Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6

This commit is contained in:
David S. Miller 2011-01-24 13:17:06 -08:00
commit e92427b289
4863 changed files with 260526 additions and 112850 deletions

View File

@ -2811,8 +2811,8 @@ D: CDROM driver "sonycd535" (Sony CDU-535/531)
N: Stelian Pop
E: stelian@popies.net
P: 1024D/EDBB6147 7B36 0E07 04BC 11DC A7A0 D3F7 7185 9E7A EDBB 6147
D: sonypi, meye drivers, mct_u232 usb serial hacks
S: Paris, France
D: random kernel hacks
S: Paimpont, France
N: Pete Popov
E: pete_popov@yahoo.com

View File

@ -0,0 +1,4 @@
What: A notification mechanism for thermal related events
Description:
This interface enables notification for thermal related events.
The notification is in the form of a netlink event.

View File

@ -26,3 +26,12 @@ Description:
scheduler is chosen. Trigger specific parameters can appear in
/sys/class/leds/<led> once a given trigger is selected.
What: /sys/class/leds/<led>/inverted
Date: January 2011
KernelVersion: 2.6.38
Contact: Richard Purdie <rpurdie@rpsys.net>
Description:
Invert the LED on/off state. This parameter is specific to
gpio and backlight triggers. In case of the backlight trigger,
it is usefull when driving a LED which is intended to indicate
a device in a standby like state.

View File

@ -1,4 +1,4 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_dpi
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/actual_dpi
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: It is possible to switch the dpi setting of the mouse with the
@ -17,13 +17,13 @@ Description: It is possible to switch the dpi setting of the mouse with the
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_profile
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/actual_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/firmware_version
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/firmware_version
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the raw integer version number of the
@ -33,7 +33,7 @@ Description: When read, this file returns the raw integer version number of the
left. E.g. a returned value of 138 means 1.38
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/profile[1-5]
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
@ -48,7 +48,7 @@ Description: The mouse can store 5 profiles which can be switched by the
stored in the profile doesn't need to fit the number of the
store.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/settings
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/settings
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the settings stored in the mouse.
@ -58,7 +58,7 @@ Description: When read, this file returns the settings stored in the mouse.
The data has to be 36 bytes long. The mouse will reject invalid
data.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/startup_profile
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/startup_profile
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 1 to 5.
@ -67,7 +67,7 @@ Description: The integer value of this attribute ranges from 1 to 5.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/tcu
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/tcu
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse has a "Tracking Control Unit" which lets the user
@ -78,7 +78,7 @@ Description: The mouse has a "Tracking Control Unit" which lets the user
Writing 1 in this file will start the calibration which takes
around 6 seconds to complete and activates the TCU.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/weight
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/weight
Date: March 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can be equipped with one of four supplied weights

View File

@ -0,0 +1,108 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/actual_profile
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile in
range 0-4.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/firmware_version
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the raw integer version number of the
firmware reported by the mouse. Using the integer value eases
further usage in other programs. To receive the real version
number the decimal point has to be shifted 2 positions to the
left. E.g. a returned value of 121 means 1.21
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/macro
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store a macro with max 500 key/button strokes
internally.
When written, this file lets one set the sequence for a specific
button for a specific profile. Button and profile numbers are
included in written data. The data has to be 2082 bytes long.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile_buttons
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile is split in settings and buttons.
profile_buttons holds informations about button layout.
When written, this file lets one write the respective profile
buttons back to the mouse. The data has to be 77 bytes long.
The mouse will reject invalid data.
Which profile to write is determined by the profile number
contained in the data.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile[1-5]_buttons
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile is split in settings and buttons.
profile_buttons holds informations about button layout.
When read, these files return the respective profile buttons.
The returned data is 77 bytes in size.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile_settings
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile is split in settings and buttons.
profile_settings holds informations like resolution, sensitivity
and light effects.
When written, this file lets one write the respective profile
settings back to the mouse. The data has to be 43 bytes long.
The mouse will reject invalid data.
Which profile to write is determined by the profile number
contained in the data.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile[1-5]_settings
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
press of a button. A profile is split in settings and buttons.
profile_settings holds informations like resolution, sensitivity
and light effects.
When read, these files return the respective profile settings.
The returned data is 43 bytes in size.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/sensor
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse has a tracking- and a distance-control-unit. These
can be activated/deactivated and the lift-off distance can be
set. The data has to be 6 bytes long.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/startup_profile
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 0-4.
When read, this attribute returns the number of the profile
that's active when the mouse is powered on.
When written, this file sets the number of the startup profile
and the mouse activates this profile immediately.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When written a calibration process for the tracking control unit
can be initiated/cancelled.
The data has to be 3 bytes long.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu_image
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read the mouse returns a 30x30 pixel image of the
sampled underground. This works only in the course of a
calibration process initiated with tcu.
The returned data is 1028 bytes in size.
This file is readonly.

View File

@ -1,4 +1,4 @@
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_cpi
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/actual_cpi
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: It is possible to switch the cpi setting of the mouse with the
@ -14,14 +14,14 @@ Description: It is possible to switch the cpi setting of the mouse with the
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/actual_profile
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/actual_profile
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the number of the actual profile in
range 0-4.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/firmware_version
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/firmware_version
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the raw integer version number of the
@ -31,7 +31,7 @@ Description: When read, this file returns the raw integer version number of the
left. E.g. a returned value of 138 means 1.38
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile_settings
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile_settings
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
@ -45,7 +45,7 @@ Description: The mouse can store 5 profiles which can be switched by the
contained in the data.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]_settings
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile[1-5]_settings
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
@ -56,7 +56,7 @@ Description: The mouse can store 5 profiles which can be switched by the
The returned data is 13 bytes in size.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile_buttons
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile_buttons
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
@ -69,7 +69,7 @@ Description: The mouse can store 5 profiles which can be switched by the
contained in the data.
This file is writeonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/profile[1-5]_buttons
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile[1-5]_buttons
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The mouse can store 5 profiles which can be switched by the
@ -79,7 +79,7 @@ Description: The mouse can store 5 profiles which can be switched by the
The returned data is 19 bytes in size.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/startup_profile
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/startup_profile
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: The integer value of this attribute ranges from 0-4.
@ -87,7 +87,7 @@ Description: The integer value of this attribute ranges from 0-4.
that's active when the mouse is powered on.
This file is readonly.
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/settings
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/settings
Date: August 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
Description: When read, this file returns the settings stored in the mouse.

View File

@ -0,0 +1,6 @@
What: /sys/devices/platform/ideapad/camera_power
Date: Dec 2010
KernelVersion: 2.6.37
Contact: "Ike Panhc <ike.pan@canonical.com>"
Description:
Control the power of camera module. 1 means on, 0 means off.

View File

@ -217,8 +217,8 @@ X!Isound/sound_firmware.c
<chapter id="uart16x50">
<title>16x50 UART Driver</title>
!Iinclude/linux/serial_core.h
!Edrivers/serial/serial_core.c
!Edrivers/serial/8250.c
!Edrivers/tty/serial/serial_core.c
!Edrivers/tty/serial/8250.c
</chapter>
<chapter id="fbdev">

View File

@ -28,7 +28,7 @@
<holder>Convergence GmbH</holder>
</copyright>
<copyright>
<year>2009-2010</year>
<year>2009-2011</year>
<holder>Mauro Carvalho Chehab</holder>
</copyright>

View File

@ -28,7 +28,7 @@
<title>LINUX MEDIA INFRASTRUCTURE API</title>
<copyright>
<year>2009-2010</year>
<year>2009-2011</year>
<holder>LinuxTV Developers</holder>
</copyright>
@ -86,7 +86,7 @@ Foundation. A copy of the license is included in the chapter entitled
</author>
</authorgroup>
<copyright>
<year>2009-2010</year>
<year>2009-2011</year>
<holder>Mauro Carvalho Chehab</holder>
</copyright>

View File

@ -250,7 +250,7 @@ static void board_hwcontrol(struct mtd_info *mtd, int cmd)
<title>Device ready function</title>
<para>
If the hardware interface has the ready busy pin of the NAND chip connected to a
GPIO or other accesible I/O pin, this function is used to read back the state of the
GPIO or other accessible I/O pin, this function is used to read back the state of the
pin. The function has no arguments and should return 0, if the device is busy (R/B pin
is low) and 1, if the device is ready (R/B pin is high).
If the hardware interface does not give access to the ready busy pin, then

View File

@ -75,6 +75,7 @@ as follows:</para>
</section>
<section>
<title>RDS datastructures</title>
<table frame="none" pgwide="1" id="v4l2-rds-data">
<title>struct
<structname>v4l2_rds_data</structname></title>
@ -129,10 +130,11 @@ as follows:</para>
<table frame="none" pgwide="1" id="v4l2-rds-block-codes">
<title>Block defines</title>
<tgroup cols="3">
<tgroup cols="4">
<colspec colname="c1" colwidth="1*" />
<colspec colname="c2" colwidth="1*" />
<colspec colname="c3" colwidth="5*" />
<colspec colname="c3" colwidth="1*" />
<colspec colname="c4" colwidth="5*" />
<tbody valign="top">
<row>
<entry>V4L2_RDS_BLOCK_MSK</entry>

View File

@ -100,6 +100,7 @@ Remote Controller chapter.</contrib>
<year>2008</year>
<year>2009</year>
<year>2010</year>
<year>2011</year>
<holder>Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin
Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab</holder>
</copyright>
@ -381,7 +382,7 @@ and discussions on the V4L mailing list.</revremark>
</partinfo>
<title>Video for Linux Two API Specification</title>
<subtitle>Revision 2.6.33</subtitle>
<subtitle>Revision 2.6.38</subtitle>
<chapter id="common">
&sub-common;

View File

@ -533,6 +533,33 @@ completion during sending a panic event.
Other Pieces
------------
Get the detailed info related with the IPMI device
--------------------------------------------------
Some users need more detailed information about a device, like where
the address came from or the raw base device for the IPMI interface.
You can use the IPMI smi_watcher to catch the IPMI interfaces as they
come or go, and to grab the information, you can use the function
ipmi_get_smi_info(), which returns the following structure:
struct ipmi_smi_info {
enum ipmi_addr_src addr_src;
struct device *dev;
union {
struct {
void *acpi_handle;
} acpi_info;
} addr_info;
};
Currently special info for only for SI_ACPI address sources is
returned. Others may be added as necessary.
Note that the dev pointer is included in the above structure, and
assuming ipmi_smi_get_info returns success, you must call put_device
on the dev pointer.
Watchdog
--------

View File

@ -0,0 +1,122 @@
APEI output format
~~~~~~~~~~~~~~~~~~
APEI uses printk as hardware error reporting interface, the output
format is as follow.
<error record> :=
APEI generic hardware error status
severity: <integer>, <severity string>
section: <integer>, severity: <integer>, <severity string>
flags: <integer>
<section flags strings>
fru_id: <uuid string>
fru_text: <string>
section_type: <section type string>
<section data>
<severity string>* := recoverable | fatal | corrected | info
<section flags strings># :=
[primary][, containment warning][, reset][, threshold exceeded]\
[, resource not accessible][, latent error]
<section type string> := generic processor error | memory error | \
PCIe error | unknown, <uuid string>
<section data> :=
<generic processor section data> | <memory section data> | \
<pcie section data> | <null>
<generic processor section data> :=
[processor_type: <integer>, <proc type string>]
[processor_isa: <integer>, <proc isa string>]
[error_type: <integer>
<proc error type strings>]
[operation: <integer>, <proc operation string>]
[flags: <integer>
<proc flags strings>]
[level: <integer>]
[version_info: <integer>]
[processor_id: <integer>]
[target_address: <integer>]
[requestor_id: <integer>]
[responder_id: <integer>]
[IP: <integer>]
<proc type string>* := IA32/X64 | IA64
<proc isa string>* := IA32 | IA64 | X64
<processor error type strings># :=
[cache error][, TLB error][, bus error][, micro-architectural error]
<proc operation string>* := unknown or generic | data read | data write | \
instruction execution
<proc flags strings># :=
[restartable][, precise IP][, overflow][, corrected]
<memory section data> :=
[error_status: <integer>]
[physical_address: <integer>]
[physical_address_mask: <integer>]
[node: <integer>]
[card: <integer>]
[module: <integer>]
[bank: <integer>]
[device: <integer>]
[row: <integer>]
[column: <integer>]
[bit_position: <integer>]
[requestor_id: <integer>]
[responder_id: <integer>]
[target_id: <integer>]
[error_type: <integer>, <mem error type string>]
<mem error type string>* :=
unknown | no error | single-bit ECC | multi-bit ECC | \
single-symbol chipkill ECC | multi-symbol chipkill ECC | master abort | \
target abort | parity error | watchdog timeout | invalid address | \
mirror Broken | memory sparing | scrub corrected error | \
scrub uncorrected error
<pcie section data> :=
[port_type: <integer>, <pcie port type string>]
[version: <integer>.<integer>]
[command: <integer>, status: <integer>]
[device_id: <integer>:<integer>:<integer>.<integer>
slot: <integer>
secondary_bus: <integer>
vendor_id: <integer>, device_id: <integer>
class_code: <integer>]
[serial number: <integer>, <integer>]
[bridge: secondary_status: <integer>, control: <integer>]
<pcie port type string>* := PCIe end point | legacy PCI end point | \
unknown | unknown | root port | upstream switch port | \
downstream switch port | PCIe to PCI/PCI-X bridge | \
PCI/PCI-X to PCIe bridge | root complex integrated endpoint device | \
root complex event collector
Where, [] designate corresponding content is optional
All <field string> description with * has the following format:
field: <integer>, <field string>
Where value of <integer> should be the position of "string" in <field
string> description. Otherwise, <field string> will be "unknown".
All <field strings> description with # has the following format:
field: <integer>
<field strings>
Where each string in <fields strings> corresponding to one set bit of
<integer>. The bit position is the position of "string" in <field
strings> description.
For more detailed explanation of every field, please refer to UEFI
specification version 2.3 or later, section Appendix N: Common
Platform Error Record.

View File

@ -89,6 +89,33 @@ Throttling/Upper Limit policy
Limits for writes can be put using blkio.write_bps_device file.
Hierarchical Cgroups
====================
- Currently none of the IO control policy supports hierarhical groups. But
cgroup interface does allow creation of hierarhical cgroups and internally
IO policies treat them as flat hierarchy.
So this patch will allow creation of cgroup hierarhcy but at the backend
everything will be treated as flat. So if somebody created a hierarchy like
as follows.
root
/ \
test1 test2
|
test3
CFQ and throttling will practically treat all groups at same level.
pivot
/ | \ \
root test1 test2 test3
Down the line we can implement hierarchical accounting/control support
and also introduce a new cgroup file "use_hierarchy" which will control
whether cgroup hierarchy is viewed as flat or hierarchical by the policy..
This is how memory controller also has implemented the things.
Various user visible config options
===================================
CONFIG_BLK_CGROUP

View File

@ -91,7 +91,7 @@ int main(int argc, char **argv)
if (ret == -1) {
perror("cgroup.event_control "
"is not accessable any more");
"is not accessible any more");
break;
}

View File

@ -355,13 +355,13 @@ subsystems, type:
To change the set of subsystems bound to a mounted hierarchy, just
remount with different options:
# mount -o remount,cpuset,ns hier1 /dev/cgroup
# mount -o remount,cpuset,blkio hier1 /dev/cgroup
Now memory is removed from the hierarchy and ns is added.
Now memory is removed from the hierarchy and blkio is added.
Note this will add ns to the hierarchy but won't remove memory or
Note this will add blkio to the hierarchy but won't remove memory or
cpuset, because the new options are appended to the old ones:
# mount -o remount,ns /dev/cgroup
# mount -o remount,blkio /dev/cgroup
To Specify a hierarchy's release_agent:
# mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \

View File

@ -398,7 +398,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
written to move_charge_at_immigrate.
9.10 Memory thresholds
Memory controler implements memory thresholds using cgroups notification
Memory controller implements memory thresholds using cgroups notification
API. You can use Documentation/cgroups/cgroup_event_listener.c to test
it.

View File

@ -36,6 +36,10 @@ as a regular user, and install it with
sudo make install
The semantic patches in the kernel will work best with Coccinelle version
0.2.4 or later. Using earlier versions may incur some parse errors in the
semantic patch code, but any results that are obtained should still be
correct.
Using Coccinelle on the Linux kernel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -8,7 +8,7 @@ Parameters: <cipher> <key> <iv_offset> <device path> <offset>
<cipher>
Encryption cipher and an optional IV generation mode.
(In format cipher-chainmode-ivopts:ivmode).
(In format cipher[:keycount]-chainmode-ivopts:ivmode).
Examples:
des
aes-cbc-essiv:sha256
@ -20,6 +20,11 @@ Parameters: <cipher> <key> <iv_offset> <device path> <offset>
Key used for encryption. It is encoded as a hexadecimal number.
You can only use key sizes that are valid for the selected cipher.
<keycount>
Multi-key compatibility mode. You can define <keycount> keys and
then sectors are encrypted according to their offsets (sector 0 uses key0;
sector 1 uses key1 etc.). <keycount> must be a power of two.
<iv_offset>
The IV offset is a sector count that is added to the sector number
before creating the IV.

View File

@ -0,0 +1,70 @@
Device-mapper RAID (dm-raid) is a bridge from DM to MD. It
provides a way to use device-mapper interfaces to access the MD RAID
drivers.
As with all device-mapper targets, the nominal public interfaces are the
constructor (CTR) tables and the status outputs (both STATUSTYPE_INFO
and STATUSTYPE_TABLE). The CTR table looks like the following:
1: <s> <l> raid \
2: <raid_type> <#raid_params> <raid_params> \
3: <#raid_devs> <meta_dev1> <dev1> .. <meta_devN> <devN>
Line 1 contains the standard first three arguments to any device-mapper
target - the start, length, and target type fields. The target type in
this case is "raid".
Line 2 contains the arguments that define the particular raid
type/personality/level, the required arguments for that raid type, and
any optional arguments. Possible raid types include: raid4, raid5_la,
raid5_ls, raid5_rs, raid6_zr, raid6_nr, and raid6_nc. (raid1 is
planned for the future.) The list of required and optional parameters
is the same for all the current raid types. The required parameters are
positional, while the optional parameters are given as key/value pairs.
The possible parameters are as follows:
<chunk_size> Chunk size in sectors.
[[no]sync] Force/Prevent RAID initialization
[rebuild <idx>] Rebuild the drive indicated by the index
[daemon_sleep <ms>] Time between bitmap daemon work to clear bits
[min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_write_behind <sectors>] See '-write-behind=' (man mdadm)
[stripe_cache <sectors>] Stripe cache size for higher RAIDs
Line 3 contains the list of devices that compose the array in
metadata/data device pairs. If the metadata is stored separately, a '-'
is given for the metadata device position. If a drive has failed or is
missing at creation time, a '-' can be given for both the metadata and
data drives for a given position.
NB. Currently all metadata devices must be specified as '-'.
Examples:
# RAID4 - 4 data drives, 1 parity
# No metadata devices specified to hold superblock/bitmap info
# Chunk size of 1MiB
# (Lines separated for easy reading)
0 1960893648 raid \
raid4 1 2048 \
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
# RAID4 - 4 data drives, 1 parity (no metadata devices)
# Chunk size of 1MiB, force RAID initialization,
# min recovery rate at 20 kiB/sec/disk
0 1960893648 raid \
raid4 4 2048 min_recovery_rate 20 sync\
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
Performing a 'dmsetup table' should display the CTR table used to
construct the mapping (with possible reordering of optional
parameters).
Performing a 'dmsetup status' will yield information on the state and
health of the array. The output is as follows:
1: <s> <l> raid \
2: <raid_type> <#devices> <1 health char for each dev> <resync_ratio>
Line 1 is standard DM output. Line 2 is best shown by example:
0 1960893648 raid raid4 5 AAAAA 2/490221568
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with recovery.

View File

@ -104,6 +104,13 @@ Then from the "Message" menu item, select insert file and choose your patch.
As an added bonus you can customise the message creation toolbar menu
and put the "insert file" icon there.
Make the the composer window wide enough so that no lines wrap. As of
KMail 1.13.5 (KDE 4.5.4), KMail will apply word wrapping when sending
the email if the lines wrap in the composer window. Having word wrapping
disabled in the Options menu isn't enough. Thus, if your patch has very
long lines, you must make the composer window very wide before sending
the email. See: https://bugs.kde.org/show_bug.cgi?id=174034
You can safely GPG sign attachments, but inlined text is preferred for
patches so do not GPG sign them. Signing patches that have been inserted
as inlined text will make them tricky to extract from their 7-bit encoding.
@ -179,26 +186,8 @@ Sylpheed (GUI)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thunderbird (GUI)
By default, thunderbird likes to mangle text, but there are ways to
coerce it into being nice.
- Under account settings, composition and addressing, uncheck "Compose
messages in HTML format".
- Edit your Thunderbird config settings to tell it not to wrap lines:
user_pref("mailnews.wraplength", 0);
- Edit your Thunderbird config settings so that it won't use format=flowed:
user_pref("mailnews.send_plaintext_flowed", false);
- You need to get Thunderbird into preformat mode:
. If you compose HTML messages by default, it's not too hard. Just select
"Preformat" from the drop-down box just under the subject line.
. If you compose in text by default, you have to tell it to compose a new
message in HTML (just as a one-off), and then force it from there back to
text, else it will wrap lines. To do this, use shift-click on the Write
icon to compose to get HTML compose mode, then select "Preformat" from
the drop-down box just under the subject line.
Thunderbird is an Outlook clone that likes to mangle text, but there are ways
to coerce it into behaving.
- Allows use of an external editor:
The easiest thing to do with Thunderbird and patches is to use an
@ -208,6 +197,27 @@ coerce it into being nice.
View->Toolbars->Customize... and finally just click on it when in the
Compose dialog.
To beat some sense out of the internal editor, do this:
- Under account settings, composition and addressing, uncheck "Compose
messages in HTML format".
- Edit your Thunderbird config settings so that it won't use format=flowed.
Go to "edit->preferences->advanced->config editor" to bring up the
thunderbird's registry editor, and set "mailnews.send_plaintext_flowed" to
"false".
- Enable "preformat" mode: Shft-click on the Write icon to bring up the HTML
composer, select "Preformat" from the drop-down box just under the subject
line, then close the message without saving. (This setting also applies to
the text composer, but the only control for it is in the HTML composer.)
- Install the "toggle wordwrap" extension. Download the file from:
https://addons.mozilla.org/thunderbird/addon/2351/
Then go to "tools->add ons", select "install" at the bottom of the screen,
and browse to where you saved the .xul file. This adds an "Enable
Wordwrap" entry under the Options menu of the message composer.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TkRat (GUI)

View File

@ -193,6 +193,20 @@ Why: /proc/<pid>/oom_adj allows userspace to influence the oom killer's
---------------------------
What: CS5535/CS5536 obsolete GPIO driver
When: June 2011
Files: drivers/staging/cs5535_gpio/*
Check: drivers/staging/cs5535_gpio/cs5535_gpio.c
Why: A newer driver replaces this; it is drivers/gpio/cs5535-gpio.c, and
integrates with the Linux GPIO subsystem. The old driver has been
moved to staging, and will be removed altogether around 2.6.40.
Please test the new driver, and ensure that the functionality you
need and any bugfixes from the old driver are available in the new
one.
Who: Andres Salomon <dilinger@queued.net>
--------------------------
What: remove EXPORT_SYMBOL(kernel_thread)
When: August 2006
Files: arch/*/kernel/*_ksyms.c
@ -234,6 +248,17 @@ Who: Zhang Rui <rui.zhang@intel.com>
---------------------------
What: CONFIG_ACPI_PROCFS_POWER
When: 2.6.39
Why: sysfs I/F for ACPI power devices, including AC and Battery,
has been working in upstream kenrel since 2.6.24, Sep 2007.
In 2.6.37, we make the sysfs I/F always built in and this option
disabled by default.
Remove this option and the ACPI power procfs interface in 2.6.39.
Who: Zhang Rui <rui.zhang@intel.com>
---------------------------
What: /proc/acpi/button
When: August 2007
Why: /proc/acpi/button has been replaced by events to the input layer
@ -332,14 +357,6 @@ Who: Dave Jones <davej@redhat.com>, Matthew Garrett <mjg@redhat.com>
-----------------------------
What: __do_IRQ all in one fits nothing interrupt handler
When: 2.6.32
Why: __do_IRQ was kept for easy migration to the type flow handlers.
More than two years of migration time is enough.
Who: Thomas Gleixner <tglx@linutronix.de>
-----------------------------
What: fakephp and associated sysfs files in /sys/bus/pci/slots/
When: 2011
Why: In 2.6.27, the semantics of /sys/bus/pci/slots was redefined to
@ -576,3 +593,13 @@ Why: The functions have been superceded by cancel_delayed_work_sync()
Who: Tejun Heo <tj@kernel.org>
----------------------------
What: Legacy, non-standard chassis intrusion detection interface.
When: June 2011
Why: The adm9240, w83792d and w83793 hardware monitoring drivers have
legacy interfaces for chassis intrusion detection. A standard
interface has been added to each driver, so the legacy interface
can be removed.
Who: Jean Delvare <khali@linux-fr.org>
----------------------------

View File

@ -19,6 +19,8 @@ prototypes:
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
struct vfsmount *(*d_automount)(struct path *path);
int (*d_manage)(struct dentry *, bool);
locking rules:
rename_lock ->d_lock may block rcu-walk
@ -29,6 +31,8 @@ d_delete: no yes no no
d_release: no no yes no
d_iput: no no yes no
d_dname: no no no no
d_automount: no no yes no
d_manage: no no yes (ref-walk) maybe
--------------------------- inode_operations ---------------------------
prototypes:
@ -56,7 +60,6 @@ ata *);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char *);
void (*truncate_range)(struct inode *, loff_t, loff_t);
long (*fallocate)(struct inode *inode, int mode, loff_t offset, loff_t len);
int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len);
locking rules:
@ -84,7 +87,6 @@ getxattr: no
listxattr: no
removexattr: yes
truncate_range: yes
fallocate: no
fiemap: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
@ -343,7 +345,6 @@ prototypes:
int (*fl_grant)(struct file_lock *, struct file_lock *, int);
void (*fl_release_private)(struct file_lock *);
void (*fl_break)(struct file_lock *); /* break_lease callback */
int (*fl_mylease)(struct file_lock *, struct file_lock *);
int (*fl_change)(struct file_lock **, int);
locking rules:
@ -353,7 +354,6 @@ fl_notify: yes no
fl_grant: no no
fl_release_private: maybe no
fl_break: yes no
fl_mylease: yes no
fl_change yes no
--------------------------- buffer_head -----------------------------------
@ -435,6 +435,7 @@ prototypes:
ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *,
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **);
long (*fallocate)(struct file *, int, loff_t, loff_t);
};
locking rules:

View File

@ -457,6 +457,9 @@ ChangeLog
Note, a technical ChangeLog aimed at kernel hackers is in fs/ntfs/ChangeLog.
2.1.30:
- Fix writev() (it kept writing the first segment over and over again
instead of moving onto subsequent segments).
2.1.29:
- Fix a deadlock when mounting read-write.
2.1.28:

View File

@ -365,8 +365,8 @@ must be done in the RCU callback.
[recommended]
vfs now tries to do path walking in "rcu-walk mode", which avoids
atomic operations and scalability hazards on dentries and inodes (see
Documentation/filesystems/path-walk.txt). d_hash and d_compare changes (above)
are examples of the changes required to support this. For more complex
Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
(above) are examples of the changes required to support this. For more complex
filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
no changes are required to the filesystem. However, this is costly and loses
the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
@ -383,5 +383,14 @@ Documentation/filesystems/vfs.txt for more details.
permission and check_acl are inode permission checks that are called
on many or all directory inodes on the way down a path walk (to check for
exec permission). These must now be rcu-walk aware (flags & IPERM_RCU). See
Documentation/filesystems/vfs.txt for more details.
exec permission). These must now be rcu-walk aware (flags & IPERM_FLAG_RCU).
See Documentation/filesystems/vfs.txt for more details.
--
[mandatory]
In ->fallocate() you must check the mode option passed in. If your
filesystem does not support hole punching (deallocating space in the middle of a
file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
so the i_size should not change when hole punching, even when puching the end of
a file off.

View File

@ -375,6 +375,7 @@ Anonymous: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 374 kB
The first of these lines shows the same information as is displayed for the
mapping in /proc/PID/maps. The remaining lines show the size of the mapping
@ -670,6 +671,8 @@ varies by architecture and compile options. The following is from a
> cat /proc/meminfo
The "Locked" indicates whether the mapping is locked in memory or not.
MemTotal: 16344972 kB
MemFree: 13634064 kB
@ -1320,6 +1323,10 @@ scaled linearly with /proc/<pid>/oom_score_adj.
Writing to /proc/<pid>/oom_score_adj or /proc/<pid>/oom_adj will change the
other with its scaled value.
The value of /proc/<pid>/oom_score_adj may be reduced no lower than the last
value set by a CAP_SYS_RESOURCE process. To reduce the value any lower
requires CAP_SYS_RESOURCE.
NOTICE: /proc/<pid>/oom_adj is deprecated and will be removed, please see
Documentation/feature-removal-schedule.txt.

View File

@ -415,7 +415,7 @@ otherwise noted.
permission: called by the VFS to check for access rights on a POSIX-like
filesystem.
May be called in rcu-walk mode (flags & IPERM_RCU). If in rcu-walk
May be called in rcu-walk mode (flags & IPERM_FLAG_RCU). If in rcu-walk
mode, the filesystem must check the permission without blocking or
storing to the inode.
@ -864,6 +864,8 @@ struct dentry_operations {
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)(struct dentry *, char *, int);
struct vfsmount *(*d_automount)(struct path *);
int (*d_manage)(struct dentry *, bool, bool);
};
d_revalidate: called when the VFS needs to revalidate a dentry. This
@ -930,6 +932,47 @@ struct dentry_operations {
at the end of the buffer, and returns a pointer to the first char.
dynamic_dname() helper function is provided to take care of this.
d_automount: called when an automount dentry is to be traversed (optional).
This should create a new VFS mount record and return the record to the
caller. The caller is supplied with a path parameter giving the
automount directory to describe the automount target and the parent
VFS mount record to provide inheritable mount parameters. NULL should
be returned if someone else managed to make the automount first. If
the vfsmount creation failed, then an error code should be returned.
If -EISDIR is returned, then the directory will be treated as an
ordinary directory and returned to pathwalk to continue walking.
If a vfsmount is returned, the caller will attempt to mount it on the
mountpoint and will remove the vfsmount from its expiration list in
the case of failure. The vfsmount should be returned with 2 refs on
it to prevent automatic expiration - the caller will clean up the
additional ref.
This function is only used if DCACHE_NEED_AUTOMOUNT is set on the
dentry. This is set by __d_instantiate() if S_AUTOMOUNT is set on the
inode being added.
d_manage: called to allow the filesystem to manage the transition from a
dentry (optional). This allows autofs, for example, to hold up clients
waiting to explore behind a 'mountpoint' whilst letting the daemon go
past and construct the subtree there. 0 should be returned to let the
calling process continue. -EISDIR can be returned to tell pathwalk to
use this directory as an ordinary directory and to ignore anything
mounted on it and not to check the automount flag. Any other error
code will abort pathwalk completely.
If the 'mounting_here' parameter is true, then namespace_sem is being
held by the caller and the function should not initiate any mounts or
unmounts that it will then wait for.
If the 'rcu_walk' parameter is true, then the caller is doing a
pathwalk in RCU-walk mode. Sleeping is not permitted in this mode,
and the caller can be asked to leave it and call again by returing
-ECHILD.
This function is only used if DCACHE_MANAGE_TRANSIT is set on the
dentry being transited from.
Example :
static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)

View File

@ -155,7 +155,7 @@ connected to a normally open switch.
The ADM9240 provides an internal open drain on this line, and may output
a 20 ms active low pulse to reset an external Chassis Intrusion latch.
Clear the CI latch by writing value 1 to the sysfs chassis_clear file.
Clear the CI latch by writing value 0 to the sysfs intrusion0_alarm file.
Alarm flags reported as 16-bit word

View File

@ -9,7 +9,7 @@ Supported chips:
http://focus.ti.com/lit/ds/symlink/ads7828.pdf
Authors:
Steve Hardy <steve@linuxrealtime.co.uk>
Steve Hardy <shardy@redhat.com>
Module Parameters
-----------------

View File

@ -42,7 +42,7 @@ Description
This driver implements support for the hardware monitoring capabilities of the
SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, SCH311x,
and SCH5127 Super-I/O chips. These chips feature monitoring of 3 temp sensors
temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and
temp[1-3] (2 remote diodes and 1 internal), 8 voltages in[0-7] (7 external and
1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
automatically.
@ -105,6 +105,7 @@ SCH5127:
in4: V1_IN 0V - 1.5V
in5: VTR (+3.3V standby) 0V - 4.38V
in6: Vbat (+3.0V) 0V - 4.38V
in7: Vtrip (+1.5V) 0V - 1.99V
Each voltage input has associated min and max limits which trigger an alarm
when crossed.
@ -217,10 +218,10 @@ cpu0_vid RO CPU core reference voltage in
vrm RW Voltage regulator module version
number.
in[0-6]_input RO Measured voltage in millivolts.
in[0-6]_min RW Low limit for voltage input.
in[0-6]_max RW High limit for voltage input.
in[0-6]_alarm RO Voltage input alarm. Returns 1 if
in[0-7]_input RO Measured voltage in millivolts.
in[0-7]_min RW Low limit for voltage input.
in[0-7]_max RW High limit for voltage input.
in[0-7]_alarm RO Voltage input alarm. Returns 1 if
voltage input is or went outside the
associated min-max range, 0 otherwise.
@ -324,3 +325,4 @@ fan5 opt opt
pwm5 opt opt
fan6 opt opt
pwm6 opt opt
in7 yes

34
Documentation/hwmon/ds620 Normal file
View File

@ -0,0 +1,34 @@
Kernel driver ds620
===================
Supported chips:
* Dallas Semiconductor DS620
Prefix: 'ds620'
Datasheet: Publicly available at the Dallas Semiconductor website
http://www.dalsemi.com/
Authors:
Roland Stigge <stigge@antcom.de>
based on ds1621.c by
Christian W. Zuckschwerdt <zany@triq.net>
Description
-----------
The DS620 is a (one instance) digital thermometer and thermostat. It has both
high and low temperature limits which can be user defined (i.e. programmed
into non-volatile on-chip registers). Temperature range is -55 degree Celsius
to +125. Between 0 and 70 degree Celsius, accuracy is 0.5 Kelvin. The value
returned via sysfs displays post decimal positions.
The thermostat function works as follows: When configured via platform_data
(struct ds620_platform_data) .pomode == 0 (default), the thermostat output pin
PO is always low. If .pomode == 1, the thermostat is in PO_LOW mode. I.e., the
output pin PO becomes active when the temperature falls below temp1_min and
stays active until the temperature goes above temp1_max.
Likewise, with .pomode == 2, the thermostat is in PO_HIGH mode. I.e., the PO
output pin becomes active when the temperature goes above temp1_max and stays
active until the temperature falls below temp1_min.
The PO output pin of the DS620 operates active-low.

View File

@ -6,6 +6,10 @@ Supported chips:
Prefix 'lm93'
Addresses scanned: I2C 0x2c-0x2e
Datasheet: http://www.national.com/ds.cgi/LM/LM93.pdf
* National Semiconductor LM94
Prefix 'lm94'
Addresses scanned: I2C 0x2c-0x2e
Datasheet: http://www.national.com/ds.cgi/LM/LM94.pdf
Authors:
Mark M. Hoffman <mhoffman@lightlink.com>
@ -56,6 +60,9 @@ previous motherboard management ASICs and uses some of the LM85's features
for dynamic Vccp monitoring and PROCHOT. It is designed to monitor a dual
processor Xeon class motherboard with a minimum of external components.
LM94 is also supported in LM93 compatible mode. Extra sensors and features of
LM94 are not supported.
User Interface
--------------

49
Documentation/hwmon/sht21 Normal file
View File

@ -0,0 +1,49 @@
Kernel driver sht21
===================
Supported chips:
* Sensirion SHT21
Prefix: 'sht21'
Addresses scanned: none
Datasheet: Publicly available at the Sensirion website
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-SHT21.pdf
* Sensirion SHT25
Prefix: 'sht21'
Addresses scanned: none
Datasheet: Publicly available at the Sensirion website
http://www.sensirion.com/en/pdf/product_information/Datasheet-humidity-sensor-SHT25.pdf
Author:
Urs Fleisch <urs.fleisch@sensirion.com>
Description
-----------
The SHT21 and SHT25 are humidity and temperature sensors in a DFN package of
only 3 x 3 mm footprint and 1.1 mm height. The difference between the two
devices is the higher level of precision of the SHT25 (1.8% relative humidity,
0.2 degree Celsius) compared with the SHT21 (2.0% relative humidity,
0.3 degree Celsius).
The devices communicate with the I2C protocol. All sensors are set to the same
I2C address 0x40, so an entry with I2C_BOARD_INFO("sht21", 0x40) can be used
in the board setup code.
sysfs-Interface
---------------
temp1_input - temperature input
humidity1_input - humidity input
Notes
-----
The driver uses the default resolution settings of 12 bit for humidity and 14
bit for temperature, which results in typical measurement times of 22 ms for
humidity and 66 ms for temperature. To keep self heating below 0.1 degree
Celsius, the device should not be active for more than 10% of the time,
e.g. maximum two measurements per second at the given resolution.
Different resolutions, the on-chip heater, using the CRC checksum and reading
the serial number are not supported yet.

View File

@ -384,10 +384,20 @@ curr[1-*]_min Current min value.
Unit: milliampere
RW
curr[1-*]_lcrit Current critical low value
Unit: milliampere
RW
curr[1-*]_crit Current critical high value.
Unit: milliampere
RW
curr[1-*]_input Current input value
Unit: milliampere
RO
Also see the Alarms section for status flags associated with currents.
*********
* Power *
*********
@ -450,13 +460,6 @@ power[1-*]_accuracy Accuracy of the power meter.
Unit: Percent
RO
power[1-*]_alarm 1 if the system is drawing more power than the
cap allows; 0 otherwise. A poll notification is
sent to this file when the power use exceeds the
cap. This file only appears if the cap is known
to be enforced by hardware.
RO
power[1-*]_cap If power use rises above this limit, the
system should take action to reduce power use.
A poll notification is sent to this file if the
@ -479,6 +482,20 @@ power[1-*]_cap_min Minimum cap that can be set.
Unit: microWatt
RO
power[1-*]_max Maximum power.
Unit: microWatt
RW
power[1-*]_crit Critical maximum power.
If power rises to or above this limit, the
system is expected take drastic action to reduce
power consumption, such as a system shutdown or
a forced powerdown of some devices.
Unit: microWatt
RW
Also see the Alarms section for status flags associated with power readings.
**********
* Energy *
**********
@ -488,6 +505,15 @@ energy[1-*]_input Cumulative energy use
RO
************
* Humidity *
************
humidity[1-*]_input Humidity
Unit: milli-percent (per cent mille, pcm)
RO
**********
* Alarms *
**********
@ -501,6 +527,7 @@ implementation.
in[0-*]_alarm
curr[1-*]_alarm
power[1-*]_alarm
fan[1-*]_alarm
temp[1-*]_alarm
Channel alarm
@ -512,12 +539,20 @@ OR
in[0-*]_min_alarm
in[0-*]_max_alarm
in[0-*]_lcrit_alarm
in[0-*]_crit_alarm
curr[1-*]_min_alarm
curr[1-*]_max_alarm
curr[1-*]_lcrit_alarm
curr[1-*]_crit_alarm
power[1-*]_cap_alarm
power[1-*]_max_alarm
power[1-*]_crit_alarm
fan[1-*]_min_alarm
fan[1-*]_max_alarm
temp[1-*]_min_alarm
temp[1-*]_max_alarm
temp[1-*]_lcrit_alarm
temp[1-*]_crit_alarm
temp[1-*]_emergency_alarm
Limit alarm

View File

@ -91,3 +91,25 @@ isaset -y -f 0x2e 0xaa
The above sequence assumes a Super-I/O config space at 0x2e/0x2f, but
0x4e/0x4f is also possible.
Voltage pin mapping
-------------------
Here is a summary of the voltage pin mapping for the W83627THF. This
can be useful to convert data provided by board manufacturers into
working libsensors configuration statements.
W83627THF |
Pin | Name | Register | Sysfs attribute
-----------------------------------------------------
100 | CPUVCORE | 20h | in0
99 | VIN0 | 21h | in1
98 | VIN1 | 22h | in2
97 | VIN2 | 24h | in4
114 | AVCC | 23h | in3
61 | 5VSB | 50h (bank 5) | in7
74 | VBAT | 51h (bank 5) | in8
For other supported devices, you'll have to take the hard path and
look up the information in the datasheet yourself (and then add it
to this document please.)

View File

@ -92,7 +92,7 @@ This driver implements support for Winbond W83793G/W83793R chips.
* Chassis
If the case open alarm triggers, it will stay in this state unless cleared
by any write to the sysfs file "chassis".
by writing 0 to the sysfs file "intrusion0_alarm".
* VID and VRM
The VRM version is detected automatically, don't modify the it unless you

View File

@ -0,0 +1,65 @@
Kernel driver gpio-i2cmux
Author: Peter Korsgaard <peter.korsgaard@barco.com>
Description
-----------
gpio-i2cmux is an i2c mux driver providing access to I2C bus segments
from a master I2C bus and a hardware MUX controlled through GPIO pins.
E.G.:
---------- ---------- Bus segment 1 - - - - -
| | SCL/SDA | |-------------- | |
| |------------| |
| | | | Bus segment 2 | |
| Linux | GPIO 1..N | MUX |--------------- Devices
| |------------| | | |
| | | | Bus segment M
| | | |---------------| |
---------- ---------- - - - - -
SCL/SDA of the master I2C bus is multiplexed to bus segment 1..M
according to the settings of the GPIO pins 1..N.
Usage
-----
gpio-i2cmux uses the platform bus, so you need to provide a struct
platform_device with the platform_data pointing to a struct
gpio_i2cmux_platform_data with the I2C adapter number of the master
bus, the number of bus segments to create and the GPIO pins used
to control it. See include/linux/gpio-i2cmux.h for details.
E.G. something like this for a MUX providing 4 bus segments
controlled through 3 GPIO pins:
#include <linux/gpio-i2cmux.h>
#include <linux/platform_device.h>
static const unsigned myboard_gpiomux_gpios[] = {
AT91_PIN_PC26, AT91_PIN_PC25, AT91_PIN_PC24
};
static const unsigned myboard_gpiomux_values[] = {
0, 1, 2, 3
};
static struct gpio_i2cmux_platform_data myboard_i2cmux_data = {
.parent = 1,
.base_nr = 2, /* optional */
.values = myboard_gpiomux_values,
.n_values = ARRAY_SIZE(myboard_gpiomux_values),
.gpios = myboard_gpiomux_gpios,
.n_gpios = ARRAY_SIZE(myboard_gpiomux_gpios),
.idle = 4, /* optional */
};
static struct platform_device myboard_i2cmux = {
.name = "gpio-i2cmux",
.id = 0,
.dev = {
.platform_data = &myboard_i2cmux_data,
},
};

View File

@ -49,7 +49,9 @@ This information is subject to change.
#include <linux/input.h>
#include <sys/ioctl.h>
unsigned long features[1 + FF_MAX/sizeof(unsigned long)];
#define BITS_TO_LONGS(x) \
(((x) + 8 * sizeof (unsigned long) - 1) / (8 * sizeof (unsigned long)))
unsigned long features[BITS_TO_LONGS(FF_CNT)];
int ioctl(int file_descriptor, int request, unsigned long *features);
"request" must be EVIOCGBIT(EV_FF, size of features array in bytes )

View File

@ -247,7 +247,7 @@ Code Seq#(hex) Include File Comments
'p' 40-7F linux/nvram.h
'p' 80-9F linux/ppdev.h user-space parport
<mailto:tim@cyberelk.net>
'p' A1-A4 linux/pps.h LinuxPPS
'p' A1-A5 linux/pps.h LinuxPPS
<mailto:giometti@linux.it>
'q' 00-1F linux/serio.h
'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK

View File

@ -81,7 +81,7 @@ Field 9 -- # of I/Os currently in progress
The only field that should go to zero. Incremented as requests are
given to appropriate struct request_queue and decremented as they finish.
Field 10 -- # of milliseconds spent doing I/Os
This field is increases so long as field 9 is nonzero.
This field increases so long as field 9 is nonzero.
Field 11 -- weighted # of milliseconds spent doing I/Os
This field is incremented at each I/O start, I/O completion, I/O
merge, or read of these stats by the number of I/Os in progress

View File

@ -73,6 +73,14 @@ Specify the output directory when building the kernel.
The output directory can also be specified using "O=...".
Setting "O=..." takes precedence over KBUILD_OUTPUT.
KBUILD_DEBARCH
--------------------------------------------------
For the deb-pkg target, allows overriding the normal heuristics deployed by
deb-pkg. Normally deb-pkg attempts to guess the right architecture based on
the UTS_MACHINE variable, and on some architectures also the kernel config.
The value of KBUILD_DEBARCH is assumed (not checked) to be a valid Debian
architecture.
ARCH
--------------------------------------------------
Set ARCH to the architecture to be built.

View File

@ -112,7 +112,6 @@ applicable everywhere (see syntax).
(no prompts anywhere) and for symbols with no dependencies.
That will limit the usefulness but on the other hand avoid
the illegal configurations all over.
kconfig should one day warn about such things.
- numerical ranges: "range" <symbol> <symbol> ["if" <expr>]
This allows to limit the range of possible input values for int
@ -268,7 +267,7 @@ separate list of options.
choices:
"choice"
"choice" [symbol]
<choice options>
<choice block>
"endchoice"
@ -282,6 +281,10 @@ single driver can be compiled/loaded into the kernel, but all drivers
can be compiled as modules.
A choice accepts another option "optional", which allows to set the
choice to 'n' and no entry needs to be selected.
If no [symbol] is associated with a choice, then you can not have multiple
definitions of that choice. If a [symbol] is associated to the choice,
then you may define the same choice (ie. with the same entries) in another
place.
comment:

View File

@ -1136,6 +1136,21 @@ When kbuild executes, the following steps are followed (roughly):
resulting in the target file being recompiled for no
obvious reason.
dtc
Create flattend device tree blob object suitable for linking
into vmlinux. Device tree blobs linked into vmlinux are placed
in an init section in the image. Platform code *must* copy the
blob to non-init memory prior to calling unflatten_device_tree().
Example:
#arch/x86/platform/ce4100/Makefile
clean-files := *dtb.S
DTC_FLAGS := -p 1024
obj-y += foo.dtb.o
$(obj)/%.dtb: $(src)/%.dts
$(call cmd,dtc)
--- 6.7 Custom kbuild commands

View File

@ -65,18 +65,21 @@ Install kexec-tools
2) Download the kexec-tools user-space package from the following URL:
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools.tar.gz
http://kernel.org/pub/linux/utils/kernel/kexec/kexec-tools.tar.gz
This is a symlink to the latest version.
The latest kexec-tools git tree is available at:
git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools.git
or
http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools.git
git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
and
http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
There is also a gitweb interface available at
http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
More information about kexec-tools can be found at
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/README.html
http://www.kernel.org/pub/linux/utils/kernel/kexec/README.html
3) Unpack the tarball with the tar command, as follows:
@ -439,6 +442,6 @@ To Do
Contact
=======
Vivek Goyal (vgoyal@in.ibm.com)
Vivek Goyal (vgoyal@redhat.com)
Maneesh Soni (maneesh@in.ibm.com)

View File

@ -199,11 +199,6 @@ and is between 256 and 4096 characters. It is defined in the file
unusable. The "log_buf_len" parameter may be useful
if you need to capture more output.
acpi_display_output= [HW,ACPI]
acpi_display_output=vendor
acpi_display_output=video
See above.
acpi_irq_balance [HW,ACPI]
ACPI will balance active IRQs
default in APIC mode
@ -403,6 +398,10 @@ and is between 256 and 4096 characters. It is defined in the file
bttv.pll= See Documentation/video4linux/bttv/Insmod-options
bttv.tuner= and Documentation/video4linux/bttv/CARDLIST
bulk_remove=off [PPC] This parameter disables the use of the pSeries
firmware feature for flushing multiple hpte entries
at a time.
c101= [NET] Moxa C101 synchronous serial card
cachesize= [BUGS=X86-32] Override level 2 CPU cache size detection.
@ -655,11 +654,6 @@ and is between 256 and 4096 characters. It is defined in the file
dscc4.setup= [NET]
dynamic_printk Enables pr_debug()/dev_dbg() calls if
CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled.
These can also be switched on/off via
<debugfs>/dynamic_printk/modules
earlycon= [KNL] Output early console device and options.
uart[8250],io,<addr>[,options]
uart[8250],mmio,<addr>[,options]
@ -884,6 +878,7 @@ and is between 256 and 4096 characters. It is defined in the file
controller
i8042.nopnp [HW] Don't use ACPIPnP / PnPBIOS to discover KBD/AUX
controllers
i8042.notimeout [HW] Ignore timeout condition signalled by conroller
i8042.reset [HW] Reset the controller during init and cleanup
i8042.unlock [HW] Unlock (ignore) the keylock
@ -1490,6 +1485,10 @@ and is between 256 and 4096 characters. It is defined in the file
mtdparts= [MTD]
See drivers/mtd/cmdlinepart.c.
multitce=off [PPC] This parameter disables the use of the pSeries
firmware feature for updating multiple TCE entries
at a time.
onenand.bdry= [HW,MTD] Flex-OneNAND Boundary Configuration
Format: [die0_boundary][,die0_lock][,die1_boundary][,die1_lock]
@ -1701,6 +1700,9 @@ and is between 256 and 4096 characters. It is defined in the file
no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver
no-kvmapf [X86,KVM] Disable paravirtualized asynchronous page
fault handling.
nolapic [X86-32,APIC] Do not enable or use the local APIC.
nolapic_timer [X86-32,APIC] Do not use the local APIC timer.

View File

@ -0,0 +1,145 @@
Trusted and Encrypted Keys
Trusted and Encrypted Keys are two new key types added to the existing kernel
key ring service. Both of these new types are variable length symmetic keys,
and in both cases all keys are created in the kernel, and user space sees,
stores, and loads only encrypted blobs. Trusted Keys require the availability
of a Trusted Platform Module (TPM) chip for greater security, while Encrypted
Keys can be used on any system. All user level blobs, are displayed and loaded
in hex ascii for convenience, and are integrity verified.
Trusted Keys use a TPM both to generate and to seal the keys. Keys are sealed
under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR
(integrity measurement) values, and only unsealed by the TPM, if PCRs and blob
integrity verifications match. A loaded Trusted Key can be updated with new
(future) PCR values, so keys are easily migrated to new pcr values, such as
when the kernel and initramfs are updated. The same key can have many saved
blobs under different PCR values, so multiple boots are easily supported.
By default, trusted keys are sealed under the SRK, which has the default
authorization value (20 zeros). This can be set at takeownership time with the
trouser's utility: "tpm_takeownership -u -z".
Usage:
keyctl add trusted name "new keylen [options]" ring
keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
keyctl update key "update [options]"
keyctl print keyid
options:
keyhandle= ascii hex value of sealing key default 0x40000000 (SRK)
keyauth= ascii hex auth for sealing key default 0x00...i
(40 ascii zeros)
blobauth= ascii hex auth for sealed data default 0x00...
(40 ascii zeros)
blobauth= ascii hex auth for sealed data default 0x00...
(40 ascii zeros)
pcrinfo= ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
pcrlock= pcr number to be extended to "lock" blob
migratable= 0|1 indicating permission to reseal to new PCR values,
default 1 (resealing allowed)
"keyctl print" returns an ascii hex copy of the sealed key, which is in standard
TPM_STORED_DATA format. The key length for new keys are always in bytes.
Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit
within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.
Encrypted keys do not depend on a TPM, and are faster, as they use AES for
encryption/decryption. New keys are created from kernel generated random
numbers, and are encrypted/decrypted using a specified 'master' key. The
'master' key can either be a trusted-key or user-key type. The main
disadvantage of encrypted keys is that if they are not rooted in a trusted key,
they are only as secure as the user key encrypting them. The master user key
should therefore be loaded in as secure a way as possible, preferably early in
boot.
Usage:
keyctl add encrypted name "new key-type:master-key-name keylen" ring
keyctl add encrypted name "load hex_blob" ring
keyctl update keyid "update key-type:master-key-name"
where 'key-type' is either 'trusted' or 'user'.
Examples of trusted and encrypted key usage:
Create and save a trusted key named "kmk" of length 32 bytes:
$ keyctl add trusted kmk "new 32" @u
440502848
$ keyctl show
Session Keyring
-3 --alswrv 500 500 keyring: _ses
97833714 --alswrv 500 -1 \_ keyring: _uid.500
440502848 --alswrv 500 500 \_ trusted: kmk
$ keyctl print 440502848
0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
e4a8aea2b607ec96931e6f4d4fe563ba
$ keyctl pipe 440502848 > kmk.blob
Load a trusted key from the saved blob:
$ keyctl add trusted kmk "load `cat kmk.blob`" @u
268728824
$ keyctl print 268728824
0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
e4a8aea2b607ec96931e6f4d4fe563ba
Reseal a trusted key under new pcr values:
$ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
$ keyctl print 268728824
010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
Create and save an encrypted key "evm" using the above trusted key "kmk":
$ keyctl add encrypted evm "new trusted:kmk 32" @u
159771175
$ keyctl print 159771175
trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
5972dcb82ab2dde83376d82b2e3c09ffc
$ keyctl pipe 159771175 > evm.blob
Load an encrypted key "evm" from saved blob:
$ keyctl add encrypted evm "load `cat evm.blob`" @u
831684262
$ keyctl print 831684262
trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
5972dcb82ab2dde83376d82b2e3c09ffc
The initial consumer of trusted keys is EVM, which at boot time needs a high
quality symmetric key for HMAC protection of file metadata. The use of a
trusted key provides strong guarantees that the EVM key has not been
compromised by a user level problem, and when sealed to specific boot PCR
values, protects against boot and offline attacks. Other uses for trusted and
encrypted keys, such as for disk and file encryption are anticipated.

View File

@ -391,8 +391,8 @@ bugme-new 메일링 리스트나(새로운 버그 리포트들만이 이곳에
bugme-janitor 메일링 리스트(bugzilla에 모든 변화들이 여기서 메일로 전해진다)
에 등록하면 된다.
http://lists.osdl.org/mailman/listinfo/bugme-new
http://lists.osdl.org/mailman/listinfo/bugme-janitors
https://lists.linux-foundation.org/mailman/listinfo/bugme-new
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors

View File

@ -598,7 +598,7 @@ a 5-byte jump instruction. So there are several limitations.
a) The instructions in DCR must be relocatable.
b) The instructions in DCR must not include a call instruction.
c) JTPR must not be targeted by any jump or call instruction.
d) DCR must not straddle the border betweeen functions.
d) DCR must not straddle the border between functions.
Anyway, these limitations are checked by the in-kernel instruction
decoder, so you don't need to worry about that.

View File

@ -874,7 +874,7 @@ Possible values are:
- KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
is waiting for an interrupt
- KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
accesible via KVM_GET_VCPU_EVENTS)
accessible via KVM_GET_VCPU_EVENTS)
This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
irqchip, the multiprocessing state must be maintained by userspace.
@ -1085,6 +1085,184 @@ of 4 instructions that make up a hypercall.
If any additional field gets added to this structure later on, a bit for that
additional piece of information will be set in the flags bitmap.
4.47 KVM_ASSIGN_PCI_DEVICE
Capability: KVM_CAP_DEVICE_ASSIGNMENT
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_pci_dev (in)
Returns: 0 on success, -1 on error
Assigns a host PCI device to the VM.
struct kvm_assigned_pci_dev {
__u32 assigned_dev_id;
__u32 busnr;
__u32 devfn;
__u32 flags;
__u32 segnr;
union {
__u32 reserved[11];
};
};
The PCI device is specified by the triple segnr, busnr, and devfn.
Identification in succeeding service requests is done via assigned_dev_id. The
following flags are specified:
/* Depends on KVM_CAP_IOMMU */
#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
4.48 KVM_DEASSIGN_PCI_DEVICE
Capability: KVM_CAP_DEVICE_DEASSIGNMENT
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_pci_dev (in)
Returns: 0 on success, -1 on error
Ends PCI device assignment, releasing all associated resources.
See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
used in kvm_assigned_pci_dev to identify the device.
4.49 KVM_ASSIGN_DEV_IRQ
Capability: KVM_CAP_ASSIGN_DEV_IRQ
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_irq (in)
Returns: 0 on success, -1 on error
Assigns an IRQ to a passed-through device.
struct kvm_assigned_irq {
__u32 assigned_dev_id;
__u32 host_irq;
__u32 guest_irq;
__u32 flags;
union {
struct {
__u32 addr_lo;
__u32 addr_hi;
__u32 data;
} guest_msi;
__u32 reserved[12];
};
};
The following flags are defined:
#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
It is not valid to specify multiple types per host or guest IRQ. However, the
IRQ type of host and guest can differ or can even be null.
4.50 KVM_DEASSIGN_DEV_IRQ
Capability: KVM_CAP_ASSIGN_DEV_IRQ
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_irq (in)
Returns: 0 on success, -1 on error
Ends an IRQ assignment to a passed-through device.
See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
by assigned_dev_id, flags must correspond to the IRQ type specified on
KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
4.51 KVM_SET_GSI_ROUTING
Capability: KVM_CAP_IRQ_ROUTING
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_irq_routing (in)
Returns: 0 on success, -1 on error
Sets the GSI routing table entries, overwriting any previously set entries.
struct kvm_irq_routing {
__u32 nr;
__u32 flags;
struct kvm_irq_routing_entry entries[0];
};
No flags are specified so far, the corresponding field must be set to zero.
struct kvm_irq_routing_entry {
__u32 gsi;
__u32 type;
__u32 flags;
__u32 pad;
union {
struct kvm_irq_routing_irqchip irqchip;
struct kvm_irq_routing_msi msi;
__u32 pad[8];
} u;
};
/* gsi routing entry types */
#define KVM_IRQ_ROUTING_IRQCHIP 1
#define KVM_IRQ_ROUTING_MSI 2
No flags are specified so far, the corresponding field must be set to zero.
struct kvm_irq_routing_irqchip {
__u32 irqchip;
__u32 pin;
};
struct kvm_irq_routing_msi {
__u32 address_lo;
__u32 address_hi;
__u32 data;
__u32 pad;
};
4.52 KVM_ASSIGN_SET_MSIX_NR
Capability: KVM_CAP_DEVICE_MSIX
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_msix_nr (in)
Returns: 0 on success, -1 on error
Set the number of MSI-X interrupts for an assigned device. This service can
only be called once in the lifetime of an assigned device.
struct kvm_assigned_msix_nr {
__u32 assigned_dev_id;
__u16 entry_nr;
__u16 padding;
};
#define KVM_MAX_MSIX_PER_DEV 256
4.53 KVM_ASSIGN_SET_MSIX_ENTRY
Capability: KVM_CAP_DEVICE_MSIX
Architectures: x86 ia64
Type: vm ioctl
Parameters: struct kvm_assigned_msix_entry (in)
Returns: 0 on success, -1 on error
Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
the GSI vector to zero means disabling the interrupt.
struct kvm_assigned_msix_entry {
__u32 assigned_dev_id;
__u32 gsi;
__u16 entry; /* The index of entry in the MSI-X table */
__u16 padding[3];
};
5. The kvm_run structure
Application code obtains a pointer to the kvm_run structure by

View File

@ -36,6 +36,9 @@ KVM_FEATURE_MMU_OP || 2 || deprecated.
KVM_FEATURE_CLOCKSOURCE2 || 3 || kvmclock available at msrs
|| || 0x4b564d00 and 0x4b564d01
------------------------------------------------------------------------------
KVM_FEATURE_ASYNC_PF || 4 || async pf can be enabled by
|| || writing to msr 0x4b564d02
------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE_STABLE_BIT || 24 || host will warn if no guest-side
|| || per-cpu warps are expected in
|| || kvmclock.

View File

@ -3,7 +3,6 @@ Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010
=====================================================
KVM makes use of some custom MSRs to service some requests.
At present, this facility is only used by kvmclock.
Custom MSRs have a range reserved for them, that goes from
0x4b564d00 to 0x4b564dff. There are MSRs outside this area,
@ -151,3 +150,38 @@ MSR_KVM_SYSTEM_TIME: 0x12
return PRESENT;
} else
return NON_PRESENT;
MSR_KVM_ASYNC_PF_EN: 0x4b564d02
data: Bits 63-6 hold 64-byte aligned physical address of a
64 byte memory area which must be in guest RAM and must be
zeroed. Bits 5-2 are reserved and should be zero. Bit 0 is 1
when asynchronous page faults are enabled on the vcpu 0 when
disabled. Bit 2 is 1 if asynchronous page faults can be injected
when vcpu is in cpl == 0.
First 4 byte of 64 byte memory location will be written to by
the hypervisor at the time of asynchronous page fault (APF)
injection to indicate type of asynchronous page fault. Value
of 1 means that the page referred to by the page fault is not
present. Value 2 means that the page is now available. Disabling
interrupt inhibits APFs. Guest must not enable interrupt
before the reason is read, or it may be overwritten by another
APF. Since APF uses the same exception vector as regular page
fault guest must reset the reason to 0 before it does
something that can generate normal page fault. If during page
fault APF reason is 0 it means that this is regular page
fault.
During delivery of type 1 APF cr2 contains a token that will
be used to notify a guest when missing page becomes
available. When page becomes available type 2 APF is sent with
cr2 set to the token associated with the page. There is special
kind of token 0xffffffff which tells vcpu that it should wake
up all processes waiting for APFs and no individual type 2 APFs
will be sent.
If APF is disabled while there are outstanding APFs, they will
not be delivered.
Currently type 2 APF will be always delivered on the same vcpu as
type 1 was, but guest should not rely on that.

View File

@ -39,6 +39,9 @@
#include <limits.h>
#include <stddef.h>
#include <signal.h>
#include <pwd.h>
#include <grp.h>
#include <linux/virtio_config.h>
#include <linux/virtio_net.h>
#include <linux/virtio_blk.h>
@ -298,20 +301,27 @@ static void *map_zeroed_pages(unsigned int num)
/*
* We use a private mapping (ie. if we write to the page, it will be
* copied).
* copied). We allocate an extra two pages PROT_NONE to act as guard
* pages against read/write attempts that exceed allocated space.
*/
addr = mmap(NULL, getpagesize() * num,
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
addr = mmap(NULL, getpagesize() * (num+2),
PROT_NONE, MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED)
err(1, "Mmapping %u pages of /dev/zero", num);
if (mprotect(addr + getpagesize(), getpagesize() * num,
PROT_READ|PROT_WRITE) == -1)
err(1, "mprotect rw %u pages failed", num);
/*
* One neat mmap feature is that you can close the fd, and it
* stays mapped.
*/
close(fd);
return addr;
/* Return address after PROT_NONE page */
return addr + getpagesize();
}
/* Get some more pages for a device. */
@ -343,7 +353,7 @@ static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
* done to it. This allows us to share untouched memory between
* Guests.
*/
if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
if (mmap(addr, len, PROT_READ|PROT_WRITE,
MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
return;
@ -573,10 +583,10 @@ static void *_check_pointer(unsigned long addr, unsigned int size,
unsigned int line)
{
/*
* We have to separately check addr and addr+size, because size could
* be huge and addr + size might wrap around.
* Check if the requested address and size exceeds the allocated memory,
* or addr + size wraps around.
*/
if (addr >= guest_limit || addr + size >= guest_limit)
if ((addr + size) > guest_limit || (addr + size) < addr)
errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
/*
* We return a pointer for the caller's convenience, now we know it's
@ -1872,6 +1882,8 @@ static struct option opts[] = {
{ "block", 1, NULL, 'b' },
{ "rng", 0, NULL, 'r' },
{ "initrd", 1, NULL, 'i' },
{ "username", 1, NULL, 'u' },
{ "chroot", 1, NULL, 'c' },
{ NULL },
};
static void usage(void)
@ -1894,6 +1906,12 @@ int main(int argc, char *argv[])
/* If they specify an initrd file to load. */
const char *initrd_name = NULL;
/* Password structure for initgroups/setres[gu]id */
struct passwd *user_details = NULL;
/* Directory to chroot to */
char *chroot_path = NULL;
/* Save the args: we "reboot" by execing ourselves again. */
main_args = argv;
@ -1950,6 +1968,14 @@ int main(int argc, char *argv[])
case 'i':
initrd_name = optarg;
break;
case 'u':
user_details = getpwnam(optarg);
if (!user_details)
err(1, "getpwnam failed, incorrect username?");
break;
case 'c':
chroot_path = optarg;
break;
default:
warnx("Unknown argument %s", argv[optind]);
usage();
@ -2021,6 +2047,37 @@ int main(int argc, char *argv[])
/* If we exit via err(), this kills all the threads, restores tty. */
atexit(cleanup_devices);
/* If requested, chroot to a directory */
if (chroot_path) {
if (chroot(chroot_path) != 0)
err(1, "chroot(\"%s\") failed", chroot_path);
if (chdir("/") != 0)
err(1, "chdir(\"/\") failed");
verbose("chroot done\n");
}
/* If requested, drop privileges */
if (user_details) {
uid_t u;
gid_t g;
u = user_details->pw_uid;
g = user_details->pw_gid;
if (initgroups(user_details->pw_name, g) != 0)
err(1, "initgroups failed");
if (setresgid(g, g, g) != 0)
err(1, "setresgid failed");
if (setresuid(u, u, u) != 0)
err(1, "setresuid failed");
verbose("Dropping privileges completed\n");
}
/* Finally, run the Guest. This doesn't return. */
run_guest();
}

View File

@ -111,8 +111,16 @@ Running Lguest:
Then use --tunnet=bridge:lg0 when launching the guest.
See http://linux-net.osdl.org/index.php/Bridge for general information
on how to get bridging working.
See:
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
for general information on how to get bridging to work.
- Random number generation. Using the --rng option will provide a
/dev/hwrng in the guest that will read from the host's /dev/random.
Use this option in conjunction with rng-tools (see ../hw_random.txt)
to provide entropy to the guest kernel's /dev/random.
There is a helpful mailing list at http://ozlabs.org/mailman/listinfo/lguest

View File

@ -150,7 +150,7 @@ NBD_REPLY_MAGIC 0x96744668 nbd_reply include/linux/nbd.h
STL_BOARDMAGIC 0xa2267f52 stlbrd include/linux/stallion.h
ENI155_MAGIC 0xa54b872d midway_eprom drivers/atm/eni.h
SCI_MAGIC 0xbabeface gs_port drivers/char/sh-sci.h
CODA_MAGIC 0xC0DAC0DA coda_file_info include/linux/coda_fs_i.h
CODA_MAGIC 0xC0DAC0DA coda_file_info fs/coda/coda_fs_i.h
DPMEM_MAGIC 0xc0ffee11 gdt_pci_sram drivers/scsi/gdth.h
STLI_PORTMAGIC 0xe671c7a1 stliport include/linux/istallion.h
YAM_MAGIC 0xF10A7654 yam_port drivers/net/hamradio/yam.c

View File

@ -39,8 +39,9 @@ INSTALL_HDR_PATH indicates where to install the headers. It defaults to
The command "make headers_install_all" exports headers for all architectures
simultaneously. (This is mostly of interest to distribution maintainers,
who create an architecture-independent tarball from the resulting include
directory.) Remember to provide the appropriate linux/asm directory via "mv"
or "ln -s" before building a C library with headers exported this way.
directory.) You also can use HDR_ARCH_LIST to specify list of architectures.
Remember to provide the appropriate linux/asm directory via "mv" or "ln -s"
before building a C library with headers exported this way.
The kernel header export infrastructure is maintained by David Woodhouse
<dwmw2@infradead.org>.

View File

@ -1,8 +1,8 @@
In order to use the Ethernet bridging functionality, you'll need the
userspace tools. These programs and documentation are available
at http://www.linux-foundation.org/en/Net:Bridge. The download page is
at http://www.linuxfoundation.org/en/Net:Bridge. The download page is
http://prdownloads.sourceforge.net/bridge.
If you still have questions, don't hesitate to post to the mailing list
(more info http://lists.osdl.org/mailman/listinfo/bridge).
(more info https://lists.linux-foundation.org/mailman/listinfo/bridge).

View File

@ -32,7 +32,7 @@ the physical hardware, both with regard to SPI and to GPIOs.
This function is called by the CAIF SPI interface to give
you a chance to set up your hardware to be ready to receive
a stream of data from the master. The xfer structure contains
both physical and logical adresses, as well as the total length
both physical and logical addresses, as well as the total length
of the transfer in both directions.The dev parameter can be used
to map to different CAIF SPI slave devices.

View File

@ -38,11 +38,11 @@ The Linux DCCP implementation does not currently support all the features that a
specified in RFCs 4340...42.
The known bugs are at:
http://linux-net.osdl.org/index.php/TODO#DCCP
http://www.linuxfoundation.org/collaborate/workgroups/networking/todo#DCCP
For more up-to-date versions of the DCCP implementation, please consider using
the experimental DCCP test tree; instructions for checking this out are on:
http://linux-net.osdl.org/index.php/DCCP_Testing#Experimental_DCCP_source_tree
http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp_testing#Experimental_DCCP_source_tree
Socket options

View File

@ -1,3 +1,3 @@
A wiki document on how to use Generic Netlink can be found here:
* http://linux-net.osdl.org/index.php/Generic_Netlink_HOWTO
* http://www.linuxfoundation.org/collaborate/workgroups/networking/generic_netlink_howto

View File

@ -0,0 +1,114 @@
Kernel driver for the NXP Semiconductors PN544 Near Field
Communication chip
Author: Jari Vanhala
Contact: Matti Aaltonen (matti.j.aaltonen at nokia.com)
General
-------
The PN544 is an integrated transmission module for contactless
communication. The driver goes under drives/nfc/ and is compiled as a
module named "pn544". It registers a misc device and creates a device
file named "/dev/pn544".
Host Interfaces: I2C, SPI and HSU, this driver supports currently only I2C.
The Interface
-------------
The driver offers a sysfs interface for a hardware test and an IOCTL
interface for selecting between two operating modes. There are read,
write and poll functions for transferring messages. The two operating
modes are the normal (HCI) mode and the firmware update mode.
PN544 is controlled by sending messages from the userspace to the
chip. The main function of the driver is just to pass those messages
without caring about the message content.
Protocols
---------
In the normal (HCI) mode and in the firmware update mode read and
write functions behave a bit differently because the message formats
or the protocols are different.
In the normal (HCI) mode the protocol used is derived from the ETSI
HCI specification. The firmware is updated using a specific protocol,
which is different from HCI.
HCI messages consist of an eight bit header and the message body. The
header contains the message length. Maximum size for an HCI message is
33. In HCI mode sent messages are tested for a correct
checksum. Firmware update messages have the length in the second (MSB)
and third (LSB) bytes of the message. The maximum FW message length is
1024 bytes.
For the ETSI HCI specification see
http://www.etsi.org/WebSite/Technologies/ProtocolSpecification.aspx
The Hardware Test
-----------------
The idea of the test is that it can performed by reading from the
corresponding sysfs file. The test is implemented in the board file
and it should test that PN544 can be put into the firmware update
mode. If the test is not implemented the sysfs file does not get
created.
Example:
> cat /sys/module/pn544/drivers/i2c\:pn544/3-002b/nfc_test
1
Normal Operation
----------------
PN544 is powered up when the device file is opened, otherwise it's
turned off. Only one instance can use the device at a time.
Userspace applications control PN544 with HCI messages. The hardware
sends an interrupt when data is available for reading. Data is
physically read when the read function is called by a userspace
application. Poll() checks the read interrupt state. Configuration and
self testing are also done from the userspace using read and write.
Example platform data:
static int rx71_pn544_nfc_request_resources(struct i2c_client *client)
{
/* Get and setup the HW resources for the device */
}
static void rx71_pn544_nfc_free_resources(void)
{
/* Release the HW resources */
}
static void rx71_pn544_nfc_enable(int fw)
{
/* Turn the device on */
}
static int rx71_pn544_nfc_test(void)
{
/*
* Put the device into the FW update mode
* and then back to the normal mode.
* Check the behavior and return one on success,
* zero on failure.
*/
}
static void rx71_pn544_nfc_disable(void)
{
/* turn the power off */
}
static struct pn544_nfc_platform_data rx71_nfc_data = {
.request_resources = rx71_pn544_nfc_request_resources,
.free_resources = rx71_pn544_nfc_free_resources,
.enable = rx71_pn544_nfc_enable,
.test = rx71_pn544_nfc_test,
.disable = rx71_pn544_nfc_disable,
};

View File

@ -23,10 +23,10 @@ Once you have resolved the suspend/resume-related problems with your test system
without the new driver, you are ready to test it:
a) Build the driver as a module, load it and try the test modes of hibernation
(see: Documents/power/basic-pm-debugging.txt, 1).
(see: Documentation/power/basic-pm-debugging.txt, 1).
b) Load the driver and attempt to hibernate in the "reboot", "shutdown" and
"platform" modes (see: Documents/power/basic-pm-debugging.txt, 1).
"platform" modes (see: Documentation/power/basic-pm-debugging.txt, 1).
c) Compile the driver directly into the kernel and try the test modes of
hibernation.
@ -34,12 +34,12 @@ c) Compile the driver directly into the kernel and try the test modes of
d) Attempt to hibernate with the driver compiled directly into the kernel
in the "reboot", "shutdown" and "platform" modes.
e) Try the test modes of suspend (see: Documents/power/basic-pm-debugging.txt,
e) Try the test modes of suspend (see: Documentation/power/basic-pm-debugging.txt,
2). [As far as the STR tests are concerned, it should not matter whether or
not the driver is built as a module.]
f) Attempt to suspend to RAM using the s2ram tool with the driver loaded
(see: Documents/power/basic-pm-debugging.txt, 2).
(see: Documentation/power/basic-pm-debugging.txt, 2).
Each of the above tests should be repeated several times and the STD tests
should be mixed with the STR tests. If any of them fails, the driver cannot be

View File

@ -50,6 +50,15 @@ type's callbacks are not defined) of given device. The bus type, device type
and device class callbacks are referred to as subsystem-level callbacks in what
follows.
By default, the callbacks are always invoked in process context with interrupts
enabled. However, subsystems can use the pm_runtime_irq_safe() helper function
to tell the PM core that a device's ->runtime_suspend() and ->runtime_resume()
callbacks should be invoked in atomic context with interrupts disabled
(->runtime_idle() is still invoked the default way). This implies that these
callback routines must not block or sleep, but it also means that the
synchronous helper functions listed at the end of Section 4 can be used within
an interrupt handler or in an atomic context.
The subsystem-level suspend callback is _entirely_ _responsible_ for handling
the suspend of the device as appropriate, which may, but need not include
executing the device driver's own ->runtime_suspend() callback (from the
@ -237,6 +246,10 @@ defined in include/linux/pm.h:
Section 8); it may be modified only by the pm_runtime_no_callbacks()
helper function
unsigned int irq_safe;
- indicates that the ->runtime_suspend() and ->runtime_resume() callbacks
will be invoked with the spinlock held and interrupts disabled
unsigned int use_autosuspend;
- indicates that the device's driver supports delayed autosuspend (see
Section 9); it may be modified only by the
@ -344,6 +357,10 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_idle(dev) and return its result
int pm_runtime_put_sync_suspend(struct device *dev);
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_suspend(dev) and return its result
int pm_runtime_put_sync_autosuspend(struct device *dev);
- decrement the device's usage counter; if the result is 0 then run
pm_runtime_autosuspend(dev) and return its result
@ -397,6 +414,11 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
PM attributes from /sys/devices/.../power (or prevent them from being
added when the device is registered)
void pm_runtime_irq_safe(struct device *dev);
- set the power.irq_safe flag for the device, causing the runtime-PM
suspend and resume callbacks (but not the idle callback) to be invoked
with interrupts disabled
void pm_runtime_mark_last_busy(struct device *dev);
- set the power.last_busy field to the current time
@ -438,6 +460,15 @@ pm_runtime_suspended()
pm_runtime_mark_last_busy()
pm_runtime_autosuspend_expiration()
If pm_runtime_irq_safe() has been called for a device then the following helper
functions may also be used in interrupt context:
pm_runtime_suspend()
pm_runtime_autosuspend()
pm_runtime_resume()
pm_runtime_get_sync()
pm_runtime_put_sync_suspend()
5. Run-time PM Initialization, Device Probing and Removal
Initially, the run-time PM is disabled for all devices, which means that the

View File

@ -131,7 +131,7 @@ order to avoid the degeneration that had become the ppc32 kernel entry
point and the way a new platform should be added to the kernel. The
legacy iSeries platform breaks those rules as it predates this scheme,
but no new board support will be accepted in the main tree that
doesn't follows them properly. In addition, since the advent of the
doesn't follow them properly. In addition, since the advent of the
arch/powerpc merged architecture for ppc32 and ppc64, new 32-bit
platforms and 32-bit platforms which move into arch/powerpc will be
required to use these rules as well.
@ -1025,7 +1025,7 @@ dtc source code can be found at
WARNING: This version is still in early development stage; the
resulting device-tree "blobs" have not yet been validated with the
kernel. The current generated bloc lacks a useful reserve map (it will
kernel. The current generated block lacks a useful reserve map (it will
be fixed to generate an empty one, it's up to the bootloader to fill
it up) among others. The error handling needs work, bugs are lurking,
etc...
@ -1098,7 +1098,7 @@ supported currently at the toplevel.
* an arbitrary array of bytes
*/
childnode@addresss { /* define a child node named "childnode"
childnode@address { /* define a child node named "childnode"
* whose unit name is "childnode at
* address"
*/

View File

@ -0,0 +1,52 @@
PPC4xx Clock Power Management (CPM) node
Required properties:
- compatible : compatible list, currently only "ibm,cpm"
- dcr-access-method : "native"
- dcr-reg : < DCR register range >
Optional properties:
- er-offset : All 4xx SoCs with a CPM controller have
one of two different order for the CPM
registers. Some have the CPM registers
in the following order (ER,FR,SR). The
others have them in the following order
(SR,ER,FR). For the second case set
er-offset = <1>.
- unused-units : specifier consist of one cell. For each
bit in the cell, the corresponding bit
in CPM will be set to turn off unused
devices.
- idle-doze : specifier consist of one cell. For each
bit in the cell, the corresponding bit
in CPM will be set to turn off unused
devices. This is usually just CPM[CPU].
- standby : specifier consist of one cell. For each
bit in the cell, the corresponding bit
in CPM will be set on standby and
restored on resume.
- suspend : specifier consist of one cell. For each
bit in the cell, the corresponding bit
in CPM will be set on suspend (mem) and
restored on resume. Note, for standby
and suspend the corresponding bits can
be different or the same. Usually for
standby only class 2 and 3 units are set.
However, the interface does not care.
If they are the same, the additional
power saving will be seeing if support
is available to put the DDR in self
refresh mode and any additional power
saving techniques for the specific SoC.
Example:
CPM0: cpm {
compatible = "ibm,cpm";
dcr-access-method = "native";
dcr-reg = <0x160 0x003>;
er-offset = <0>;
unused-units = <0x00000100>;
idle-doze = <0x02000000>;
standby = <0xfeff0000>;
suspend = <0xfeff791d>;
};

View File

@ -0,0 +1,28 @@
EEPROMs (I2C)
Required properties:
- compatible : should be "<manufacturer>,<type>"
If there is no specific driver for <manufacturer>, a generic
driver based on <type> is selected. Possible types are:
24c00, 24c01, 24c02, 24c04, 24c08, 24c16, 24c32, 24c64,
24c128, 24c256, 24c512, 24c1024, spd
- reg : the I2C address of the EEPROM
Optional properties:
- pagesize : the length of the pagesize for writing. Please consult the
manual of your device, that value varies a lot. A wrong value
may result in data loss! If not specified, a safety value of
'1' is used which will be very slow.
- read-only: this parameterless property disables writes to the eeprom
Example:
eeprom@52 {
compatible = "atmel,24c32";
reg = <0x52>;
pagesize = <32>;
};

View File

@ -170,3 +170,49 @@ and the run ppstest as follow:
Please, note that to compile userland programs you need the file timepps.h
(see Documentation/pps/).
Generators
----------
Sometimes one needs to be able not only to catch PPS signals but to produce
them also. For example, running a distributed simulation, which requires
computers' clock to be synchronized very tightly. One way to do this is to
invent some complicated hardware solutions but it may be neither necessary
nor affordable. The cheap way is to load a PPS generator on one of the
computers (master) and PPS clients on others (slaves), and use very simple
cables to deliver signals using parallel ports, for example.
Parallel port cable pinout:
pin name master slave
1 STROBE *------ *
2 D0 * | *
3 D1 * | *
4 D2 * | *
5 D3 * | *
6 D4 * | *
7 D5 * | *
8 D6 * | *
9 D7 * | *
10 ACK * ------*
11 BUSY * *
12 PE * *
13 SEL * *
14 AUTOFD * *
15 ERROR * *
16 INIT * *
17 SELIN * *
18-25 GND *-----------*
Please note that parallel port interrupt occurs only on high->low transition,
so it is used for PPS assert edge. PPS clear edge can be determined only
using polling in the interrupt handler which actually can be done way more
precisely because interrupt handling delays can be quite big and random. So
current parport PPS generator implementation (pps_gen_parport module) is
geared towards using the clear edge for time synchronization.
Clear edge polling is done with disabled interrupts so it's better to select
delay between assert and clear edge as small as possible to reduce system
latencies. But if it is too small slave won't be able to capture clear edge
transition. The default of 30us should be good enough in most situations.
The delay can be selected using 'delay' pps_gen_parport module parameter.

View File

@ -3,7 +3,7 @@
sched-arch.txt
- CPU Scheduler implementation hints for architecture specific code.
sched-design-CFS.txt
- goals, design and implementation of the Complete Fair Scheduler.
- goals, design and implementation of the Completely Fair Scheduler.
sched-domains.txt
- information on scheduling domains.
sched-nice-design.txt

View File

@ -573,7 +573,7 @@ Changes from 20041018 to 20041123
* Backround nodev_timeout processing to DPC This enables us to
unblock (stop dev_loss_tmo) when appopriate.
* Fix array discovery with multiple luns. The max_luns was 0 at
the time the host structure was intialized. lpfc_cfg_params
the time the host structure was initialized. lpfc_cfg_params
then set the max_luns to the correct value afterwards.
* Remove unused define LPFC_MAX_LUN and set the default value of
lpfc_max_lun parameter to 512.

View File

@ -107,7 +107,7 @@ write_wakeup() - May be called at any point between open and close.
dcd_change() - Report to the tty line the current DCD pin status
changes and the relative timestamp. The timestamp
can be NULL.
cannot be NULL.
Driver Access

View File

@ -974,13 +974,6 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
See hdspm.txt for details.
Module snd-hifier
-----------------
Module for the MediaTek/TempoTec HiFier Fantasia sound card.
This module supports autoprobe and multiple cards.
Module snd-ice1712
------------------
@ -1531,15 +1524,20 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module snd-oxygen
-----------------
Module for sound cards based on the C-Media CMI8788 chip:
Module for sound cards based on the C-Media CMI8786/8787/8788 chip:
* Asound A-8788
* Asus Xonar DG
* AuzenTech X-Meridian
* AuzenTech X-Meridian 2G
* Bgears b-Enspirer
* Club3D Theatron DTS
* HT-Omega Claro (plus)
* HT-Omega Claro halo (XT)
* Kuroutoshikou CMI8787-HG2PCI
* Razer Barracuda AC-1
* Sondigo Inferno
* TempoTec HiFier Fantasia
* TempoTec HiFier Serenade
This module supports autoprobe and multiple cards.
@ -2006,9 +2004,9 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
Module snd-virtuoso
-------------------
Module for sound cards based on the Asus AV100/AV200 chips,
i.e., Xonar D1, DX, D2, D2X, DS, HDAV1.3 (Deluxe), Essence ST
(Deluxe) and Essence STX.
Module for sound cards based on the Asus AV66/AV100/AV200 chips,
i.e., Xonar D1, DX, D2, D2X, DS, Essence ST (Deluxe), Essence STX,
HDAV1.3 (Deluxe), and HDAV1.3 Slim.
This module supports autoprobe and multiple cards.

View File

@ -149,7 +149,6 @@ ALC882/883/885/888/889
acer-aspire-7730g Acer Aspire 7730G
acer-aspire-8930g Acer Aspire 8930G
medion Medion Laptops
medion-md2 Medion MD2
targa-dig Targa/MSI
targa-2ch-dig Targa/MSI with 2-channel
targa-8ch-dig Targa/MSI with 8-channel (MSI GX620)

View File

@ -27,42 +27,38 @@ ASoC Codec driver breakdown
1 - Codec DAI and PCM configuration
-----------------------------------
Each codec driver must have a struct snd_soc_codec_dai to define its DAI and
Each codec driver must have a struct snd_soc_dai_driver to define its DAI and
PCM capabilities and operations. This struct is exported so that it can be
registered with the core by your machine driver.
e.g.
struct snd_soc_codec_dai wm8731_dai = {
.name = "WM8731",
/* playback capabilities */
static struct snd_soc_dai_ops wm8731_dai_ops = {
.prepare = wm8731_pcm_prepare,
.hw_params = wm8731_hw_params,
.shutdown = wm8731_shutdown,
.digital_mute = wm8731_mute,
.set_sysclk = wm8731_set_dai_sysclk,
.set_fmt = wm8731_set_dai_fmt,
};
struct snd_soc_dai_driver wm8731_dai = {
.name = "wm8731-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM8731_RATES,
.formats = WM8731_FORMATS,},
/* capture capabilities */
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM8731_RATES,
.formats = WM8731_FORMATS,},
/* pcm operations - see section 4 below */
.ops = {
.prepare = wm8731_pcm_prepare,
.hw_params = wm8731_hw_params,
.shutdown = wm8731_shutdown,
},
/* DAI operations - see DAI.txt */
.dai_ops = {
.digital_mute = wm8731_mute,
.set_sysclk = wm8731_set_dai_sysclk,
.set_fmt = wm8731_set_dai_fmt,
}
.ops = &wm8731_dai_ops,
.symmetric_rates = 1,
};
EXPORT_SYMBOL_GPL(wm8731_dai);
2 - Codec control IO
@ -186,13 +182,14 @@ when the mute is applied or freed.
i.e.
static int wm8974_mute(struct snd_soc_codec *codec,
struct snd_soc_codec_dai *dai, int mute)
static int wm8974_mute(struct snd_soc_dai *dai, int mute)
{
u16 mute_reg = wm8974_read_reg_cache(codec, WM8974_DAC) & 0xffbf;
if(mute)
wm8974_write(codec, WM8974_DAC, mute_reg | 0x40);
struct snd_soc_codec *codec = dai->codec;
u16 mute_reg = snd_soc_read(codec, WM8974_DAC) & 0xffbf;
if (mute)
snd_soc_write(codec, WM8974_DAC, mute_reg | 0x40);
else
wm8974_write(codec, WM8974_DAC, mute_reg);
snd_soc_write(codec, WM8974_DAC, mute_reg);
return 0;
}

View File

@ -12,6 +12,8 @@ the following struct:-
struct snd_soc_card {
char *name;
...
int (*probe)(struct platform_device *pdev);
int (*remove)(struct platform_device *pdev);
@ -22,12 +24,13 @@ struct snd_soc_card {
int (*resume_pre)(struct platform_device *pdev);
int (*resume_post)(struct platform_device *pdev);
/* machine stream operations */
struct snd_soc_ops *ops;
...
/* CPU <--> Codec DAI links */
struct snd_soc_dai_link *dai_link;
int num_links;
...
};
probe()/remove()
@ -42,11 +45,6 @@ of any machine audio tasks that have to be done before or after the codec, DAIs
and DMA is suspended and resumed. Optional.
Machine operations
------------------
The machine specific audio operations can be set here. Again this is optional.
Machine DAI Configuration
-------------------------
The machine DAI configuration glues all the codec and CPU DAIs together. It can
@ -61,8 +59,10 @@ struct snd_soc_dai_link is used to set up each DAI in your machine. e.g.
static struct snd_soc_dai_link corgi_dai = {
.name = "WM8731",
.stream_name = "WM8731",
.cpu_dai = &pxa_i2s_dai,
.codec_dai = &wm8731_dai,
.cpu_dai_name = "pxa-is2-dai",
.codec_dai_name = "wm8731-hifi",
.platform_name = "pxa-pcm-audio",
.codec_name = "wm8713-codec.0-001a",
.init = corgi_wm8731_init,
.ops = &corgi_ops,
};
@ -77,26 +77,6 @@ static struct snd_soc_card snd_soc_corgi = {
};
Machine Audio Subsystem
-----------------------
The machine soc device glues the platform, machine and codec driver together.
Private data can also be set here. e.g.
/* corgi audio private data */
static struct wm8731_setup_data corgi_wm8731_setup = {
.i2c_address = 0x1b,
};
/* corgi audio subsystem */
static struct snd_soc_device corgi_snd_devdata = {
.machine = &snd_soc_corgi,
.platform = &pxa2xx_soc_platform,
.codec_dev = &soc_codec_dev_wm8731,
.codec_data = &corgi_wm8731_setup,
};
Machine Power Map
-----------------

View File

@ -20,9 +20,10 @@ struct snd_soc_ops {
int (*trigger)(struct snd_pcm_substream *, int);
};
The platform driver exports its DMA functionality via struct snd_soc_platform:-
The platform driver exports its DMA functionality via struct
snd_soc_platform_driver:-
struct snd_soc_platform {
struct snd_soc_platform_driver {
char *name;
int (*probe)(struct platform_device *pdev);
@ -34,6 +35,13 @@ struct snd_soc_platform {
int (*pcm_new)(struct snd_card *, struct snd_soc_codec_dai *, struct snd_pcm *);
void (*pcm_free)(struct snd_pcm *);
/*
* For platform caused delay reporting.
* Optional.
*/
snd_pcm_sframes_t (*delay)(struct snd_pcm_substream *,
struct snd_soc_dai *);
/* platform stream ops */
struct snd_pcm_ops *pcm_ops;
};

View File

@ -4,8 +4,6 @@ README
- general information about /proc/sys/ sysctl files.
abi.txt
- documentation for /proc/sys/abi/*.
ctl_unnumbered.txt
- explanation of why one should not add new binary sysctl numbers.
fs.txt
- documentation for /proc/sys/fs/*.
kernel.txt

View File

@ -34,6 +34,7 @@ show up in /proc/sys/kernel:
- hotplug
- java-appletviewer [ binfmt_java, obsolete ]
- java-interpreter [ binfmt_java, obsolete ]
- kptr_restrict
- kstack_depth_to_print [ X86 only ]
- l2cr [ PPC only ]
- modprobe ==> Documentation/debugging-modules.txt
@ -219,7 +220,7 @@ dmesg_restrict:
This toggle indicates whether unprivileged users are prevented from using
dmesg(8) to view messages from the kernel's log buffer. When
dmesg_restrict is set to (0) there are no restrictions. When
dmesg_restrict is set set to (1), users must have CAP_SYS_ADMIN to use
dmesg_restrict is set set to (1), users must have CAP_SYSLOG to use
dmesg(8).
The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the default
@ -261,6 +262,19 @@ This flag controls the L2 cache of G3 processor boards. If
==============================================================
kptr_restrict:
This toggle indicates whether restrictions are placed on
exposing kernel addresses via /proc and other interfaces. When
kptr_restrict is set to (0), there are no restrictions. When
kptr_restrict is set to (1), the default, kernel pointers
printed using the %pK format specifier will be replaced with 0's
unless the user has CAP_SYSLOG. When kptr_restrict is set to
(2), kernel pointers printed using %pK will be replaced with 0's
regardless of privileges.
==============================================================
kstack_depth_to_print: (X86 only)
Controls the number of words to print when dumping the raw

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,145 @@
>>>>>>>>>> The TCM v4 fabric module script generator <<<<<<<<<<
Greetings all,
This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
script to generate a brand new functional TCM v4 fabric .ko module of your very own,
that once built can be immediately be loaded to start access the new TCM/ConfigFS
fabric skeleton, by simply using:
modprobe $TCM_NEW_MOD
mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
*) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
->make_nodeacl(), ->drop_nodeacl(), ->make_tpg(), ->drop_tpg()
->make_wwn(), ->drop_wwn(). These are created into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
*) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
using a skeleton struct target_core_fabric_ops API template.
*) Based on user defined T10 Proto_Ident for the new fabric module being built,
the TransportID / Initiator and Target WWPN related handlers for
SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
using drivers/target/target_core_fabric_lib.c logic.
*) NOP API calls for all other Data I/O path and fabric dependent attribute logic
in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
$FABRIC_MOD_name' parameters, and actually running the script looks like:
target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
Set fabric_mod_name: tcm_nab5000
Set fabric_mod_dir:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
Using proto_ident: iSCSI
Creating fabric_mod_dir:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
Using tcm_mod_scan_fabric_ops:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
Writing file:
/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
At the end of tcm_mod_builder.py. the script will ask to add the following
line to drivers/target/Kbuild:
obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
and the same for drivers/target/Kconfig:
source "drivers/target/tcm_nab5000/Kconfig"
*) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item:
<M> TCM_NAB5000 fabric module
*) Build using 'make modules', once completed you will have:
target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
total 1348
drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
-rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
-rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
-rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
-rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
-rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
-rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
-rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
-rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
-rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
-rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
-rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
-rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
-rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
-rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
-rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
-rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
-rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
-rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
*) Load the new module, create a lun_0 configfs group, and add new TCM Core
IBLOCK backstore symlink to port:
target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
/sys/kernel/config/target/nab5000/
|-- discovery_auth
|-- iqn.foo
| `-- tpgt_1
| |-- acls
| |-- attrib
| |-- lun
| | `-- lun_0
| | |-- alua_tg_pt_gp
| | |-- alua_tg_pt_offline
| | |-- alua_tg_pt_status
| | |-- alua_tg_pt_write_md
| | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
| |-- np
| `-- param
`-- version
target:/mnt/sdb/lio-core-2.6.git# lsmod
Module Size Used by
tcm_nab5000 3935 4
iscsi_target_mod 193211 0
target_core_stgt 8090 0
target_core_pscsi 11122 1
target_core_file 9172 2
target_core_iblock 9280 1
target_core_mod 228575 31
tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
libfc 73681 0
scsi_debug 56265 0
scsi_tgt 8666 1 target_core_stgt
configfs 20644 2 target_core_mod
----------------------------------------------------------------------
Future TODO items:
*) Add more T10 proto_idents
*) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
structure members.
October 5th, 2010
Nicholas A. Bellinger <nab@linux-iscsi.org>

View File

@ -278,3 +278,15 @@ method, the sys I/F structure will be built like this:
|---name: acpitz
|---temp1_input: 37000
|---temp1_crit: 100000
4. Event Notification
The framework includes a simple notification mechanism, in the form of a
netlink event. Netlink socket initialization is done during the _init_
of the framework. Drivers which intend to use the notification mechanism
just need to call generate_netlink_event() with two arguments viz
(originator, event). Typically the originator will be an integer assigned
to a thermal_zone_device when it registers itself with the framework. The
event will be one of:{THERMAL_AUX0, THERMAL_AUX1, THERMAL_CRITICAL,
THERMAL_DEV_FAULT}. Notification can be sent when the current temperature
crosses any of the configured thresholds.

View File

@ -19,7 +19,7 @@ Linux system over a sample period:
- the pid of the task(process) which initialized the timer
- the name of the process which initialized the timer
- the function where the timer was intialized
- the function where the timer was initialized
- the callback function which is associated to the timer
- the number of events (callbacks)

View File

@ -125,7 +125,7 @@ is the size of the data item, in bytes.
For example, here's the information displayed for the 'sched_wakeup'
event:
# cat /debug/tracing/events/sched/sched_wakeup/format
# cat /sys/kernel/debug/tracing/events/sched/sched_wakeup/format
name: sched_wakeup
ID: 60
@ -201,19 +201,19 @@ to the 'filter' file for the given event.
For example:
# cd /debug/tracing/events/sched/sched_wakeup
# cd /sys/kernel/debug/tracing/events/sched/sched_wakeup
# echo "common_preempt_count > 4" > filter
A slightly more involved example:
# cd /debug/tracing/events/sched/sched_signal_send
# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter
If there is an error in the expression, you'll get an 'Invalid
argument' error when setting it, and the erroneous string along with
an error message can be seen by looking at the filter e.g.:
# cd /debug/tracing/events/sched/sched_signal_send
# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || dsig == 17) && comm != bash" > filter
-bash: echo: write error: Invalid argument
# cat filter

View File

@ -285,6 +285,9 @@ implement g_volatile_ctrl like this:
The 'new value' union is not used in g_volatile_ctrl. In general controls
that need to implement g_volatile_ctrl are read-only controls.
Note that if one or more controls in a control cluster are marked as volatile,
then all the controls in the cluster are seen as volatile.
To mark a control as volatile you have to set the is_volatile flag:
ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
@ -462,6 +465,15 @@ pointer to the v4l2_ctrl_ops struct that is used for that cluster.
Obviously, all controls in the cluster array must be initialized to either
a valid control or to NULL.
In rare cases you might want to know which controls of a cluster actually
were set explicitly by the user. For this you can check the 'is_new' flag of
each control. For example, in the case of a volume/mute cluster the 'is_new'
flag of the mute control would be set if the user called VIDIOC_S_CTRL for
mute only. If the user would call VIDIOC_S_EXT_CTRLS for both mute and volume
controls, then the 'is_new' flag would be 1 for both controls.
The 'is_new' flag is always 1 when called from v4l2_ctrl_handler_setup().
VIDIOC_LOG_STATUS Support
=========================

View File

@ -2,7 +2,7 @@
obj- := dummy.o
# List of programs to build
hostprogs-y := slabinfo page-types hugepage-mmap hugepage-shm map_hugetlb
hostprogs-y := page-types hugepage-mmap hugepage-shm map_hugetlb
# Tell kbuild to always build the programs
always := $(hostprogs-y)

View File

@ -0,0 +1,298 @@
= Transparent Hugepage Support =
== Objective ==
Performance critical computing applications dealing with large memory
working sets are already running on top of libhugetlbfs and in turn
hugetlbfs. Transparent Hugepage Support is an alternative means of
using huge pages for the backing of virtual memory with huge pages
that supports the automatic promotion and demotion of page sizes and
without the shortcomings of hugetlbfs.
Currently it only works for anonymous memory mappings but in the
future it can expand over the pagecache layer starting with tmpfs.
The reason applications are running faster is because of two
factors. The first factor is almost completely irrelevant and it's not
of significant interest because it'll also have the downside of
requiring larger clear-page copy-page in page faults which is a
potentially negative effect. The first factor consists in taking a
single page fault for each 2M virtual region touched by userland (so
reducing the enter/exit kernel frequency by a 512 times factor). This
only matters the first time the memory is accessed for the lifetime of
a memory mapping. The second long lasting and much more important
factor will affect all subsequent accesses to the memory for the whole
runtime of the application. The second factor consist of two
components: 1) the TLB miss will run faster (especially with
virtualization using nested pagetables but almost always also on bare
metal without virtualization) and 2) a single TLB entry will be
mapping a much larger amount of virtual memory in turn reducing the
number of TLB misses. With virtualization and nested pagetables the
TLB can be mapped of larger size only if both KVM and the Linux guest
are using hugepages but a significant speedup already happens if only
one of the two is using hugepages just because of the fact the TLB
miss is going to run faster.
== Design ==
- "graceful fallback": mm components which don't have transparent
hugepage knowledge fall back to breaking a transparent hugepage and
working on the regular pages and their respective regular pmd/pte
mappings
- if a hugepage allocation fails because of memory fragmentation,
regular pages should be gracefully allocated instead and mixed in
the same vma without any failure or significant delay and without
userland noticing
- if some task quits and more hugepages become available (either
immediately in the buddy or through the VM), guest physical memory
backed by regular pages should be relocated on hugepages
automatically (with khugepaged)
- it doesn't require memory reservation and in turn it uses hugepages
whenever possible (the only possible reservation here is kernelcore=
to avoid unmovable pages to fragment all the memory but such a tweak
is not specific to transparent hugepage support and it's a generic
feature that applies to all dynamic high order allocations in the
kernel)
- this initial support only offers the feature in the anonymous memory
regions but it'd be ideal to move it to tmpfs and the pagecache
later
Transparent Hugepage Support maximizes the usefulness of free memory
if compared to the reservation approach of hugetlbfs by allowing all
unused memory to be used as cache or other movable (or even unmovable
entities). It doesn't require reservation to prevent hugepage
allocation failures to be noticeable from userland. It allows paging
and all other advanced VM features to be available on the
hugepages. It requires no modifications for applications to take
advantage of it.
Applications however can be further optimized to take advantage of
this feature, like for example they've been optimized before to avoid
a flood of mmap system calls for every malloc(4k). Optimizing userland
is by far not mandatory and khugepaged already can take care of long
lived page allocations even for hugepage unaware applications that
deals with large amounts of memory.
In certain cases when hugepages are enabled system wide, application
may end up allocating more memory resources. An application may mmap a
large region but only touch 1 byte of it, in that case a 2M page might
be allocated instead of a 4k page for no good. This is why it's
possible to disable hugepages system-wide and to only have them inside
MADV_HUGEPAGE madvise regions.
Embedded systems should enable hugepages only inside madvise regions
to eliminate any risk of wasting any precious byte of memory and to
only run faster.
Applications that gets a lot of benefit from hugepages and that don't
risk to lose memory by using hugepages, should use
madvise(MADV_HUGEPAGE) on their critical mmapped regions.
== sysfs ==
Transparent Hugepage Support can be entirely disabled (mostly for
debugging purposes) or only enabled inside MADV_HUGEPAGE regions (to
avoid the risk of consuming more memory resources) or enabled system
wide. This can be achieved with one of:
echo always >/sys/kernel/mm/transparent_hugepage/enabled
echo madvise >/sys/kernel/mm/transparent_hugepage/enabled
echo never >/sys/kernel/mm/transparent_hugepage/enabled
It's also possible to limit defrag efforts in the VM to generate
hugepages in case they're not immediately free to madvise regions or
to never try to defrag memory and simply fallback to regular pages
unless hugepages are immediately available. Clearly if we spend CPU
time to defrag memory, we would expect to gain even more by the fact
we use hugepages later instead of regular pages. This isn't always
guaranteed, but it may be more likely in case the allocation is for a
MADV_HUGEPAGE region.
echo always >/sys/kernel/mm/transparent_hugepage/defrag
echo madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo never >/sys/kernel/mm/transparent_hugepage/defrag
khugepaged will be automatically started when
transparent_hugepage/enabled is set to "always" or "madvise, and it'll
be automatically shutdown if it's set to "never".
khugepaged runs usually at low frequency so while one may not want to
invoke defrag algorithms synchronously during the page faults, it
should be worth invoking defrag at least in khugepaged. However it's
also possible to disable defrag in khugepaged:
echo yes >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag
echo no >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag
You can also control how many pages khugepaged should scan at each
pass:
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan
and how many milliseconds to wait in khugepaged between each pass (you
can set this to 0 to run khugepaged at 100% utilization of one core):
/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs
and how many milliseconds to wait in khugepaged if there's an hugepage
allocation failure to throttle the next allocation attempt.
/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs
The khugepaged progress can be seen in the number of pages collapsed:
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed
for each pass:
/sys/kernel/mm/transparent_hugepage/khugepaged/full_scans
== Boot parameter ==
You can change the sysfs boot time defaults of Transparent Hugepage
Support by passing the parameter "transparent_hugepage=always" or
"transparent_hugepage=madvise" or "transparent_hugepage=never"
(without "") to the kernel command line.
== Need of application restart ==
The transparent_hugepage/enabled values only affect future
behavior. So to make them effective you need to restart any
application that could have been using hugepages. This also applies to
the regions registered in khugepaged.
== get_user_pages and follow_page ==
get_user_pages and follow_page if run on a hugepage, will return the
head or tail pages as usual (exactly as they would do on
hugetlbfs). Most gup users will only care about the actual physical
address of the page and its temporary pinning to release after the I/O
is complete, so they won't ever notice the fact the page is huge. But
if any driver is going to mangle over the page structure of the tail
page (like for checking page->mapping or other bits that are relevant
for the head page and not the tail page), it should be updated to jump
to check head page instead (while serializing properly against
split_huge_page() to avoid the head and tail pages to disappear from
under it, see the futex code to see an example of that, hugetlbfs also
needed special handling in futex code for similar reasons).
NOTE: these aren't new constraints to the GUP API, and they match the
same constrains that applies to hugetlbfs too, so any driver capable
of handling GUP on hugetlbfs will also work fine on transparent
hugepage backed mappings.
In case you can't handle compound pages if they're returned by
follow_page, the FOLL_SPLIT bit can be specified as parameter to
follow_page, so that it will split the hugepages before returning
them. Migration for example passes FOLL_SPLIT as parameter to
follow_page because it's not hugepage aware and in fact it can't work
at all on hugetlbfs (but it instead works fine on transparent
hugepages thanks to FOLL_SPLIT). migration simply can't deal with
hugepages being returned (as it's not only checking the pfn of the
page and pinning it during the copy but it pretends to migrate the
memory in regular page sizes and with regular pte/pmd mappings).
== Optimizing the applications ==
To be guaranteed that the kernel will map a 2M page immediately in any
memory region, the mmap region has to be hugepage naturally
aligned. posix_memalign() can provide that guarantee.
== Hugetlbfs ==
You can use hugetlbfs on a kernel that has transparent hugepage
support enabled just fine as always. No difference can be noted in
hugetlbfs other than there will be less overall fragmentation. All
usual features belonging to hugetlbfs are preserved and
unaffected. libhugetlbfs will also work fine as usual.
== Graceful fallback ==
Code walking pagetables but unware about huge pmds can simply call
split_huge_page_pmd(mm, pmd) where the pmd is the one returned by
pmd_offset. It's trivial to make the code transparent hugepage aware
by just grepping for "pmd_offset" and adding split_huge_page_pmd where
missing after pmd_offset returns the pmd. Thanks to the graceful
fallback design, with a one liner change, you can avoid to write
hundred if not thousand of lines of complex code to make your code
hugepage aware.
If you're not walking pagetables but you run into a physical hugepage
but you can't handle it natively in your code, you can split it by
calling split_huge_page(page). This is what the Linux VM does before
it tries to swapout the hugepage for example.
Example to make mremap.c transparent hugepage aware with a one liner
change:
diff --git a/mm/mremap.c b/mm/mremap.c
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -41,6 +41,7 @@ static pmd_t *get_old_pmd(struct mm_stru
return NULL;
pmd = pmd_offset(pud, addr);
+ split_huge_page_pmd(mm, pmd);
if (pmd_none_or_clear_bad(pmd))
return NULL;
== Locking in hugepage aware code ==
We want as much code as possible hugepage aware, as calling
split_huge_page() or split_huge_page_pmd() has a cost.
To make pagetable walks huge pmd aware, all you need to do is to call
pmd_trans_huge() on the pmd returned by pmd_offset. You must hold the
mmap_sem in read (or write) mode to be sure an huge pmd cannot be
created from under you by khugepaged (khugepaged collapse_huge_page
takes the mmap_sem in write mode in addition to the anon_vma lock). If
pmd_trans_huge returns false, you just fallback in the old code
paths. If instead pmd_trans_huge returns true, you have to take the
mm->page_table_lock and re-run pmd_trans_huge. Taking the
page_table_lock will prevent the huge pmd to be converted into a
regular pmd from under you (split_huge_page can run in parallel to the
pagetable walk). If the second pmd_trans_huge returns false, you
should just drop the page_table_lock and fallback to the old code as
before. Otherwise you should run pmd_trans_splitting on the pmd. In
case pmd_trans_splitting returns true, it means split_huge_page is
already in the middle of splitting the page. So if pmd_trans_splitting
returns true it's enough to drop the page_table_lock and call
wait_split_huge_page and then fallback the old code paths. You are
guaranteed by the time wait_split_huge_page returns, the pmd isn't
huge anymore. If pmd_trans_splitting returns false, you can proceed to
process the huge pmd and the hugepage natively. Once finished you can
drop the page_table_lock.
== compound_lock, get_user_pages and put_page ==
split_huge_page internally has to distribute the refcounts in the head
page to the tail pages before clearing all PG_head/tail bits from the
page structures. It can do that easily for refcounts taken by huge pmd
mappings. But the GUI API as created by hugetlbfs (that returns head
and tail pages if running get_user_pages on an address backed by any
hugepage), requires the refcount to be accounted on the tail pages and
not only in the head pages, if we want to be able to run
split_huge_page while there are gup pins established on any tail
page. Failure to be able to run split_huge_page if there's any gup pin
on any tail page, would mean having to split all hugepages upfront in
get_user_pages which is unacceptable as too many gup users are
performance critical and they must work natively on hugepages like
they work natively on hugetlbfs already (hugetlbfs is simpler because
hugetlbfs pages cannot be splitted so there wouldn't be requirement of
accounting the pins on the tail pages for hugetlbfs). If we wouldn't
account the gup refcounts on the tail pages during gup, we won't know
anymore which tail page is pinned by gup and which is not while we run
split_huge_page. But we still have to add the gup pin to the head page
too, to know when we can free the compound page in case it's never
splitted during its lifetime. That requires changing not just
get_page, but put_page as well so that when put_page runs on a tail
page (and only on a tail page) it will find its respective head page,
and then it will decrease the head page refcount in addition to the
tail page refcount. To obtain a head page reliably and to decrease its
refcount without race conditions, put_page has to serialize against
__split_huge_page_refcount using a special per-page lock called
compound_lock.

View File

@ -2,3 +2,5 @@
- This file
w1_therm
- The Maxim/Dallas Semiconductor ds18*20 temperature sensor.
w1_ds2423
- The Maxim/Dallas Semiconductor ds2423 counter device.

View File

@ -0,0 +1,47 @@
Kernel driver w1_ds2423
=======================
Supported chips:
* Maxim DS2423 based counter devices.
supported family codes:
W1_THERM_DS2423 0x1D
Author: Mika Laitio <lamikr@pilppa.org>
Description
-----------
Support is provided through the sysfs w1_slave file. Each opening and
read sequence of w1_slave file initiates the read of counters and ram
available in DS2423 pages 12 - 15.
Result of each page is provided as an ASCII output where each counter
value and associated ram buffer is outpputed to own line.
Each lines will contain the values of 42 bytes read from the counter and
memory page along the crc=YES or NO for indicating whether the read operation
was successfull and CRC matched.
If the operation was successfull, there is also in the end of each line
a counter value expressed as an integer after c=
Meaning of 42 bytes represented is following:
- 1 byte from ram page
- 4 bytes for the counter value
- 4 zero bytes
- 2 bytes for crc16 which was calculated from the data read since the previous crc bytes
- 31 remaining bytes from the ram page
- crc=YES/NO indicating whether read was ok and crc matched
- c=<int> current counter value
example from the successfull read:
00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
00 02 00 00 00 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
00 29 c6 5d 18 00 00 00 00 04 37 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=408798761
00 05 00 00 00 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=YES c=5
example from the read with crc errors:
00 02 00 00 00 00 00 00 00 6d 38 00 ff ff 00 00 fe ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=YES c=2
00 02 00 00 22 00 00 00 00 e0 1f 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
00 e1 61 5d 19 00 00 00 00 df 0b 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff 00 00 ff ff crc=NO
00 05 00 00 20 00 00 00 00 8d 39 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff crc=NO

View File

@ -622,9 +622,9 @@ Protocol: 2.08+
The payload may be compressed. The format of both the compressed and
uncompressed data should be determined using the standard magic
numbers. The currently supported compression formats are gzip
(magic numbers 1F 8B or 1F 9E), bzip2 (magic number 42 5A) and LZMA
(magic number 5D 00). The uncompressed payload is currently always ELF
(magic number 7F 45 4C 46).
(magic numbers 1F 8B or 1F 9E), bzip2 (magic number 42 5A), LZMA
(magic number 5D 00), and XZ (magic number FD 37). The uncompressed
payload is currently always ELF (magic number 7F 45 4C 46).
Field name: payload_length
Type: read

121
Documentation/xz.txt Normal file
View File

@ -0,0 +1,121 @@
XZ data compression in Linux
============================
Introduction
XZ is a general purpose data compression format with high compression
ratio and relatively fast decompression. The primary compression
algorithm (filter) is LZMA2. Additional filters can be used to improve
compression ratio even further. E.g. Branch/Call/Jump (BCJ) filters
improve compression ratio of executable data.
The XZ decompressor in Linux is called XZ Embedded. It supports
the LZMA2 filter and optionally also BCJ filters. CRC32 is supported
for integrity checking. The home page of XZ Embedded is at
<http://tukaani.org/xz/embedded.html>, where you can find the
latest version and also information about using the code outside
the Linux kernel.
For userspace, XZ Utils provide a zlib-like compression library
and a gzip-like command line tool. XZ Utils can be downloaded from
<http://tukaani.org/xz/>.
XZ related components in the kernel
The xz_dec module provides XZ decompressor with single-call (buffer
to buffer) and multi-call (stateful) APIs. The usage of the xz_dec
module is documented in include/linux/xz.h.
The xz_dec_test module is for testing xz_dec. xz_dec_test is not
useful unless you are hacking the XZ decompressor. xz_dec_test
allocates a char device major dynamically to which one can write
.xz files from userspace. The decompressed output is thrown away.
Keep an eye on dmesg to see diagnostics printed by xz_dec_test.
See the xz_dec_test source code for the details.
For decompressing the kernel image, initramfs, and initrd, there
is a wrapper function in lib/decompress_unxz.c. Its API is the
same as in other decompress_*.c files, which is defined in
include/linux/decompress/generic.h.
scripts/xz_wrap.sh is a wrapper for the xz command line tool found
from XZ Utils. The wrapper sets compression options to values suitable
for compressing the kernel image.
For kernel makefiles, two commands are provided for use with
$(call if_needed). The kernel image should be compressed with
$(call if_needed,xzkern) which will use a BCJ filter and a big LZMA2
dictionary. It will also append a four-byte trailer containing the
uncompressed size of the file, which is needed by the boot code.
Other things should be compressed with $(call if_needed,xzmisc)
which will use no BCJ filter and 1 MiB LZMA2 dictionary.
Notes on compression options
Since the XZ Embedded supports only streams with no integrity check or
CRC32, make sure that you don't use some other integrity check type
when encoding files that are supposed to be decoded by the kernel. With
liblzma, you need to use either LZMA_CHECK_NONE or LZMA_CHECK_CRC32
when encoding. With the xz command line tool, use --check=none or
--check=crc32.
Using CRC32 is strongly recommended unless there is some other layer
which will verify the integrity of the uncompressed data anyway.
Double checking the integrity would probably be waste of CPU cycles.
Note that the headers will always have a CRC32 which will be validated
by the decoder; you can only change the integrity check type (or
disable it) for the actual uncompressed data.
In userspace, LZMA2 is typically used with dictionary sizes of several
megabytes. The decoder needs to have the dictionary in RAM, thus big
dictionaries cannot be used for files that are intended to be decoded
by the kernel. 1 MiB is probably the maximum reasonable dictionary
size for in-kernel use (maybe more is OK for initramfs). The presets
in XZ Utils may not be optimal when creating files for the kernel,
so don't hesitate to use custom settings. Example:
xz --check=crc32 --lzma2=dict=512KiB inputfile
An exception to above dictionary size limitation is when the decoder
is used in single-call mode. Decompressing the kernel itself is an
example of this situation. In single-call mode, the memory usage
doesn't depend on the dictionary size, and it is perfectly fine to
use a big dictionary: for maximum compression, the dictionary should
be at least as big as the uncompressed data itself.
Future plans
Creating a limited XZ encoder may be considered if people think it is
useful. LZMA2 is slower to compress than e.g. Deflate or LZO even at
the fastest settings, so it isn't clear if LZMA2 encoder is wanted
into the kernel.
Support for limited random-access reading is planned for the
decompression code. I don't know if it could have any use in the
kernel, but I know that it would be useful in some embedded projects
outside the Linux kernel.
Conformance to the .xz file format specification
There are a couple of corner cases where things have been simplified
at expense of detecting errors as early as possible. These should not
matter in practice all, since they don't cause security issues. But
it is good to know this if testing the code e.g. with the test files
from XZ Utils.
Reporting bugs
Before reporting a bug, please check that it's not fixed already
at upstream. See <http://tukaani.org/xz/embedded.html> to get the
latest code.
Report bugs to <lasse.collin@tukaani.org> or visit #tukaani on
Freenode and talk to Larhzu. I don't actively read LKML or other
kernel-related mailing lists, so if there's something I should know,
you should email to me personally or use IRC.
Don't bother Igor Pavlov with questions about the XZ implementation
in the kernel or about XZ Utils. While these two implementations
include essential code that is directly based on Igor Pavlov's code,
these implementations aren't maintained nor supported by him.

View File

@ -347,8 +347,8 @@ bugzilla.kernel.org是Linux内核开发者们用来跟踪内核Bug的网站。
最新bug的通知可以订阅bugme-new邮件列表只有新的bug报告会被寄到这里
或者订阅bugme-janitor邮件列表所有bugzilla的变动都会被寄到这里
http://lists.osdl.org/mailman/listinfo/bugme-new
http://lists.osdl.org/mailman/listinfo/bugme-janitors
https://lists.linux-foundation.org/mailman/listinfo/bugme-new
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
邮件列表

View File

@ -61,7 +61,7 @@ Linux 2.4:
Linux 2.6:
除了遵循和 2.4 版内核同样的规则外,你还需要在 linux-kernel 邮件
列表上跟踪最新的 API 变化。向 Linux 2.6 内核提交驱动的顶级联系人
是 Andrew Morton <akpm@osdl.org>。
是 Andrew Morton <akpm@linux-foundation.org>。
决定设备驱动能否被接受的条件
----------------------------

View File

@ -162,7 +162,7 @@ L: linux-serial@vger.kernel.org
W: http://serial.sourceforge.net
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty-2.6.git
F: drivers/serial/8250*
F: drivers/tty/serial/8250*
F: include/linux/serial_8250.h
8390 NETWORK DRIVERS [WD80x3/SMC-ELITE, SMC-ULTRA, NE2000, 3C503, etc.]
@ -285,6 +285,41 @@ L: linux-parisc@vger.kernel.org
S: Maintained
F: sound/pci/ad1889.*
AD525X ANALOG DEVICES DIGITAL POTENTIOMETERS DRIVER
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/AD5254
S: Supported
F: drivers/misc/ad525x_dpot.c
AD5398 CURRENT REGULATOR DRIVER (AD5398/AD5821)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/AD5398
S: Supported
F: drivers/regulator/ad5398.c
AD714X CAPACITANCE TOUCH SENSOR DRIVER (AD7142/3/7/8/7A)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/AD7142
S: Supported
F: drivers/input/misc/ad714x.c
AD7877 TOUCHSCREEN DRIVER
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/AD7877
S: Supported
F: drivers/input/touchscreen/ad7877.c
AD7879 TOUCHSCREEN DRIVER (AD7879/AD7889)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/AD7879
S: Supported
F: drivers/input/touchscreen/ad7879.c
ADM1025 HARDWARE MONITOR DRIVER
M: Jean Delvare <khali@linux-fr.org>
L: lm-sensors@lm-sensors.org
@ -304,6 +339,32 @@ W: http://linuxwireless.org/
S: Orphan
F: drivers/net/wireless/adm8211.*
ADP5520 BACKLIGHT DRIVER WITH IO EXPANDER (ADP5520/ADP5501)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/ADP5520
S: Supported
F: drivers/mfd/adp5520.c
F: drivers/video/backlight/adp5520_bl.c
F: drivers/led/leds-adp5520.c
F: drivers/gpio/adp5520-gpio.c
F: drivers/input/keyboard/adp5520-keys.c
ADP5588 QWERTY KEYPAD AND IO EXPANDER DRIVER (ADP5588/ADP5587)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/ADP5588
S: Supported
F: drivers/input/keyboard/adp5588-keys.c
F: drivers/gpio/adp5588-gpio.c
ADP8860 BACKLIGHT DRIVER (ADP8860/ADP8861/ADP8863)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/ADP8860
S: Supported
F: drivers/video/backlight/adp8860_bl.c
ADT746X FAN DRIVER
M: Colin Leroy <colin@colino.net>
S: Maintained
@ -316,6 +377,13 @@ S: Maintained
F: Documentation/hwmon/adt7475
F: drivers/hwmon/adt7475.c
ADXL34X THREE-AXIS DIGITAL ACCELEROMETER DRIVER (ADXL345/ADXL346)
M: Michael Hennerich <michael.hennerich@analog.com>
L: device-driver-devel@blackfin.uclinux.org
W: http://wiki-analog.com/ADXL345
S: Supported
F: drivers/input/misc/adxl34x.c
ADVANSYS SCSI DRIVER
M: Matthew Wilcox <matthew@wil.cx>
L: linux-scsi@vger.kernel.org
@ -428,7 +496,6 @@ S: Supported
F: arch/x86/kernel/microcode_amd.c
AMS (Apple Motion Sensor) DRIVER
M: Stelian Pop <stelian@popies.net>
M: Michael Hanselmann <linux-kernel@hansmi.ch>
S: Supported
F: drivers/macintosh/ams/
@ -440,16 +507,22 @@ L: linux-rdma@vger.kernel.org
S: Maintained
F: drivers/infiniband/hw/amso1100/
ANALOG DEVICES INC ASOC CODEC DRIVERS
L: device-driver-devel@blackfin.uclinux.org
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
W: http://wiki-analog.com/
S: Supported
F: sound/soc/codecs/ad1*
F: sound/soc/codecs/adau*
F: sound/soc/codecs/adav*
F: sound/soc/codecs/ssm*
ANALOG DEVICES INC ASOC DRIVERS
L: uclinux-dist-devel@blackfin.uclinux.org
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
W: http://blackfin.uclinux.org/
S: Supported
F: sound/soc/blackfin/*
F: sound/soc/codecs/ad1*
F: sound/soc/codecs/adau*
F: sound/soc/codecs/adav*
F: sound/soc/codecs/ssm*
AOA (Apple Onboard Audio) ALSA DRIVER
M: Johannes Berg <johannes@sipsolutions.net>
@ -551,11 +624,15 @@ M: Lennert Buytenhek <kernel@wantstofly.org>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
ARM/ATMEL AT91RM9200 ARM ARCHITECTURE
ARM/ATMEL AT91RM9200 AND AT91SAM ARM ARCHITECTURES
M: Andrew Victor <linux@maxim.org.za>
M: Nicolas Ferre <nicolas.ferre@atmel.com>
M: Jean-Christophe Plagniol-Villard <plagnioj@jcrosoft.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
W: http://maxim.org.za/at91_26.html
S: Maintained
W: http://www.linux4sam.org
S: Supported
F: arch/arm/mach-at91/
ARM/BCMRING ARM ARCHITECTURE
M: Jiandong Zheng <jdzheng@broadcom.com>
@ -815,8 +892,8 @@ F: arch/arm/mach-msm/
F: drivers/video/msm/
F: drivers/mmc/host/msm_sdcc.c
F: drivers/mmc/host/msm_sdcc.h
F: drivers/serial/msm_serial.h
F: drivers/serial/msm_serial.c
F: drivers/tty/serial/msm_serial.h
F: drivers/tty/serial/msm_serial.c
T: git git://codeaurora.org/quic/kernel/davidb/linux-msm.git
S: Maintained
@ -1183,7 +1260,7 @@ F: drivers/mmc/host/atmel-mci-regs.h
ATMEL AT91 / AT32 SERIAL DRIVER
M: Nicolas Ferre <nicolas.ferre@atmel.com>
S: Supported
F: drivers/serial/atmel_serial.c
F: drivers/tty/serial/atmel_serial.c
ATMEL LCDFB DRIVER
M: Nicolas Ferre <nicolas.ferre@atmel.com>
@ -1339,7 +1416,7 @@ M: Sonic Zhang <sonic.zhang@analog.com>
L: uclinux-dist-devel@blackfin.uclinux.org
W: http://blackfin.uclinux.org
S: Supported
F: drivers/serial/bfin_5xx.c
F: drivers/tty/serial/bfin_5xx.c
BLACKFIN WATCHDOG DRIVER
M: Mike Frysinger <vapier.adi@gmail.com>
@ -1423,7 +1500,9 @@ F: drivers/net/tg3.*
BROADCOM BRCM80211 IEEE802.11n WIRELESS DRIVER
M: Brett Rudley <brudley@broadcom.com>
M: Henry Ptasinski <henryp@broadcom.com>
M: Nohee Ko <noheek@broadcom.com>
M: Dowan Kim <dowan@broadcom.com>
M: Roland Vossen <rvossen@broadcom.com>
M: Arend van Spriel <arend@broadcom.com>
L: linux-wireless@vger.kernel.org
S: Supported
F: drivers/staging/brcm80211/
@ -1448,6 +1527,14 @@ S: Supported
F: block/bsg.c
F: include/linux/bsg.h
BT87X AUDIO DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
T: git git://git.alsa-project.org/alsa-kernel.git
S: Maintained
F: Documentation/sound/alsa/Bt87x.txt
F: sound/pci/bt87x.c
BT8XXGPIO DRIVER
M: Michael Buesch <mb@bu3sch.de>
W: http://bu3sch.de/btgpio.php
@ -1473,6 +1560,13 @@ S: Maintained
F: Documentation/video4linux/bttv/
F: drivers/media/video/bt8xx/bttv*
C-MEDIA CMI8788 DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
T: git git://git.alsa-project.org/alsa-kernel.git
S: Maintained
F: sound/pci/oxygen/
CACHEFILES: FS-CACHE BACKEND FOR CACHING ON MOUNTED FILESYSTEMS
M: David Howells <dhowells@redhat.com>
L: linux-cachefs@redhat.com
@ -1709,7 +1803,8 @@ S: Maintained
F: drivers/usb/atm/cxacru.c
CONFIGFS
M: Joel Becker <joel.becker@oracle.com>
M: Joel Becker <jlbec@evilplan.org>
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/configfs.git
S: Supported
F: fs/configfs/
F: include/linux/configfs.h
@ -1786,7 +1881,7 @@ L: linux-cris-kernel@axis.com
W: http://developer.axis.com
S: Maintained
F: arch/cris/
F: drivers/serial/crisv10.*
F: drivers/tty/serial/crisv10.*
CRYPTO API
M: Herbert Xu <herbert@gondor.apana.org.au>
@ -1931,7 +2026,7 @@ F: drivers/scsi/dc395x.*
DCCP PROTOCOL
M: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
L: dccp@vger.kernel.org
W: http://linux-net.osdl.org/index.php/DCCP
W: http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp
S: Maintained
F: include/linux/dccp.h
F: include/linux/tfrc.h
@ -2125,7 +2220,7 @@ F: drivers/net/wan/dscc4.c
DZ DECSTATION DZ11 SERIAL DRIVER
M: "Maciej W. Rozycki" <macro@linux-mips.org>
S: Maintained
F: drivers/serial/dz.*
F: drivers/tty/serial/dz.*
EATA-DMA SCSI DRIVER
M: Michael Neuffer <mike@i-Connect.Net>
@ -2263,6 +2358,13 @@ W: bluesmoke.sourceforge.net
S: Maintained
F: drivers/edac/r82600_edac.c
EDIROL UA-101/UA-1000 DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
T: git git://git.alsa-project.org/alsa-kernel.git
S: Maintained
F: sound/usb/misc/ua101.c
EEEPC LAPTOP EXTRAS DRIVER
M: Corentin Chary <corentincj@iksaif.net>
L: acpi4asus-user@lists.sourceforge.net
@ -2271,6 +2373,14 @@ W: http://acpi4asus.sf.net
S: Maintained
F: drivers/platform/x86/eeepc-laptop.c
EEEPC WMI EXTRAS DRIVER
M: Corentin Chary <corentincj@iksaif.net>
L: acpi4asus-user@lists.sourceforge.net
L: platform-driver-x86@vger.kernel.org
W: http://acpi4asus.sf.net
S: Maintained
F: drivers/platform/x86/eeepc-wmi.c
EFIFB FRAMEBUFFER DRIVER
L: linux-fbdev@vger.kernel.org
M: Peter Jones <pjones@redhat.com>
@ -2345,7 +2455,7 @@ ETHERNET BRIDGE
M: Stephen Hemminger <shemminger@linux-foundation.org>
L: bridge@lists.linux-foundation.org
L: netdev@vger.kernel.org
W: http://www.linux-foundation.org/en/Net:Bridge
W: http://www.linuxfoundation.org/en/Net:Bridge
S: Maintained
F: include/linux/netfilter_bridge/
F: net/bridge/
@ -2537,7 +2647,7 @@ FREESCALE QUICC ENGINE UCC UART DRIVER
M: Timur Tabi <timur@freescale.com>
L: linuxppc-dev@lists.ozlabs.org
S: Supported
F: drivers/serial/ucc_uart.c
F: drivers/tty/serial/ucc_uart.c
FREESCALE SOC SOUND DRIVERS
M: Timur Tabi <timur@freescale.com>
@ -2608,6 +2718,14 @@ S: Supported
F: drivers/i2c/busses/i2c-gpio.c
F: include/linux/i2c-gpio.h
GENERIC GPIO I2C MULTIPLEXER DRIVER
M: Peter Korsgaard <peter.korsgaard@barco.com>
L: linux-i2c@vger.kernel.org
S: Supported
F: drivers/i2c/muxes/gpio-i2cmux.c
F: include/linux/gpio-i2cmux.h
F: Documentation/i2c/muxes/gpio-i2cmux
GENERIC HDLC (WAN) DRIVERS
M: Krzysztof Halasa <khc@pm.waw.pl>
W: http://www.kernel.org/pub/linux/utils/net/hdlc/
@ -3032,7 +3150,7 @@ S: Orphan
F: drivers/video/imsttfb.c
INFINIBAND SUBSYSTEM
M: Roland Dreier <rolandd@cisco.com>
M: Roland Dreier <roland@kernel.org>
M: Sean Hefty <sean.hefty@intel.com>
M: Hal Rosenstock <hal.rosenstock@gmail.com>
L: linux-rdma@vger.kernel.org
@ -3236,7 +3354,7 @@ IOC3 SERIAL DRIVER
M: Pat Gefre <pfg@sgi.com>
L: linux-serial@vger.kernel.org
S: Maintained
F: drivers/serial/ioc3_serial.c
F: drivers/tty/serial/ioc3_serial.c
IP MASQUERADING
M: Juanjo Ciarlante <jjciarla@raiz.uncu.edu.ar>
@ -3413,7 +3531,14 @@ JSM Neo PCI based serial card
M: Breno Leitao <leitao@linux.vnet.ibm.com>
L: linux-serial@vger.kernel.org
S: Maintained
F: drivers/serial/jsm/
F: drivers/tty/serial/jsm/
K10TEMP HARDWARE MONITORING DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: lm-sensors@lm-sensors.org
S: Maintained
F: Documentation/hwmon/k10temp
F: drivers/hwmon/k10temp.c
K8TEMP HARDWARE MONITORING DRIVER
M: Rudolf Marek <r.marek@assembler.cz>
@ -3549,6 +3674,28 @@ F: include/linux/key-type.h
F: include/keys/
F: security/keys/
KEYS-TRUSTED
M: David Safford <safford@watson.ibm.com>
M: Mimi Zohar <zohar@us.ibm.com>
L: linux-security-module@vger.kernel.org
L: keyrings@linux-nfs.org
S: Supported
F: Documentation/keys-trusted-encrypted.txt
F: include/keys/trusted-type.h
F: security/keys/trusted.c
F: security/keys/trusted.h
KEYS-ENCRYPTED
M: Mimi Zohar <zohar@us.ibm.com>
M: David Safford <safford@watson.ibm.com>
L: linux-security-module@vger.kernel.org
L: keyrings@linux-nfs.org
S: Supported
F: Documentation/keys-trusted-encrypted.txt
F: include/keys/encrypted-type.h
F: security/keys/encrypted.c
F: security/keys/encrypted.h
KGDB / KDB /debug_core
M: Jason Wessel <jason.wessel@windriver.com>
W: http://kgdb.wiki.kernel.org/
@ -3556,14 +3703,14 @@ L: kgdb-bugreport@lists.sourceforge.net
S: Maintained
F: Documentation/DocBook/kgdb.tmpl
F: drivers/misc/kgdbts.c
F: drivers/serial/kgdboc.c
F: drivers/tty/serial/kgdboc.c
F: include/linux/kdb.h
F: include/linux/kgdb.h
F: kernel/debug/
KMEMCHECK
M: Vegard Nossum <vegardno@ifi.uio.no>
M: Pekka Enberg <penberg@cs.helsinki.fi>
M: Pekka Enberg <penberg@kernel.org>
S: Maintained
F: Documentation/kmemcheck.txt
F: arch/x86/include/asm/kmemcheck.h
@ -4000,9 +4147,8 @@ F: include/linux/module.h
F: kernel/module.c
MOTION EYE VAIO PICTUREBOOK CAMERA DRIVER
M: Stelian Pop <stelian@popies.net>
W: http://popies.net/meye/
S: Maintained
S: Orphan
F: Documentation/video4linux/meye.txt
F: drivers/media/video/meye.*
F: include/linux/meye.h
@ -4268,6 +4414,7 @@ NILFS2 FILESYSTEM
M: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
L: linux-nilfs@vger.kernel.org
W: http://www.nilfs.org/en/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke/nilfs2.git
S: Supported
F: Documentation/filesystems/nilfs2.txt
F: fs/nilfs2/
@ -4289,11 +4436,11 @@ F: Documentation/scsi/NinjaSCSI.txt
F: drivers/scsi/nsp32*
NTFS FILESYSTEM
M: Anton Altaparmakov <aia21@cantab.net>
M: Anton Altaparmakov <anton@tuxera.com>
L: linux-ntfs-dev@lists.sourceforge.net
W: http://www.linux-ntfs.org/
W: http://www.tuxera.com/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/aia21/ntfs-2.6.git
S: Maintained
S: Supported
F: Documentation/filesystems/ntfs.txt
F: fs/ntfs/
@ -4445,6 +4592,13 @@ F: drivers/of
F: include/linux/of*.h
K: of_get_property
OPL4 DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
T: git git://git.alsa-project.org/alsa-kernel.git
S: Maintained
F: sound/drivers/opl4/
OPROFILE
M: Robert Richter <robert.richter@amd.com>
L: oprofile-list@lists.sf.net
@ -4456,7 +4610,7 @@ F: include/linux/oprofile.h
ORACLE CLUSTER FILESYSTEM 2 (OCFS2)
M: Mark Fasheh <mfasheh@suse.com>
M: Joel Becker <joel.becker@oracle.com>
M: Joel Becker <jlbec@evilplan.org>
L: ocfs2-devel@oss.oracle.com (moderated for non-subscribers)
W: http://oss.oracle.com/projects/ocfs2/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2.git
@ -4541,7 +4695,7 @@ M: Jeremy Fitzhardinge <jeremy@xensource.com>
M: Chris Wright <chrisw@sous-sol.org>
M: Alok Kataria <akataria@vmware.com>
M: Rusty Russell <rusty@rustcorp.com.au>
L: virtualization@lists.osdl.org
L: virtualization@lists.linux-foundation.org
S: Supported
F: Documentation/ia64/paravirt_ops.txt
F: arch/*/kernel/paravirt*
@ -5039,11 +5193,6 @@ F: kernel/rcu*
F: kernel/srcu*
X: kernel/rcutorture.c
REAL TIME CLOCK DRIVER (LEGACY)
M: Paul Gortmaker <p_gortmaker@yahoo.com>
S: Maintained
F: drivers/char/rtc.c
REAL TIME CLOCK (RTC) SUBSYSTEM
M: Alessandro Zummo <a.zummo@towertech.it>
L: rtc-linux@googlegroups.com
@ -5149,8 +5298,7 @@ S: Supported
F: drivers/s390/net/
S390 ZCRYPT DRIVER
M: Felix Beck <felix.beck@de.ibm.com>
M: Ralph Wuerthner <ralph.wuerthner@de.ibm.com>
M: Holger Dengler <hd@linux.vnet.ibm.com>
M: linux390@de.ibm.com
L: linux-s390@vger.kernel.org
W: http://www.ibm.com/developerworks/linux/linux390/
@ -5196,7 +5344,7 @@ SAMSUNG AUDIO (ASoC) DRIVERS
M: Jassi Brar <jassi.brar@samsung.com>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
S: Supported
F: sound/soc/s3c24xx
F: sound/soc/samsung
TIMEKEEPING, NTP
M: John Stultz <johnstul@us.ibm.com>
@ -5423,7 +5571,7 @@ M: Pat Gefre <pfg@sgi.com>
L: linux-ia64@vger.kernel.org
S: Supported
F: Documentation/ia64/serial.txt
F: drivers/serial/ioc?_serial.c
F: drivers/tty/serial/ioc?_serial.c
F: include/linux/ioc?.h
SGI VISUAL WORKSTATION 320 AND 540
@ -5445,7 +5593,7 @@ L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: Documentation/arm/Sharp-LH/ADC-LH7-Touchscreen
F: arch/arm/mach-lh7a40x/
F: drivers/serial/serial_lh7a40x.c
F: drivers/tty/serial/serial_lh7a40x.c
F: drivers/usb/gadget/lh7a40*
F: drivers/usb/host/ohci-lh7a40*
@ -5524,7 +5672,7 @@ F: drivers/net/sky2.*
SLAB ALLOCATOR
M: Christoph Lameter <cl@linux-foundation.org>
M: Pekka Enberg <penberg@cs.helsinki.fi>
M: Pekka Enberg <penberg@kernel.org>
M: Matt Mackall <mpm@selenic.com>
L: linux-mm@kvack.org
S: Maintained
@ -5665,14 +5813,14 @@ L: sparclinux@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6.git
T: git git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next-2.6.git
S: Maintained
F: drivers/serial/suncore.c
F: drivers/serial/suncore.h
F: drivers/serial/sunhv.c
F: drivers/serial/sunsab.c
F: drivers/serial/sunsab.h
F: drivers/serial/sunsu.c
F: drivers/serial/sunzilog.c
F: drivers/serial/sunzilog.h
F: drivers/tty/serial/suncore.c
F: drivers/tty/serial/suncore.h
F: drivers/tty/serial/sunhv.c
F: drivers/tty/serial/sunsab.c
F: drivers/tty/serial/sunsab.h
F: drivers/tty/serial/sunsu.c
F: drivers/tty/serial/sunzilog.c
F: drivers/tty/serial/sunzilog.h
SPEAR PLATFORM SUPPORT
M: Viresh Kumar <viresh.kumar@st.com>
@ -5929,7 +6077,8 @@ F: drivers/net/tlan.*
TOMOYO SECURITY MODULE
M: Kentaro Takeda <takedakn@nttdata.co.jp>
M: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
L: tomoyo-users-en@lists.sourceforge.jp (subscribers-only, for developers and users in English)
L: tomoyo-dev-en@lists.sourceforge.jp (subscribers-only, for developers in English)
L: tomoyo-users-en@lists.sourceforge.jp (subscribers-only, for users in English)
L: tomoyo-dev@lists.sourceforge.jp (subscribers-only, for developers in Japanese)
L: tomoyo-users@lists.sourceforge.jp (subscribers-only, for users in Japanese)
W: http://tomoyo.sourceforge.jp/
@ -6001,8 +6150,8 @@ TTY LAYER
M: Greg Kroah-Hartman <gregkh@suse.de>
S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty-2.6.git
F: drivers/char/tty_*
F: drivers/serial/serial_core.c
F: drivers/tty/*
F: drivers/tty/serial/serial_core.c
F: include/linux/serial_core.h
F: include/linux/serial.h
F: include/linux/tty.h
@ -6203,6 +6352,13 @@ S: Maintained
W: http://www.one-eyed-alien.net/~mdharm/linux-usb/
F: drivers/usb/storage/
USB MIDI DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
T: git git://git.alsa-project.org/alsa-kernel.git
S: Maintained
F: sound/usb/midi.*
USB OHCI DRIVER
M: David Brownell <dbrownell@users.sourceforge.net>
L: linux-usb@vger.kernel.org
@ -6442,7 +6598,7 @@ F: include/linux/virtio_console.h
VIRTIO HOST (VHOST)
M: "Michael S. Tsirkin" <mst@redhat.com>
L: kvm@vger.kernel.org
L: virtualization@lists.osdl.org
L: virtualization@lists.linux-foundation.org
L: netdev@vger.kernel.org
S: Maintained
F: drivers/vhost/
@ -6461,13 +6617,12 @@ F: Documentation/i2c/busses/i2c-viapro
F: drivers/i2c/busses/i2c-viapro.c
VIA SD/MMC CARD CONTROLLER DRIVER
M: Joseph Chan <JosephChan@via.com.tw>
M: Bruce Chang <brucechang@via.com.tw>
M: Harald Welte <HaraldWelte@viatech.com>
S: Maintained
F: drivers/mmc/host/via-sdmmc.c
VIA UNICHROME(PRO)/CHROME9 FRAMEBUFFER DRIVER
M: Joseph Chan <JosephChan@via.com.tw>
M: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
L: linux-fbdev@vger.kernel.org
S: Maintained
@ -6492,7 +6647,7 @@ F: net/8021q/
VLYNQ BUS
M: Florian Fainelli <florian@openwrt.org>
L: openwrt-devel@lists.openwrt.org
L: openwrt-devel@lists.openwrt.org (subscribers-only)
S: Maintained
F: drivers/vlynq/vlynq.c
F: include/linux/vlynq.h
@ -6712,7 +6867,7 @@ XEN HYPERVISOR INTERFACE
M: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
M: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
L: xen-devel@lists.xensource.com (moderated for non-subscribers)
L: virtualization@lists.osdl.org
L: virtualization@lists.linux-foundation.org
S: Supported
F: arch/x86/xen/
F: drivers/*/xen-*front.c
@ -6741,7 +6896,7 @@ XILINX UARTLITE SERIAL DRIVER
M: Peter Korsgaard <jacmet@sunsite.dk>
L: linux-serial@vger.kernel.org
S: Maintained
F: drivers/serial/uartlite.c
F: drivers/tty/serial/uartlite.c
YAM DRIVER FOR AX.25
M: Jean-Paul Roubelat <jpr@f6fbb.org>
@ -6787,7 +6942,7 @@ F: drivers/media/video/zoran/
ZS DECSTATION Z85C30 SERIAL DRIVER
M: "Maciej W. Rozycki" <macro@linux-mips.org>
S: Maintained
F: drivers/serial/zs.*
F: drivers/tty/serial/zs.*
GRE DEMULTIPLEXER DRIVER
M: Dmitry Kozlov <xeb@mail.ru>

View File

@ -1,7 +1,7 @@
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 37
EXTRAVERSION =
SUBLEVEL = 38
EXTRAVERSION = -rc2
NAME = Flesh-Eating Bats with Fangs
# *DOCUMENTATION*
@ -224,6 +224,7 @@ ifeq ($(ARCH),m68knommu)
endif
KCONFIG_CONFIG ?= .config
export KCONFIG_CONFIG
# SHELL used by kbuild
CONFIG_SHELL := $(shell if [ -x "$$BASH" ]; then echo $$BASH; \

View File

@ -8,6 +8,9 @@ config ALPHA
select HAVE_IRQ_WORK
select HAVE_PERF_EVENTS
select HAVE_DMA_ATTRS
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_PROBE
select AUTO_IRQ_AFFINITY if SMP
help
The Alpha is a 64-bit general-purpose processor designed and
marketed by the Digital Equipment Corporation of blessed memory,
@ -68,19 +71,6 @@ config GENERIC_IOMAP
bool
default n
config GENERIC_HARDIRQS
bool
default y
config GENERIC_IRQ_PROBE
bool
default y
config AUTO_IRQ_AFFINITY
bool
depends on SMP
default y
source "init/Kconfig"
source "kernel/Kconfig.freezer"

View File

@ -37,8 +37,9 @@
*/
extern inline void __set_hae(unsigned long new_hae)
{
unsigned long flags;
local_irq_save(flags);
unsigned long flags = swpipl(IPL_MAX);
barrier();
alpha_mv.hae_cache = new_hae;
*alpha_mv.hae_register = new_hae;
@ -46,7 +47,8 @@ extern inline void __set_hae(unsigned long new_hae)
/* Re-read to make sure it was written. */
new_hae = *alpha_mv.hae_register;
local_irq_restore(flags);
setipl(flags);
barrier();
}
extern inline void set_hae(unsigned long new_hae)

View File

@ -53,6 +53,9 @@
#define MADV_MERGEABLE 12 /* KSM may merge identical pages */
#define MADV_UNMERGEABLE 13 /* KSM may not merge identical pages */
#define MADV_HUGEPAGE 14 /* Worth backing with hugepages */
#define MADV_NOHUGEPAGE 15 /* Not worth backing with hugepages */
/* compatibility flags */
#define MAP_FILE 0

View File

@ -3,8 +3,8 @@
#
extra-y := head.o vmlinux.lds
EXTRA_AFLAGS := $(KBUILD_CFLAGS)
EXTRA_CFLAGS := -Werror -Wno-sign-compare
asflags-y := $(KBUILD_CFLAGS)
ccflags-y := -Werror -Wno-sign-compare
obj-y := entry.o traps.o process.o init_task.o osf_sys.o irq.o \
irq_alpha.o signal.o setup.o ptrace.o time.o \

View File

@ -44,10 +44,11 @@ static char irq_user_affinity[NR_IRQS];
int irq_select_affinity(unsigned int irq)
{
struct irq_desc *desc = irq_to_desc[irq];
static int last_cpu;
int cpu = last_cpu + 1;
if (!irq_desc[irq].chip->set_affinity || irq_user_affinity[irq])
if (!desc || !get_irq_desc_chip(desc)->set_affinity || irq_user_affinity[irq])
return 1;
while (!cpu_possible(cpu) ||
@ -55,8 +56,8 @@ int irq_select_affinity(unsigned int irq)
cpu = (cpu < (NR_CPUS-1) ? cpu + 1 : 0);
last_cpu = cpu;
cpumask_copy(irq_desc[irq].affinity, cpumask_of(cpu));
irq_desc[irq].chip->set_affinity(irq, cpumask_of(cpu));
cpumask_copy(desc->affinity, cpumask_of(cpu));
get_irq_desc_chip(desc)->set_affinity(irq, cpumask_of(cpu));
return 0;
}
#endif /* CONFIG_SMP */
@ -67,6 +68,7 @@ show_interrupts(struct seq_file *p, void *v)
int j;
int irq = *(loff_t *) v;
struct irqaction * action;
struct irq_desc *desc;
unsigned long flags;
#ifdef CONFIG_SMP
@ -79,8 +81,13 @@ show_interrupts(struct seq_file *p, void *v)
#endif
if (irq < ACTUAL_NR_IRQS) {
raw_spin_lock_irqsave(&irq_desc[irq].lock, flags);
action = irq_desc[irq].action;
desc = irq_to_desc(irq);
if (!desc)
return 0;
raw_spin_lock_irqsave(&desc->lock, flags);
action = desc->action;
if (!action)
goto unlock;
seq_printf(p, "%3d: ", irq);
@ -90,7 +97,7 @@ show_interrupts(struct seq_file *p, void *v)
for_each_online_cpu(j)
seq_printf(p, "%10u ", kstat_irqs_cpu(irq, j));
#endif
seq_printf(p, " %14s", irq_desc[irq].chip->name);
seq_printf(p, " %14s", get_irq_desc_chip(desc)->name);
seq_printf(p, " %c%s",
(action->flags & IRQF_DISABLED)?'+':' ',
action->name);
@ -103,7 +110,7 @@ show_interrupts(struct seq_file *p, void *v)
seq_putc(p, '\n');
unlock:
raw_spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
raw_spin_unlock_irqrestore(&desc->lock, flags);
} else if (irq == ACTUAL_NR_IRQS) {
#ifdef CONFIG_SMP
seq_puts(p, "IPI: ");
@ -142,8 +149,10 @@ handle_irq(int irq)
* handled by some other CPU. (or is disabled)
*/
static unsigned int illegal_count=0;
struct irq_desc *desc = irq_to_desc(irq);
if ((unsigned) irq > ACTUAL_NR_IRQS && illegal_count < MAX_ILLEGAL_IRQS ) {
if (!desc || ((unsigned) irq > ACTUAL_NR_IRQS &&
illegal_count < MAX_ILLEGAL_IRQS)) {
irq_err_count++;
illegal_count++;
printk(KERN_CRIT "device_interrupt: invalid interrupt %d\n",
@ -151,14 +160,14 @@ handle_irq(int irq)
return;
}
irq_enter();
/*
* __do_IRQ() must be called with IPL_MAX. Note that we do not
* From here we must proceed with IPL_MAX. Note that we do not
* explicitly enable interrupts afterwards - some MILO PALcode
* (namely LX164 one) seems to have severe problems with RTI
* at IPL 0.
*/
local_irq_disable();
__do_IRQ(irq);
irq_enter();
generic_handle_irq_desc(irq, desc);
irq_exit();
}

View File

@ -219,31 +219,23 @@ process_mcheck_info(unsigned long vector, unsigned long la_ptr,
* processed by PALcode, and comes in via entInt vector 1.
*/
static void rtc_enable_disable(unsigned int irq) { }
static unsigned int rtc_startup(unsigned int irq) { return 0; }
struct irqaction timer_irqaction = {
.handler = timer_interrupt,
.flags = IRQF_DISABLED,
.name = "timer",
};
static struct irq_chip rtc_irq_type = {
.name = "RTC",
.startup = rtc_startup,
.shutdown = rtc_enable_disable,
.enable = rtc_enable_disable,
.disable = rtc_enable_disable,
.ack = rtc_enable_disable,
.end = rtc_enable_disable,
};
void __init
init_rtc_irq(void)
{
irq_desc[RTC_IRQ].status = IRQ_DISABLED;
irq_desc[RTC_IRQ].chip = &rtc_irq_type;
struct irq_desc *desc = irq_to_desc(RTC_IRQ);
if (desc) {
desc->status |= IRQ_DISABLED;
set_irq_chip_and_handler_name(RTC_IRQ, &no_irq_chip,
handle_simple_irq, "RTC");
setup_irq(RTC_IRQ, &timer_irqaction);
}
}
/* Dummy irqactions. */

Some files were not shown because too many files have changed in this diff Show More