mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-11 15:49:56 +00:00
sched: new documentation about CFS
Rewrite of the CFS documentation - because the old one was sorely out-dated. Signed-off-by: Claudio Scordino <claudio@evidence.eu.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
3fb669dd6e
commit
f58e2c33ff
@ -1,151 +1,218 @@
|
||||
|
||||
This is the CFS scheduler.
|
||||
|
||||
80% of CFS's design can be summed up in a single sentence: CFS basically
|
||||
models an "ideal, precise multi-tasking CPU" on real hardware.
|
||||
|
||||
"Ideal multi-tasking CPU" is a (non-existent :-)) CPU that has 100%
|
||||
physical power and which can run each task at precise equal speed, in
|
||||
parallel, each at 1/nr_running speed. For example: if there are 2 tasks
|
||||
running then it runs each at 50% physical power - totally in parallel.
|
||||
|
||||
On real hardware, we can run only a single task at once, so while that
|
||||
one task runs, the other tasks that are waiting for the CPU are at a
|
||||
disadvantage - the current task gets an unfair amount of CPU time. In
|
||||
CFS this fairness imbalance is expressed and tracked via the per-task
|
||||
p->wait_runtime (nanosec-unit) value. "wait_runtime" is the amount of
|
||||
time the task should now run on the CPU for it to become completely fair
|
||||
and balanced.
|
||||
|
||||
( small detail: on 'ideal' hardware, the p->wait_runtime value would
|
||||
always be zero - no task would ever get 'out of balance' from the
|
||||
'ideal' share of CPU time. )
|
||||
|
||||
CFS's task picking logic is based on this p->wait_runtime value and it
|
||||
is thus very simple: it always tries to run the task with the largest
|
||||
p->wait_runtime value. In other words, CFS tries to run the task with
|
||||
the 'gravest need' for more CPU time. So CFS always tries to split up
|
||||
CPU time between runnable tasks as close to 'ideal multitasking
|
||||
hardware' as possible.
|
||||
|
||||
Most of the rest of CFS's design just falls out of this really simple
|
||||
concept, with a few add-on embellishments like nice levels,
|
||||
multiprocessing and various algorithm variants to recognize sleepers.
|
||||
|
||||
In practice it works like this: the system runs a task a bit, and when
|
||||
the task schedules (or a scheduler tick happens) the task's CPU usage is
|
||||
'accounted for': the (small) time it just spent using the physical CPU
|
||||
is deducted from p->wait_runtime. [minus the 'fair share' it would have
|
||||
gotten anyway]. Once p->wait_runtime gets low enough so that another
|
||||
task becomes the 'leftmost task' of the time-ordered rbtree it maintains
|
||||
(plus a small amount of 'granularity' distance relative to the leftmost
|
||||
task so that we do not over-schedule tasks and trash the cache) then the
|
||||
new leftmost task is picked and the current task is preempted.
|
||||
|
||||
The rq->fair_clock value tracks the 'CPU time a runnable task would have
|
||||
fairly gotten, had it been runnable during that time'. So by using
|
||||
rq->fair_clock values we can accurately timestamp and measure the
|
||||
'expected CPU time' a task should have gotten. All runnable tasks are
|
||||
sorted in the rbtree by the "rq->fair_clock - p->wait_runtime" key, and
|
||||
CFS picks the 'leftmost' task and sticks to it. As the system progresses
|
||||
forwards, newly woken tasks are put into the tree more and more to the
|
||||
right - slowly but surely giving a chance for every task to become the
|
||||
'leftmost task' and thus get on the CPU within a deterministic amount of
|
||||
time.
|
||||
|
||||
Some implementation details:
|
||||
|
||||
- the introduction of Scheduling Classes: an extensible hierarchy of
|
||||
scheduler modules. These modules encapsulate scheduling policy
|
||||
details and are handled by the scheduler core without the core
|
||||
code assuming about them too much.
|
||||
|
||||
- sched_fair.c implements the 'CFS desktop scheduler': it is a
|
||||
replacement for the vanilla scheduler's SCHED_OTHER interactivity
|
||||
code.
|
||||
|
||||
I'd like to give credit to Con Kolivas for the general approach here:
|
||||
he has proven via RSDL/SD that 'fair scheduling' is possible and that
|
||||
it results in better desktop scheduling. Kudos Con!
|
||||
|
||||
The CFS patch uses a completely different approach and implementation
|
||||
from RSDL/SD. My goal was to make CFS's interactivity quality exceed
|
||||
that of RSDL/SD, which is a high standard to meet :-) Testing
|
||||
feedback is welcome to decide this one way or another. [ and, in any
|
||||
case, all of SD's logic could be added via a kernel/sched_sd.c module
|
||||
as well, if Con is interested in such an approach. ]
|
||||
|
||||
CFS's design is quite radical: it does not use runqueues, it uses a
|
||||
time-ordered rbtree to build a 'timeline' of future task execution,
|
||||
and thus has no 'array switch' artifacts (by which both the vanilla
|
||||
scheduler and RSDL/SD are affected).
|
||||
|
||||
CFS uses nanosecond granularity accounting and does not rely on any
|
||||
jiffies or other HZ detail. Thus the CFS scheduler has no notion of
|
||||
'timeslices' and has no heuristics whatsoever. There is only one
|
||||
central tunable (you have to switch on CONFIG_SCHED_DEBUG):
|
||||
|
||||
/proc/sys/kernel/sched_granularity_ns
|
||||
|
||||
which can be used to tune the scheduler from 'desktop' (low
|
||||
latencies) to 'server' (good batching) workloads. It defaults to a
|
||||
setting suitable for desktop workloads. SCHED_BATCH is handled by the
|
||||
CFS scheduler module too.
|
||||
|
||||
Due to its design, the CFS scheduler is not prone to any of the
|
||||
'attacks' that exist today against the heuristics of the stock
|
||||
scheduler: fiftyp.c, thud.c, chew.c, ring-test.c, massive_intr.c all
|
||||
work fine and do not impact interactivity and produce the expected
|
||||
behavior.
|
||||
|
||||
the CFS scheduler has a much stronger handling of nice levels and
|
||||
SCHED_BATCH: both types of workloads should be isolated much more
|
||||
agressively than under the vanilla scheduler.
|
||||
|
||||
( another detail: due to nanosec accounting and timeline sorting,
|
||||
sched_yield() support is very simple under CFS, and in fact under
|
||||
CFS sched_yield() behaves much better than under any other
|
||||
scheduler i have tested so far. )
|
||||
|
||||
- sched_rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler
|
||||
way than the vanilla scheduler does. It uses 100 runqueues (for all
|
||||
100 RT priority levels, instead of 140 in the vanilla scheduler)
|
||||
and it needs no expired array.
|
||||
|
||||
- reworked/sanitized SMP load-balancing: the runqueue-walking
|
||||
assumptions are gone from the load-balancing code now, and
|
||||
iterators of the scheduling modules are used. The balancing code got
|
||||
quite a bit simpler as a result.
|
||||
=============
|
||||
CFS Scheduler
|
||||
=============
|
||||
|
||||
|
||||
Group scheduler extension to CFS
|
||||
================================
|
||||
1. OVERVIEW
|
||||
|
||||
Normally the scheduler operates on individual tasks and strives to provide
|
||||
fair CPU time to each task. Sometimes, it may be desirable to group tasks
|
||||
and provide fair CPU time to each such task group. For example, it may
|
||||
be desirable to first provide fair CPU time to each user on the system
|
||||
and then to each task belonging to a user.
|
||||
CFS stands for "Completely Fair Scheduler," and is the new "desktop" process
|
||||
scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the
|
||||
replacement for the previous vanilla scheduler's SCHED_OTHER interactivity
|
||||
code.
|
||||
|
||||
CONFIG_FAIR_GROUP_SCHED strives to achieve exactly that. It lets
|
||||
SCHED_NORMAL/BATCH tasks be be grouped and divides CPU time fairly among such
|
||||
groups. At present, there are two (mutually exclusive) mechanisms to group
|
||||
tasks for CPU bandwidth control purpose:
|
||||
80% of CFS's design can be summed up in a single sentence: CFS basically models
|
||||
an "ideal, precise multi-tasking CPU" on real hardware.
|
||||
|
||||
- Based on user id (CONFIG_FAIR_USER_SCHED)
|
||||
In this option, tasks are grouped according to their user id.
|
||||
- Based on "cgroup" pseudo filesystem (CONFIG_FAIR_CGROUP_SCHED)
|
||||
This options lets the administrator create arbitrary groups
|
||||
of tasks, using the "cgroup" pseudo filesystem. See
|
||||
Documentation/cgroups.txt for more information about this
|
||||
filesystem.
|
||||
"Ideal multi-tasking CPU" is a (non-existent :-)) CPU that has 100% physical
|
||||
power and which can run each task at precise equal speed, in parallel, each at
|
||||
1/nr_running speed. For example: if there are 2 tasks running, then it runs
|
||||
each at 50% physical power --- i.e., actually in parallel.
|
||||
|
||||
On real hardware, we can run only a single task at once, so we have to
|
||||
introduce the concept of "virtual runtime." The virtual runtime of a task
|
||||
specifies when its next timeslice would start execution on the ideal
|
||||
multi-tasking CPU described above. In practice, the virtual runtime of a task
|
||||
is its actual runtime normalized to the total number of running tasks.
|
||||
|
||||
|
||||
|
||||
2. FEW IMPLEMENTATION DETAILS
|
||||
|
||||
In CFS the virtual runtime is expressed and tracked via the per-task
|
||||
p->se.vruntime (nanosec-unit) value. This way, it's possible to accurately
|
||||
timestamp and measure the "expected CPU time" a task should have gotten.
|
||||
|
||||
[ small detail: on "ideal" hardware, at any time all tasks would have the same
|
||||
p->se.vruntime value --- i.e., tasks would execute simultaneously and no task
|
||||
would ever get "out of balance" from the "ideal" share of CPU time. ]
|
||||
|
||||
CFS's task picking logic is based on this p->se.vruntime value and it is thus
|
||||
very simple: it always tries to run the task with the smallest p->se.vruntime
|
||||
value (i.e., the task which executed least so far). CFS always tries to split
|
||||
up CPU time between runnable tasks as close to "ideal multitasking hardware" as
|
||||
possible.
|
||||
|
||||
Most of the rest of CFS's design just falls out of this really simple concept,
|
||||
with a few add-on embellishments like nice levels, multiprocessing and various
|
||||
algorithm variants to recognize sleepers.
|
||||
|
||||
|
||||
|
||||
3. THE RBTREE
|
||||
|
||||
CFS's design is quite radical: it does not use the old data structures for the
|
||||
runqueues, but it uses a time-ordered rbtree to build a "timeline" of future
|
||||
task execution, and thus has no "array switch" artifacts (by which both the
|
||||
previous vanilla scheduler and RSDL/SD are affected).
|
||||
|
||||
CFS also maintains the rq->cfs.min_vruntime value, which is a monotonic
|
||||
increasing value tracking the smallest vruntime among all tasks in the
|
||||
runqueue. The total amount of work done by the system is tracked using
|
||||
min_vruntime; that value is used to place newly activated entities on the left
|
||||
side of the tree as much as possible.
|
||||
|
||||
The total number of running tasks in the runqueue is accounted through the
|
||||
rq->cfs.load value, which is the sum of the weights of the tasks queued on the
|
||||
runqueue.
|
||||
|
||||
CFS maintains a time-ordered rbtree, where all runnable tasks are sorted by the
|
||||
p->se.vruntime key (there is a subtraction using rq->cfs.min_vruntime to
|
||||
account for possible wraparounds). CFS picks the "leftmost" task from this
|
||||
tree and sticks to it.
|
||||
As the system progresses forwards, the executed tasks are put into the tree
|
||||
more and more to the right --- slowly but surely giving a chance for every task
|
||||
to become the "leftmost task" and thus get on the CPU within a deterministic
|
||||
amount of time.
|
||||
|
||||
Summing up, CFS works like this: it runs a task a bit, and when the task
|
||||
schedules (or a scheduler tick happens) the task's CPU usage is "accounted
|
||||
for": the (small) time it just spent using the physical CPU is added to
|
||||
p->se.vruntime. Once p->se.vruntime gets high enough so that another task
|
||||
becomes the "leftmost task" of the time-ordered rbtree it maintains (plus a
|
||||
small amount of "granularity" distance relative to the leftmost task so that we
|
||||
do not over-schedule tasks and trash the cache), then the new leftmost task is
|
||||
picked and the current task is preempted.
|
||||
|
||||
|
||||
|
||||
4. SOME FEATURES OF CFS
|
||||
|
||||
CFS uses nanosecond granularity accounting and does not rely on any jiffies or
|
||||
other HZ detail. Thus the CFS scheduler has no notion of "timeslices" in the
|
||||
way the previous scheduler had, and has no heuristics whatsoever. There is
|
||||
only one central tunable (you have to switch on CONFIG_SCHED_DEBUG):
|
||||
|
||||
/proc/sys/kernel/sched_granularity_ns
|
||||
|
||||
which can be used to tune the scheduler from "desktop" (i.e., low latencies) to
|
||||
"server" (i.e., good batching) workloads. It defaults to a setting suitable
|
||||
for desktop workloads. SCHED_BATCH is handled by the CFS scheduler module too.
|
||||
|
||||
Due to its design, the CFS scheduler is not prone to any of the "attacks" that
|
||||
exist today against the heuristics of the stock scheduler: fiftyp.c, thud.c,
|
||||
chew.c, ring-test.c, massive_intr.c all work fine and do not impact
|
||||
interactivity and produce the expected behavior.
|
||||
|
||||
The CFS scheduler has a much stronger handling of nice levels and SCHED_BATCH
|
||||
than the previous vanilla scheduler: both types of workloads are isolated much
|
||||
more aggressively.
|
||||
|
||||
SMP load-balancing has been reworked/sanitized: the runqueue-walking
|
||||
assumptions are gone from the load-balancing code now, and iterators of the
|
||||
scheduling modules are used. The balancing code got quite a bit simpler as a
|
||||
result.
|
||||
|
||||
|
||||
|
||||
5. SCHEDULING CLASSES
|
||||
|
||||
The new CFS scheduler has been designed in such a way to introduce "Scheduling
|
||||
Classes," an extensible hierarchy of scheduler modules. These modules
|
||||
encapsulate scheduling policy details and are handled by the scheduler core
|
||||
without the core code assuming too much about them.
|
||||
|
||||
sched_fair.c implements the CFS scheduler described above.
|
||||
|
||||
sched_rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler way than
|
||||
the previous vanilla scheduler did. It uses 100 runqueues (for all 100 RT
|
||||
priority levels, instead of 140 in the previous scheduler) and it needs no
|
||||
expired array.
|
||||
|
||||
Scheduling classes are implemented through the sched_class structure, which
|
||||
contains hooks to functions that must be called whenever an interesting event
|
||||
occurs.
|
||||
|
||||
This is the (partial) list of the hooks:
|
||||
|
||||
- enqueue_task(...)
|
||||
|
||||
Called when a task enters a runnable state.
|
||||
It puts the scheduling entity (task) into the red-black tree and
|
||||
increments the nr_running variable.
|
||||
|
||||
- dequeue_tree(...)
|
||||
|
||||
When a task is no longer runnable, this function is called to keep the
|
||||
corresponding scheduling entity out of the red-black tree. It decrements
|
||||
the nr_running variable.
|
||||
|
||||
- yield_task(...)
|
||||
|
||||
This function is basically just a dequeue followed by an enqueue, unless the
|
||||
compat_yield sysctl is turned on; in that case, it places the scheduling
|
||||
entity at the right-most end of the red-black tree.
|
||||
|
||||
- check_preempt_curr(...)
|
||||
|
||||
This function checks if a task that entered the runnable state should
|
||||
preempt the currently running task.
|
||||
|
||||
- pick_next_task(...)
|
||||
|
||||
This function chooses the most appropriate task eligible to run next.
|
||||
|
||||
- set_curr_task(...)
|
||||
|
||||
This function is called when a task changes its scheduling class or changes
|
||||
its task group.
|
||||
|
||||
- task_tick(...)
|
||||
|
||||
This function is mostly called from time tick functions; it might lead to
|
||||
process switch. This drives the running preemption.
|
||||
|
||||
- task_new(...)
|
||||
|
||||
The core scheduler gives the scheduling module an opportunity to manage new
|
||||
task startup. The CFS scheduling module uses it for group scheduling, while
|
||||
the scheduling module for a real-time task does not use it.
|
||||
|
||||
|
||||
|
||||
6. GROUP SCHEDULER EXTENSIONS TO CFS
|
||||
|
||||
Normally, the scheduler operates on individual tasks and strives to provide
|
||||
fair CPU time to each task. Sometimes, it may be desirable to group tasks and
|
||||
provide fair CPU time to each such task group. For example, it may be
|
||||
desirable to first provide fair CPU time to each user on the system and then to
|
||||
each task belonging to a user.
|
||||
|
||||
CONFIG_GROUP_SCHED strives to achieve exactly that. It lets tasks to be
|
||||
grouped and divides CPU time fairly among such groups.
|
||||
|
||||
CONFIG_RT_GROUP_SCHED permits to group real-time (i.e., SCHED_FIFO and
|
||||
SCHED_RR) tasks.
|
||||
|
||||
CONFIG_FAIR_GROUP_SCHED permits to group CFS (i.e., SCHED_NORMAL and
|
||||
SCHED_BATCH) tasks.
|
||||
|
||||
At present, there are two (mutually exclusive) mechanisms to group tasks for
|
||||
CPU bandwidth control purposes:
|
||||
|
||||
- Based on user id (CONFIG_USER_SCHED)
|
||||
|
||||
With this option, tasks are grouped according to their user id.
|
||||
|
||||
- Based on "cgroup" pseudo filesystem (CONFIG_CGROUP_SCHED)
|
||||
|
||||
This options needs CONFIG_CGROUPS to be defined, and lets the administrator
|
||||
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
|
||||
Documentation/cgroups.txt for more information about this filesystem.
|
||||
|
||||
Only one of these options to group tasks can be chosen and not both.
|
||||
|
||||
Group scheduler tunables:
|
||||
|
||||
When CONFIG_FAIR_USER_SCHED is defined, a directory is created in sysfs for
|
||||
each new user and a "cpu_share" file is added in that directory.
|
||||
When CONFIG_USER_SCHED is defined, a directory is created in sysfs for each new
|
||||
user and a "cpu_share" file is added in that directory.
|
||||
|
||||
# cd /sys/kernel/uids
|
||||
# cat 512/cpu_share # Display user 512's CPU share
|
||||
@ -155,16 +222,14 @@ each new user and a "cpu_share" file is added in that directory.
|
||||
2048
|
||||
#
|
||||
|
||||
CPU bandwidth between two users are divided in the ratio of their CPU shares.
|
||||
For ex: if you would like user "root" to get twice the bandwidth of user
|
||||
"guest", then set the cpu_share for both the users such that "root"'s
|
||||
cpu_share is twice "guest"'s cpu_share
|
||||
CPU bandwidth between two users is divided in the ratio of their CPU shares.
|
||||
For example: if you would like user "root" to get twice the bandwidth of user
|
||||
"guest," then set the cpu_share for both the users such that "root"'s cpu_share
|
||||
is twice "guest"'s cpu_share.
|
||||
|
||||
|
||||
When CONFIG_FAIR_CGROUP_SCHED is defined, a "cpu.shares" file is created
|
||||
for each group created using the pseudo filesystem. See example steps
|
||||
below to create task groups and modify their CPU share using the "cgroups"
|
||||
pseudo filesystem
|
||||
When CONFIG_CGROUP_SCHED is defined, a "cpu.shares" file is created for each
|
||||
group created using the pseudo filesystem. See example steps below to create
|
||||
task groups and modify their CPU share using the "cgroups" pseudo filesystem.
|
||||
|
||||
# mkdir /dev/cpuctl
|
||||
# mount -t cgroup -ocpu none /dev/cpuctl
|
||||
|
Loading…
x
Reference in New Issue
Block a user