25821_risc_field_upstream(struct cx25821_channel *chan, __le32 *rp,
dma_addr_t databuf_phys_addr,
unsigned int offset, u32 sync_line,
unsigned int bpl, unsigned int lines,
int fifo_enable, int field_type)
{
struct cx25821_video_out_data *out = chan->out;
unsigned int line, i;
const struct sram_channel *sram_ch = chan->sram_channels;
int dist_betwn_starts = bpl * 2;
/* sync instruction */
if (sync_line != NO_SYNC_LINE)
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
if (USE_RISC_NOOP_VIDEO) {
for (i = 0; i < NUM_NO_OPS; i++)
*(rp++) = cpu_to_le32(RISC_NOOP);
}
/* scan lines */
for (line = 0; line < lines; line++) {
*(rp++) = cpu_to_le32(RISC_READ | RISC_SOL | RISC_EOL | bpl);
*(rp++) = cpu_to_le32(databuf_phys_addr + offset);
*(rp++) = cpu_to_le32(0); /* bits 63-32 */
if ((lines <= NTSC_FIELD_HEIGHT)
|| (line < (NTSC_FIELD_HEIGHT - 1)) || !(out->is_60hz))
/* to skip the other field line */
offset += dist_betwn_starts;
/* check if we need to enable the FIFO after the first 4 lines
* For the upstream video channel, the risc engine will enable
* the FIFO. */
if (fifo_enable && line == 3) {
*(rp++) = cpu_to_le32(RISC_WRITECR);
*(rp++) = cpu_to_le32(sram_ch->dma_ctl);
*(rp++) = cpu_to_le32(FLD_VID_FIFO_EN);
*(rp++) = cpu_to_le32(0x00000001);
}
}
return rp;
}
static int cx25821_risc_buffer_upstream(struct cx25821_channel *chan,
struct pci_dev *pci,
unsigned int top_offset,
unsigned int bpl, unsigned int lines)
{
struct cx25821_video_out_data *out = chan->out;
__le32 *rp;
int fifo_enable = 0;
/* get line count for single field */
int singlefield_lines = lines >> 1;
int odd_num_lines = singlefield_lines;
int frame = 0;
int frame_size = 0;
int databuf_offset = 0;
int risc_program_size = 0;
int risc_flag = RISC_CNT_RESET;
unsigned int bottom_offset = bpl;
dma_addr_t risc_phys_jump_addr;
if (out->is_60hz) {
odd_num_lines = singlefield_lines + 1;
risc_program_size = FRAME1_VID_PROG_SIZE;
frame_size = (bpl == Y411_LINE_SZ) ?
FRAME_SIZE_NTSC_Y411 : FRAME_SIZE_NTSC_Y422;
} else {
risc_program_size = PAL_VID_PROG_SIZE;
frame_size = (bpl == Y411_LINE_SZ) ?
FRAME_SIZE_PAL_Y411 : FRAME_SIZE_PAL_Y422;
}
/* Virtual address of Risc buffer program */
rp = out->_dma_virt_addr;
for (frame = 0; frame < NUM_FRAMES; frame++) {
databuf_offset = frame_size * frame;
if (UNSET != top_offset) {
fifo_enable = (frame == 0) ? FIFO_ENABLE : FIFO_DISABLE;
rp = cx25821_risc_field_upstream(chan, rp,
out->_data_buf_phys_addr +
databuf_offset, top_offset, 0, bpl,
odd_num_lines, fifo_enable, ODD_FIELD);
}
fifo_enable = FIFO_DISABLE;
/* Even Field */
rp = cx25821_risc_field_upstream(chan, rp,
out->_data_buf_phys_addr +
databuf_offset, bottom_offset,
0x200, bpl, singlefield_lines,
fifo_enable, EVEN_FIELD);
if (frame == 0) {
risc_flag = RISC_CNT_RESET;
risc_phys_jump_addr = out->_dma_phys_start_addr +
risc_program_size;
} else {
risc_phys_jump_addr = out->_dma_phys_start_addr;
risc_flag = RISC_CNT_INC;
}
/* Loop to 2ndFrameRISC or to Start of Risc
* program & generate IRQ
*/
*(rp++) = cpu_to_le32(RISC_JUMP | RISC_IRQ1 | risc_flag);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
}
return 0;
}
void cx25821_stop_upstream_video(struct cx25821_channel *chan)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
const struct sram_channel *sram_ch = chan->sram_channels;
u32 tmp = 0;
if (!out->_is_running) {
pr_info("No video file is currently running so return!\n");
return;
}
/* Set the interrupt mask register, disable irq. */
cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) & ~(1 << sram_ch->irq_bit));
/* Disable RISC interrupts */
tmp = cx_read(sram_ch->int_msk);
cx_write(sram_ch->int_msk, tmp & ~_intr_msk);
/* Turn OFF risc and fifo enable */
tmp = cx_read(sram_ch->dma_ctl);
cx_write(sram_ch->dma_ctl, tmp & ~(FLD_VID_FIFO_EN | FLD_VID_RISC_EN));
free_irq(dev->pci->irq, chan);
/* Clear data buffer memory */
if (out->_data_buf_virt_addr)
memset(out->_data_buf_virt_addr, 0, out->_data_buf_size);
out->_is_running = 0;
out->_is_first_frame = 0;
out->_frame_count = 0;
out->_file_status = END_OF_FILE;
tmp = cx_read(VID_CH_MODE_SEL);
cx_write(VID_CH_MODE_SEL, tmp & 0xFFFFFE00);
}
void cx25821_free_mem_upstream(struct cx25821_channel *chan)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
if (out->_is_running)
cx25821_stop_upstream_video(chan);
if (out->_dma_virt_addr) {
pci_free_consistent(dev->pci, out->_risc_size,
out->_dma_virt_addr, out->_dma_phys_addr);
out->_dma_virt_addr = NULL;
}
if (out->_data_buf_virt_addr) {
pci_free_consistent(dev->pci, out->_data_buf_size,
out->_data_buf_virt_addr,
out->_data_buf_phys_addr);
out->_data_buf_virt_addr = NULL;
}
}
int cx25821_write_frame(struct cx25821_channel *chan,
const char __user *data, size_t count)
{
struct cx25821_video_out_data *out = chan->out;
int line_size = (out->_pixel_format == PIXEL_FRMT_411) ?
Y411_LINE_SZ : Y422_LINE_SZ;
int frame_size = 0;
int frame_offset = 0;
int curpos = out->curpos;
if (out->is_60hz)
frame_size = (line_size == Y411_LINE_SZ) ?
FRAME_SIZE_NTSC_Y411 : FRAME_SIZE_NTSC_Y422;
else
frame_size = (line_size == Y411_LINE_SZ) ?
FRAME_SIZE_PAL_Y411 : FRAME_SIZE_PAL_Y422;
if (curpos == 0) {
out->cur_frame_index = out->_frame_index;
if (wait_event_interruptible(out->waitq, out->cur_frame_index != out->_frame_index))
return -EINTR;
out->cur_frame_index = out->_frame_index;
}
frame_offset = out->cur_frame_index ? frame_size : 0;
if (frame_size - curpos < count)
count = frame_size - curpos;
if (copy_from_user((__force char *)out->_data_buf_virt_addr + frame_offset + curpos,
data, count))
return -EFAULT;
curpos += count;
if (curpos == frame_size) {
out->_frame_count++;
curpos = 0;
}
out->curpos = curpos;
return count;
}
static int cx25821_upstream_buffer_prepare(struct cx25821_channel *chan,
const struct sram_channel *sram_ch,
int bpl)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
int ret = 0;
dma_addr_t dma_addr;
dma_addr_t data_dma_addr;
if (out->_dma_virt_addr != NULL)
pci_free_consistent(dev->pci, out->upstream_riscbuf_size,
out->_dma_virt_addr, out->_dma_phys_addr);
out->_dma_virt_addr = pci_alloc_consistent(dev->pci,
out->upstream_riscbuf_size, &dma_addr);
out->_dma_virt_start_addr = out->_dma_virt_addr;
out->_dma_phys_start_addr = dma_addr;
out->_dma_phys_addr = dma_addr;
out->_risc_size = out->upstream_riscbuf_size;
if (!out->_dma_virt_addr) {
pr_err("FAILED to allocate memory for Risc buffer! Returning\n");
return -ENOMEM;
}
/* Clear memory at address */
memset(out->_dma_virt_addr, 0, out->_risc_size);
if (out->_data_buf_virt_addr != NULL)
pci_free_consistent(dev->pci, out->upstream_databuf_size,
out->_data_buf_virt_addr,
out->_data_buf_phys_addr);
/* For Video Data buffer allocation */
out->_data_buf_virt_addr = pci_alloc_consistent(dev->pci,
out->upstream_databuf_size, &data_dma_addr);
out->_data_buf_phys_addr = data_dma_addr;
out->_data_buf_size = out->upstream_databuf_size;
if (!out->_data_buf_virt_addr) {
pr_err("FAILED to allocate memory for data buffer! Returning\n");
return -ENOMEM;
}
/* Clear memory at address */
memset(out->_data_buf_virt_addr, 0, out->_data_buf_size);
/* Create RISC programs */
ret = cx25821_risc_buffer_upstream(chan, dev->pci, 0, bpl,
out->_lines_count);
if (ret < 0) {
pr_info("Failed creating Video Upstream Risc programs!\n");
goto error;
}
return 0;
error:
return ret;
}
static int cx25821_video_upstream_irq(struct cx25821_channel *chan, u32 status)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
u32 int_msk_tmp;
const struct sram_channel *channel = chan->sram_channels;
int singlefield_lines = NTSC_FIELD_HEIGHT;
int line_size_in_bytes = Y422_LINE_SZ;
int odd_risc_prog_size = 0;
dma_addr_t risc_phys_jump_addr;
__le32 *rp;
if (status & FLD_VID_SRC_RISC1) {
/* We should only process one program per call */
u32 prog_cnt = cx_read(channel->gpcnt);
/* Since we've identified our IRQ, clear our bits from the
* interrupt mask and interrupt status registers */
int_msk_tmp = cx_read(channel->int_msk);
cx_write(channel->int_msk, int_msk_tmp & ~_intr_msk);
cx_write(channel->int_stat, _intr_msk);
wake_up(&out->waitq);
spin_lock(&dev->slock);
out->_frame_index = prog_cnt;
if (out->_is_first_frame) {
out->_is_first_frame = 0;
if (out->is_60hz) {
singlefield_lines += 1;
odd_risc_prog_size = ODD_FLD_NTSC_PROG_SIZE;
} else {
singlefield_lines = PAL_FIELD_HEIGHT;
odd_risc_prog_size = ODD_FLD_PAL_PROG_SIZE;
}
if (out->_dma_virt_start_addr != NULL) {
line_size_in_bytes =
(out->_pixel_format ==
PIXEL_FRMT_411) ? Y411_LINE_SZ :
Y422_LINE_SZ;
risc_phys_jump_addr =
out->_dma_phys_start_addr +
odd_risc_prog_size;
rp = cx25821_update_riscprogram(chan,
out->_dma_virt_start_addr, TOP_OFFSET,
line_size_in_bytes, 0x0,
singlefield_lines, FIFO_DISABLE,
ODD_FIELD);
/* Jump to Even Risc program of 1st Frame */
*(rp++) = cpu_to_le32(RISC_JUMP);
*(rp++) = cpu_to_le32(risc_phys_jump_addr);
*(rp++) = cpu_to_le32(0);
}
}
spin_unlock(&dev->slock);
} else {
if (status & FLD_VID_SRC_UF)
pr_err("%s(): Video Received Underflow Error Interrupt!\n",
__func__);
if (status & FLD_VID_SRC_SYNC)
pr_err("%s(): Video Received Sync Error Interrupt!\n",
__func__);
if (status & FLD_VID_SRC_OPC_ERR)
pr_err("%s(): Video Received OpCode Error Interrupt!\n",
__func__);
}
if (out->_file_status == END_OF_FILE) {
pr_err("EOF Channel 1 Framecount = %d\n", out->_frame_count);
return -1;
}
/* ElSE, set the interrupt mask register, re-enable irq. */
int_msk_tmp = cx_read(channel->int_msk);
cx_write(channel->int_msk, int_msk_tmp |= _intr_msk);
return 0;
}
static irqreturn_t cx25821_upstream_irq(int irq, void *dev_id)
{
struct cx25821_channel *chan = dev_id;
struct cx25821_dev *dev = chan->dev;
u32 vid_status;
int handled = 0;
const struct sram_channel *sram_ch;
if (!dev)
return -1;
sram_ch = chan->sram_channels;
vid_status = cx_read(sram_ch->int_stat);
/* Only deal with our interrupt */
if (vid_status)
handled = cx25821_video_upstream_irq(chan, vid_status);
return IRQ_RETVAL(handled);
}
static void cx25821_set_pixelengine(struct cx25821_channel *chan,
const struct sram_channel *ch,
int pix_format)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
int width = WIDTH_D1;
int height = out->_lines_count;
int num_lines, odd_num_lines;
u32 value;
int vip_mode = OUTPUT_FRMT_656;
value = ((pix_format & 0x3) << 12) | (vip_mode & 0x7);
value &= 0xFFFFFFEF;
value |= out->is_60hz ? 0 : 0x10;
cx_write(ch->vid_fmt_ctl, value);
/* set number of active pixels in each line.
* Default is 720 pixels in both NTSC and PAL format */
cx_write(ch->vid_active_ctl1, width);
num_lines = (height / 2) & 0x3FF;
odd_num_lines = num_lines;
if (out->is_60hz)
odd_num_lines += 1;
value = (num_lines << 16) | odd_num_lines;
/* set number of active lines in field 0 (top) and field 1 (bottom) */
cx_write(ch->vid_active_ctl2, value);
cx_write(ch->vid_cdt_size, VID_CDT_SIZE >> 3);
}
static int cx25821_start_video_dma_upstream(struct cx25821_channel *chan,
const struct sram_channel *sram_ch)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
u32 tmp = 0;
int err = 0;
/* 656/VIP SRC Upstream Channel I & J and 7 - Host Bus Interface for
* channel A-C
*/
tmp = cx_read(VID_CH_MODE_SEL);
cx_write(VID_CH_MODE_SEL, tmp | 0x1B0001FF);
/* Set the physical start address of the RISC program in the initial
* program counter(IPC) member of the cmds.
*/
cx_write(sram_ch->cmds_start + 0, out->_dma_phys_addr);
/* Risc IPC High 64 bits 63-32 */
cx_write(sram_ch->cmds_start + 4, 0);
/* reset counter */
cx_write(sram_ch->gpcnt_ctl, 3);
/* Clear our bits from the interrupt status register. */
cx_write(sram_ch->int_stat, _intr_msk);
/* Set the interrupt mask register, enable irq. */
cx_set(PCI_INT_MSK, cx_read(PCI_INT_MSK) | (1 << sram_ch->irq_bit));
tmp = cx_read(sram_ch->int_msk);
cx_write(sram_ch->int_msk, tmp |= _intr_msk);
err = request_irq(dev->pci->irq, cx25821_upstream_irq,
IRQF_SHARED, dev->name, chan);
if (err < 0) {
pr_err("%s: can't get upstream IRQ %d\n",
dev->name, dev->pci->irq);
goto fail_irq;
}
/* Start the DMA engine */
tmp = cx_read(sram_ch->dma_ctl);
cx_set(sram_ch->dma_ctl, tmp | FLD_VID_RISC_EN);
out->_is_running = 1;
out->_is_first_frame = 1;
return 0;
fail_irq:
cx25821_dev_unregister(dev);
return err;
}
int cx25821_vidupstream_init(struct cx25821_channel *chan,
int pixel_format)
{
struct cx25821_video_out_data *out = chan->out;
struct cx25821_dev *dev = chan->dev;
const struct sram_channel *sram_ch;
u32 tmp;
int err = 0;
int data_frame_size = 0;
int risc_buffer_size = 0;
if (out->_is_running) {
pr_info("Video Channel is still running so return!\n");
return 0;
}
sram_ch = chan->sram_channels;
out->is_60hz = dev->tvnorm & V4L2_STD_525_60;
/* 656/VIP SRC Upstream Channel I & J and 7 - Host Bus Interface for
* channel A-C
*/
tmp = cx_read(VID_CH_MODE_SEL);
cx_write(VID_CH_MODE_SEL, tmp | 0x1B0001FF);
out->_is_running = 0;
out->_frame_count = 0;
out->_file_status = RESET_STATUS;
out->_lines_count = out->is_60hz ? 480 : 576;
out->_pixel_format = pixel_format;
out->_line_size = (out->_pixel_format == PIXEL_FRMT_422) ?
(WIDTH_D1 * 2) : (WIDTH_D1 * 3) / 2;
data_frame_size = out->is_60hz ? NTSC_DATA_BUF_SZ : PAL_DATA_BUF_SZ;
risc_buffer_size = out->is_60hz ?
NTSC_RISC_BUF_SIZE : PAL_RISC_BUF_SIZE;
out->_is_running = 0;
out->_frame_count = 0;
out->_file_status = RESET_STATUS;
out->_lines_count = out->is_60hz ? 480 : 576;
out->_pixel_format = pixel_format;
out->_line_size = (out->_pixel_format == PIXEL_FRMT_422) ?
(WIDTH_D1 * 2) : (WIDTH_D1 * 3) / 2;
out->curpos = 0;
init_waitqueue_head(&out->waitq);
err = cx25821_sram_channel_setup_upstream(dev, sram_ch,
out->_line_size, 0);
/* setup fifo + format */
cx25821_set_pixelengine(chan, sram_ch, out->_pixel_format);
out->upstream_riscbuf_size = risc_buffer_size * 2;
out->upstream_databuf_size = data_frame_size * 2;
/* Allocating buffers and prepare RISC program */
err = cx25821_upstream_buffer_prepare(chan, sram_ch, out->_line_size);
if (err < 0) {
pr_err("%s: Failed to set up Video upstream buffers!\n",
dev->name);
goto error;
}
cx25821_start_video_dma_upstream(chan, sram_ch);
return 0;
error:
cx25821_dev_unregister(dev);
return err;
}

View File

@ -1,135 +0,0 @@
/*
* Driver for the Conexant CX25821 PCIe bridge
*
* Copyright (C) 2009 Conexant Systems Inc.
* Authors <hiep.huynh@conexant.com>, <shu.lin@conexant.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*/
#include <linux/mutex.h>
#include <linux/workqueue.h>
#define OUTPUT_FRMT_656 0
#define OPEN_FILE_1 0
#define NUM_PROGS 8
#define NUM_FRAMES 2
#define ODD_FIELD 0
#define EVEN_FIELD 1
#define TOP_OFFSET 0
#define FIFO_DISABLE 0
#define FIFO_ENABLE 1
#define TEST_FRAMES 5
#define END_OF_FILE 0
#define IN_PROGRESS 1
#define RESET_STATUS -1
#define NUM_NO_OPS 5
/* PAL and NTSC line sizes and number of lines. */
#define WIDTH_D1 720
#define NTSC_LINES_PER_FRAME 480
#define PAL_LINES_PER_FRAME 576
#define PAL_LINE_SZ 1440
#define Y422_LINE_SZ 1440
#define Y411_LINE_SZ 1080
#define NTSC_FIELD_HEIGHT 240
#define NTSC_ODD_FLD_LINES 241
#define PAL_FIELD_HEIGHT 288
#define FRAME_SIZE_NTSC_Y422 (NTSC_LINES_PER_FRAME * Y422_LINE_SZ)
#define FRAME_SIZE_NTSC_Y411 (NTSC_LINES_PER_FRAME * Y411_LINE_SZ)
#define FRAME_SIZE_PAL_Y422 (PAL_LINES_PER_FRAME * Y422_LINE_SZ)
#define FRAME_SIZE_PAL_Y411 (PAL_LINES_PER_FRAME * Y411_LINE_SZ)
#define NTSC_DATA_BUF_SZ (Y422_LINE_SZ * NTSC_LINES_PER_FRAME)
#define PAL_DATA_BUF_SZ (Y422_LINE_SZ * PAL_LINES_PER_FRAME)
#define RISC_WRITECR_INSTRUCTION_SIZE 16
#define RISC_SYNC_INSTRUCTION_SIZE 4
#define JUMP_INSTRUCTION_SIZE 12
#define MAXSIZE_NO_OPS 36
#define DWORD_SIZE 4
#define USE_RISC_NOOP_VIDEO 1
#ifdef USE_RISC_NOOP_VIDEO
#define PAL_US_VID_PROG_SIZE \
(PAL_FIELD_HEIGHT * 3 * DWORD_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + RISC_SYNC_INSTRUCTION_SIZE + \
NUM_NO_OPS * DWORD_SIZE)
#define PAL_RISC_BUF_SIZE (2 * PAL_US_VID_PROG_SIZE)
#define PAL_VID_PROG_SIZE \
((PAL_FIELD_HEIGHT * 2) * 3 * DWORD_SIZE + \
2 * RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
JUMP_INSTRUCTION_SIZE + 2 * NUM_NO_OPS * DWORD_SIZE)
#define ODD_FLD_PAL_PROG_SIZE \
(PAL_FIELD_HEIGHT * 3 * DWORD_SIZE + \
RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
NUM_NO_OPS * DWORD_SIZE)
#define ODD_FLD_NTSC_PROG_SIZE \
(NTSC_ODD_FLD_LINES * 3 * DWORD_SIZE + \
RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
NUM_NO_OPS * DWORD_SIZE)
#define NTSC_US_VID_PROG_SIZE \
((NTSC_ODD_FLD_LINES + 1) * 3 * DWORD_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + JUMP_INSTRUCTION_SIZE + \
NUM_NO_OPS * DWORD_SIZE)
#define NTSC_RISC_BUF_SIZE \
(2 * (RISC_SYNC_INSTRUCTION_SIZE + NTSC_US_VID_PROG_SIZE))
#define FRAME1_VID_PROG_SIZE \
((NTSC_ODD_FLD_LINES + NTSC_FIELD_HEIGHT) * 3 * DWORD_SIZE + \
2 * RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
JUMP_INSTRUCTION_SIZE + 2 * NUM_NO_OPS * DWORD_SIZE)
#endif
#ifndef USE_RISC_NOOP_VIDEO
#define PAL_US_VID_PROG_SIZE \
(PAL_FIELD_HEIGHT * 3 * DWORD_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + RISC_SYNC_INSTRUCTION_SIZE + \
JUMP_INSTRUCTION_SIZE)
#define PAL_RISC_BUF_SIZE (2 * PAL_US_VID_PROG_SIZE)
#define PAL_VID_PROG_SIZE \
((PAL_FIELD_HEIGHT * 2) * 3 * DWORD_SIZE + \
2 * RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
JUMP_INSTRUCTION_SIZE)
#define ODD_FLD_PAL_PROG_SIZE \
(PAL_FIELD_HEIGHT * 3 * DWORD_SIZE + \
RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE)
#define ODD_FLD_NTSC_PROG_SIZE \
(NTSC_ODD_FLD_LINES * 3 * DWORD_SIZE + \
RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE)
#define NTSC_US_VID_PROG_SIZE \
((NTSC_ODD_FLD_LINES + 1) * 3 * DWORD_SIZE + \
RISC_WRITECR_INSTRUCTION_SIZE + JUMP_INSTRUCTION_SIZE)
#define NTSC_RISC_BUF_SIZE \
(2 * (RISC_SYNC_INSTRUCTION_SIZE + NTSC_US_VID_PROG_SIZE))
#define FRAME1_VID_PROG_SIZE \
((NTSC_ODD_FLD_LINES + NTSC_FIELD_HEIGHT) * 3 * DWORD_SIZE + \
2 * RISC_SYNC_INSTRUCTION_SIZE + RISC_WRITECR_INSTRUCTION_SIZE + \
JUMP_INSTRUCTION_SIZE)
#endif

View File

@ -432,18 +432,6 @@ extern int cx25821_sram_channel_setup_audio(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc);
extern int cx25821_vidupstream_init(struct cx25821_channel *chan, int pixel_format);
extern int cx25821_audio_upstream_init(struct cx25821_dev *dev,
int channel_select);
extern int cx25821_write_frame(struct cx25821_channel *chan,
const char __user *data, size_t count);
extern void cx25821_free_mem_upstream(struct cx25821_channel *chan);
extern void cx25821_free_mem_upstream_audio(struct cx25821_dev *dev);
extern void cx25821_stop_upstream_video(struct cx25821_channel *chan);
extern void cx25821_stop_upstream_audio(struct cx25821_dev *dev);
extern int cx25821_sram_channel_setup_upstream(struct cx25821_dev *dev,
const struct sram_channel *ch,
unsigned int bpl, u32 risc);
extern void cx25821_set_pixel_format(struct cx25821_dev *dev, int channel,
u32 format);