Merge branch 'nvme-4.12' of git://git.infradead.org/nvme into for-4.12/block

Christoph writes:

This is the current NVMe pile: virtualization extensions, lots of FC
updates and various misc bits.  There are a few more FC bits that didn't
make the cut, but we'd like to get this request out before the merge
window for sure.
This commit is contained in:
Jens Axboe 2017-04-21 11:14:22 -06:00
commit f8a05a1d01
10 changed files with 836 additions and 226 deletions

View File

@ -75,6 +75,20 @@ static int nvme_error_status(struct request *req)
return -ENOSPC;
default:
return -EIO;
/*
* XXX: these errors are a nasty side-band protocol to
* drivers/md/dm-mpath.c:noretry_error() that aren't documented
* anywhere..
*/
case NVME_SC_CMD_SEQ_ERROR:
return -EILSEQ;
case NVME_SC_ONCS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case NVME_SC_WRITE_FAULT:
case NVME_SC_READ_ERROR:
case NVME_SC_UNWRITTEN_BLOCK:
return -ENODATA;
}
}

View File

@ -61,16 +61,23 @@ struct nvme_fc_queue {
unsigned long flags;
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
enum nvme_fcop_flags {
FCOP_FLAGS_TERMIO = (1 << 0),
FCOP_FLAGS_RELEASED = (1 << 1),
FCOP_FLAGS_COMPLETE = (1 << 2),
};
struct nvmefc_ls_req_op {
struct nvmefc_ls_req ls_req;
struct nvme_fc_ctrl *ctrl;
struct nvme_fc_rport *rport;
struct nvme_fc_queue *queue;
struct request *rq;
u32 flags;
int ls_error;
struct completion ls_done;
struct list_head lsreq_list; /* ctrl->ls_req_list */
struct list_head lsreq_list; /* rport->ls_req_list */
bool req_queued;
};
@ -120,6 +127,9 @@ struct nvme_fc_rport {
struct list_head endp_list; /* for lport->endp_list */
struct list_head ctrl_list;
struct list_head ls_req_list;
struct device *dev; /* physical device for dma */
struct nvme_fc_lport *lport;
spinlock_t lock;
struct kref ref;
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
@ -144,7 +154,6 @@ struct nvme_fc_ctrl {
u64 cap;
struct list_head ctrl_list; /* rport->ctrl_list */
struct list_head ls_req_list;
struct blk_mq_tag_set admin_tag_set;
struct blk_mq_tag_set tag_set;
@ -419,9 +428,12 @@ nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
INIT_LIST_HEAD(&newrec->endp_list);
INIT_LIST_HEAD(&newrec->ctrl_list);
INIT_LIST_HEAD(&newrec->ls_req_list);
kref_init(&newrec->ref);
spin_lock_init(&newrec->lock);
newrec->remoteport.localport = &lport->localport;
newrec->dev = lport->dev;
newrec->lport = lport;
newrec->remoteport.private = &newrec[1];
newrec->remoteport.port_role = pinfo->port_role;
newrec->remoteport.node_name = pinfo->node_name;
@ -444,7 +456,6 @@ out_kfree_rport:
out_reghost_failed:
*portptr = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
@ -487,6 +498,30 @@ nvme_fc_rport_get(struct nvme_fc_rport *rport)
return kref_get_unless_zero(&rport->ref);
}
static int
nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
{
struct nvmefc_ls_req_op *lsop;
unsigned long flags;
restart:
spin_lock_irqsave(&rport->lock, flags);
list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
lsop->flags |= FCOP_FLAGS_TERMIO;
spin_unlock_irqrestore(&rport->lock, flags);
rport->lport->ops->ls_abort(&rport->lport->localport,
&rport->remoteport,
&lsop->ls_req);
goto restart;
}
}
spin_unlock_irqrestore(&rport->lock, flags);
return 0;
}
/**
* nvme_fc_unregister_remoteport - transport entry point called by an
* LLDD to deregister/remove a previously
@ -522,6 +557,8 @@ nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
spin_unlock_irqrestore(&rport->lock, flags);
nvme_fc_abort_lsops(rport);
nvme_fc_rport_put(rport);
return 0;
}
@ -624,16 +661,16 @@ static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
static void
__nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
struct nvmefc_ls_req_op *lsop)
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
{
struct nvme_fc_rport *rport = lsop->rport;
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
spin_lock_irqsave(&ctrl->lock, flags);
spin_lock_irqsave(&rport->lock, flags);
if (!lsop->req_queued) {
spin_unlock_irqrestore(&ctrl->lock, flags);
spin_unlock_irqrestore(&rport->lock, flags);
return;
}
@ -641,56 +678,71 @@ __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
lsop->req_queued = false;
spin_unlock_irqrestore(&ctrl->lock, flags);
spin_unlock_irqrestore(&rport->lock, flags);
fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
(lsreq->rqstlen + lsreq->rsplen),
DMA_BIDIRECTIONAL);
nvme_fc_ctrl_put(ctrl);
nvme_fc_rport_put(rport);
}
static int
__nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
struct nvmefc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
unsigned long flags;
int ret;
int ret = 0;
if (!nvme_fc_ctrl_get(ctrl))
if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
return -ECONNREFUSED;
if (!nvme_fc_rport_get(rport))
return -ESHUTDOWN;
lsreq->done = done;
lsop->ctrl = ctrl;
lsop->rport = rport;
lsop->req_queued = false;
INIT_LIST_HEAD(&lsop->lsreq_list);
init_completion(&lsop->ls_done);
lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
lsreq->rqstlen + lsreq->rsplen,
DMA_BIDIRECTIONAL);
if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
nvme_fc_ctrl_put(ctrl);
dev_err(ctrl->dev,
"els request command failed EFAULT.\n");
return -EFAULT;
if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
ret = -EFAULT;
goto out_putrport;
}
lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
spin_lock_irqsave(&ctrl->lock, flags);
spin_lock_irqsave(&rport->lock, flags);
list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
lsop->req_queued = true;
spin_unlock_irqrestore(&ctrl->lock, flags);
spin_unlock_irqrestore(&rport->lock, flags);
ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
&ctrl->rport->remoteport, lsreq);
ret = rport->lport->ops->ls_req(&rport->lport->localport,
&rport->remoteport, lsreq);
if (ret)
goto out_unlink;
return 0;
out_unlink:
lsop->ls_error = ret;
spin_lock_irqsave(&rport->lock, flags);
lsop->req_queued = false;
list_del(&lsop->lsreq_list);
spin_unlock_irqrestore(&rport->lock, flags);
fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
(lsreq->rqstlen + lsreq->rsplen),
DMA_BIDIRECTIONAL);
out_putrport:
nvme_fc_rport_put(rport);
return ret;
}
@ -705,15 +757,15 @@ nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
}
static int
nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
{
struct nvmefc_ls_req *lsreq = &lsop->ls_req;
struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
int ret;
ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
if (!ret)
if (!ret) {
/*
* No timeout/not interruptible as we need the struct
* to exist until the lldd calls us back. Thus mandate
@ -722,14 +774,14 @@ nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
*/
wait_for_completion(&lsop->ls_done);
__nvme_fc_finish_ls_req(ctrl, lsop);
__nvme_fc_finish_ls_req(lsop);
if (ret) {
dev_err(ctrl->dev,
"ls request command failed (%d).\n", ret);
return ret;
ret = lsop->ls_error;
}
if (ret)
return ret;
/* ACC or RJT payload ? */
if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
return -ENXIO;
@ -737,19 +789,14 @@ nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
return 0;
}
static void
nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
struct nvmefc_ls_req_op *lsop,
void (*done)(struct nvmefc_ls_req *req, int status))
{
int ret;
ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
/* don't wait for completion */
if (ret)
done(&lsop->ls_req, ret);
return __nvme_fc_send_ls_req(rport, lsop, done);
}
/* Validation Error indexes into the string table below */
@ -839,7 +886,7 @@ nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
lsreq->rsplen = sizeof(*assoc_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
ret = nvme_fc_send_ls_req(ctrl, lsop);
ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
if (ret)
goto out_free_buffer;
@ -947,7 +994,7 @@ nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
lsreq->rsplen = sizeof(*conn_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
ret = nvme_fc_send_ls_req(ctrl, lsop);
ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
if (ret)
goto out_free_buffer;
@ -998,14 +1045,8 @@ static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
{
struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
struct nvme_fc_ctrl *ctrl = lsop->ctrl;
__nvme_fc_finish_ls_req(ctrl, lsop);
if (status)
dev_err(ctrl->dev,
"disconnect assoc ls request command failed (%d).\n",
status);
__nvme_fc_finish_ls_req(lsop);
/* fc-nvme iniator doesn't care about success or failure of cmd */
@ -1036,6 +1077,7 @@ nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
struct fcnvme_ls_disconnect_acc *discon_acc;
struct nvmefc_ls_req_op *lsop;
struct nvmefc_ls_req *lsreq;
int ret;
lsop = kzalloc((sizeof(*lsop) +
ctrl->lport->ops->lsrqst_priv_sz +
@ -1078,7 +1120,10 @@ nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
lsreq->rsplen = sizeof(*discon_acc);
lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
nvme_fc_disconnect_assoc_done);
if (ret)
kfree(lsop);
/* only meaningful part to terminating the association */
ctrl->association_id = 0;
@ -2302,7 +2347,6 @@ __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
ctrl->ctrl.opts = opts;
INIT_LIST_HEAD(&ctrl->ctrl_list);
INIT_LIST_HEAD(&ctrl->ls_req_list);
ctrl->lport = lport;
ctrl->rport = rport;
ctrl->dev = lport->dev;

View File

@ -103,8 +103,22 @@ struct nvme_dev {
u32 cmbloc;
struct nvme_ctrl ctrl;
struct completion ioq_wait;
u32 *dbbuf_dbs;
dma_addr_t dbbuf_dbs_dma_addr;
u32 *dbbuf_eis;
dma_addr_t dbbuf_eis_dma_addr;
};
static inline unsigned int sq_idx(unsigned int qid, u32 stride)
{
return qid * 2 * stride;
}
static inline unsigned int cq_idx(unsigned int qid, u32 stride)
{
return (qid * 2 + 1) * stride;
}
static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_dev, ctrl);
@ -133,6 +147,10 @@ struct nvme_queue {
u16 qid;
u8 cq_phase;
u8 cqe_seen;
u32 *dbbuf_sq_db;
u32 *dbbuf_cq_db;
u32 *dbbuf_sq_ei;
u32 *dbbuf_cq_ei;
};
/*
@ -171,6 +189,112 @@ static inline void _nvme_check_size(void)
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
}
static inline unsigned int nvme_dbbuf_size(u32 stride)
{
return ((num_possible_cpus() + 1) * 8 * stride);
}
static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
{
unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
if (dev->dbbuf_dbs)
return 0;
dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
&dev->dbbuf_dbs_dma_addr,
GFP_KERNEL);
if (!dev->dbbuf_dbs)
return -ENOMEM;
dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
&dev->dbbuf_eis_dma_addr,
GFP_KERNEL);
if (!dev->dbbuf_eis) {
dma_free_coherent(dev->dev, mem_size,
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
dev->dbbuf_dbs = NULL;
return -ENOMEM;
}
return 0;
}
static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
{
unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
if (dev->dbbuf_dbs) {
dma_free_coherent(dev->dev, mem_size,
dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
dev->dbbuf_dbs = NULL;
}
if (dev->dbbuf_eis) {
dma_free_coherent(dev->dev, mem_size,
dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
dev->dbbuf_eis = NULL;
}
}
static void nvme_dbbuf_init(struct nvme_dev *dev,
struct nvme_queue *nvmeq, int qid)
{
if (!dev->dbbuf_dbs || !qid)
return;
nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
}
static void nvme_dbbuf_set(struct nvme_dev *dev)
{
struct nvme_command c;
if (!dev->dbbuf_dbs)
return;
memset(&c, 0, sizeof(c));
c.dbbuf.opcode = nvme_admin_dbbuf;
c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
dev_warn(dev->dev, "unable to set dbbuf\n");
/* Free memory and continue on */
nvme_dbbuf_dma_free(dev);
}
}
static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
{
return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
}
/* Update dbbuf and return true if an MMIO is required */
static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
volatile u32 *dbbuf_ei)
{
if (dbbuf_db) {
u16 old_value;
/*
* Ensure that the queue is written before updating
* the doorbell in memory
*/
wmb();
old_value = *dbbuf_db;
*dbbuf_db = value;
if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
return false;
}
return true;
}
/*
@ -297,6 +421,8 @@ static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
if (++tail == nvmeq->q_depth)
tail = 0;
if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
nvmeq->dbbuf_sq_ei))
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
}
@ -686,6 +812,8 @@ static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
return;
if (likely(nvmeq->cq_vector >= 0))
if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
nvmeq->dbbuf_cq_ei))
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
@ -718,10 +846,8 @@ static irqreturn_t nvme_irq_check(int irq, void *data)
return IRQ_NONE;
}
static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
{
struct nvme_queue *nvmeq = hctx->driver_data;
if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
spin_lock_irq(&nvmeq->q_lock);
__nvme_process_cq(nvmeq, &tag);
@ -734,6 +860,13 @@ static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
return 0;
}
static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{
struct nvme_queue *nvmeq = hctx->driver_data;
return __nvme_poll(nvmeq, tag);
}
static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
@ -785,7 +918,7 @@ static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
int flags = NVME_QUEUE_PHYS_CONTIG;
/*
* Note: we (ab)use the fact the the prp fields survive if no data
@ -831,6 +964,16 @@ static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
struct request *abort_req;
struct nvme_command cmd;
/*
* Did we miss an interrupt?
*/
if (__nvme_poll(nvmeq, req->tag)) {
dev_warn(dev->ctrl.device,
"I/O %d QID %d timeout, completion polled\n",
req->tag, nvmeq->qid);
return BLK_EH_HANDLED;
}
/*
* Shutdown immediately if controller times out while starting. The
* reset work will see the pci device disabled when it gets the forced
@ -1070,6 +1213,7 @@ static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
nvme_dbbuf_init(dev, nvmeq, qid);
dev->online_queues++;
spin_unlock_irq(&nvmeq->q_lock);
}
@ -1542,6 +1686,8 @@ static int nvme_dev_add(struct nvme_dev *dev)
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
dev->ctrl.tagset = &dev->tagset;
nvme_dbbuf_set(dev);
} else {
blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
@ -1728,6 +1874,7 @@ static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
{
struct nvme_dev *dev = to_nvme_dev(ctrl);
nvme_dbbuf_dma_free(dev);
put_device(dev->dev);
if (dev->tagset.tags)
blk_mq_free_tag_set(&dev->tagset);
@ -1795,6 +1942,13 @@ static void nvme_reset_work(struct work_struct *work)
dev->ctrl.opal_dev = NULL;
}
if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
result = nvme_dbbuf_dma_alloc(dev);
if (result)
dev_warn(dev->dev,
"unable to allocate dma for dbbuf\n");
}
result = nvme_setup_io_queues(dev);
if (result)
goto out;

View File

@ -122,7 +122,15 @@ static void nvmet_execute_admin_connect(struct nvmet_req *req)
struct nvmet_ctrl *ctrl = NULL;
u16 status = 0;
d = kmap(sg_page(req->sg)) + req->sg->offset;
d = kmalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
status = NVME_SC_INTERNAL;
goto complete;
}
status = nvmet_copy_from_sgl(req, 0, d, sizeof(*d));
if (status)
goto out;
/* zero out initial completion result, assign values as needed */
req->rsp->result.u32 = 0;
@ -158,7 +166,8 @@ static void nvmet_execute_admin_connect(struct nvmet_req *req)
req->rsp->result.u16 = cpu_to_le16(ctrl->cntlid);
out:
kunmap(sg_page(req->sg));
kfree(d);
complete:
nvmet_req_complete(req, status);
}
@ -170,7 +179,15 @@ static void nvmet_execute_io_connect(struct nvmet_req *req)
u16 qid = le16_to_cpu(c->qid);
u16 status = 0;
d = kmap(sg_page(req->sg)) + req->sg->offset;
d = kmalloc(sizeof(*d), GFP_KERNEL);
if (!d) {
status = NVME_SC_INTERNAL;
goto complete;
}
status = nvmet_copy_from_sgl(req, 0, d, sizeof(*d));
if (status)
goto out;
/* zero out initial completion result, assign values as needed */
req->rsp->result.u32 = 0;
@ -205,7 +222,8 @@ static void nvmet_execute_io_connect(struct nvmet_req *req)
pr_info("adding queue %d to ctrl %d.\n", qid, ctrl->cntlid);
out:
kunmap(sg_page(req->sg));
kfree(d);
complete:
nvmet_req_complete(req, status);
return;

View File

@ -82,10 +82,13 @@ struct nvmet_fc_fcp_iod {
enum nvmet_fcp_datadir io_dir;
bool active;
bool abort;
bool aborted;
bool writedataactive;
spinlock_t flock;
struct nvmet_req req;
struct work_struct work;
struct work_struct done_work;
struct nvmet_fc_tgtport *tgtport;
struct nvmet_fc_tgt_queue *queue;
@ -213,6 +216,7 @@ static DEFINE_IDA(nvmet_fc_tgtport_cnt);
static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
@ -414,9 +418,13 @@ nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
for (i = 0; i < queue->sqsize; fod++, i++) {
INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
fod->tgtport = tgtport;
fod->queue = queue;
fod->active = false;
fod->abort = false;
fod->aborted = false;
fod->fcpreq = NULL;
list_add_tail(&fod->fcp_list, &queue->fod_list);
spin_lock_init(&fod->flock);
@ -463,7 +471,6 @@ nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
if (fod) {
list_del(&fod->fcp_list);
fod->active = true;
fod->abort = false;
/*
* no queue reference is taken, as it was taken by the
* queue lookup just prior to the allocation. The iod
@ -479,17 +486,30 @@ static void
nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
unsigned long flags;
fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
fcpreq->nvmet_fc_private = NULL;
spin_lock_irqsave(&queue->qlock, flags);
list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
fod->active = false;
fod->abort = false;
fod->aborted = false;
fod->writedataactive = false;
fod->fcpreq = NULL;
spin_unlock_irqrestore(&queue->qlock, flags);
/*
* release the reference taken at queue lookup and fod allocation
*/
nvmet_fc_tgt_q_put(queue);
tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
}
static int
@ -615,33 +635,13 @@ nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
}
static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq)
{
int ret;
fcpreq->op = NVMET_FCOP_ABORT;
fcpreq->offset = 0;
fcpreq->timeout = 0;
fcpreq->transfer_length = 0;
fcpreq->transferred_length = 0;
fcpreq->fcp_error = 0;
fcpreq->sg_cnt = 0;
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fcpreq);
if (ret)
/* should never reach here !! */
WARN_ON(1);
}
static void
nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
{
struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
struct nvmet_fc_fcp_iod *fod = queue->fod;
unsigned long flags;
int i;
int i, writedataactive;
bool disconnect;
disconnect = atomic_xchg(&queue->connected, 0);
@ -652,7 +652,20 @@ nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
if (fod->active) {
spin_lock(&fod->flock);
fod->abort = true;
writedataactive = fod->writedataactive;
spin_unlock(&fod->flock);
/*
* only call lldd abort routine if waiting for
* writedata. other outstanding ops should finish
* on their own.
*/
if (writedataactive) {
spin_lock(&fod->flock);
fod->aborted = true;
spin_unlock(&fod->flock);
tgtport->ops->fcp_abort(
&tgtport->fc_target_port, fod->fcpreq);
}
}
}
spin_unlock_irqrestore(&queue->qlock, flags);
@ -846,7 +859,8 @@ nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
int ret, idx;
if (!template->xmt_ls_rsp || !template->fcp_op ||
!template->targetport_delete ||
!template->fcp_abort ||
!template->fcp_req_release || !template->targetport_delete ||
!template->max_hw_queues || !template->max_sgl_segments ||
!template->max_dif_sgl_segments || !template->dma_boundary) {
ret = -EINVAL;
@ -1710,6 +1724,26 @@ nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
static void
nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
/*
* if an ABTS was received or we issued the fcp_abort early
* don't call abort routine again.
*/
/* no need to take lock - lock was taken earlier to get here */
if (!fod->aborted)
tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
nvmet_fc_free_fcp_iod(fod->queue, fod);
}
static void
nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
struct nvmet_fc_fcp_iod *fod)
@ -1723,7 +1757,7 @@ nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
if (ret)
nvmet_fc_abort_op(tgtport, fod->fcpreq);
nvmet_fc_abort_op(tgtport, fod);
}
static void
@ -1732,6 +1766,7 @@ nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct scatterlist *sg, *datasg;
unsigned long flags;
u32 tlen, sg_off;
int ret;
@ -1796,10 +1831,13 @@ nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
*/
fod->abort = true;
if (op == NVMET_FCOP_WRITEDATA)
if (op == NVMET_FCOP_WRITEDATA) {
spin_lock_irqsave(&fod->flock, flags);
fod->writedataactive = false;
spin_unlock_irqrestore(&fod->flock, flags);
nvmet_req_complete(&fod->req,
NVME_SC_FC_TRANSPORT_ERROR);
else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
fcpreq->fcp_error = ret;
fcpreq->transferred_length = 0;
nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
@ -1807,32 +1845,54 @@ nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
}
}
static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
static inline bool
__nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
/* if in the middle of an io and we need to tear down */
if (abort) {
if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
nvmet_req_complete(&fod->req,
NVME_SC_FC_TRANSPORT_ERROR);
return true;
}
nvmet_fc_abort_op(tgtport, fod);
return true;
}
return false;
}
/*
* actual done handler for FCP operations when completed by the lldd
*/
static void
nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
{
struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
struct nvmet_fc_tgtport *tgtport = fod->tgtport;
unsigned long flags;
bool abort;
spin_lock_irqsave(&fod->flock, flags);
abort = fod->abort;
fod->writedataactive = false;
spin_unlock_irqrestore(&fod->flock, flags);
/* if in the middle of an io and we need to tear down */
if (abort && fcpreq->op != NVMET_FCOP_ABORT) {
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_req_complete(&fod->req, fcpreq->fcp_error);
return;
}
switch (fcpreq->op) {
case NVMET_FCOP_WRITEDATA:
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
if (fcpreq->fcp_error ||
fcpreq->transferred_length != fcpreq->transfer_length) {
spin_lock(&fod->flock);
fod->abort = true;
spin_unlock(&fod->flock);
nvmet_req_complete(&fod->req,
NVME_SC_FC_TRANSPORT_ERROR);
return;
@ -1840,6 +1900,10 @@ nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
fod->offset += fcpreq->transferred_length;
if (fod->offset != fod->total_length) {
spin_lock_irqsave(&fod->flock, flags);
fod->writedataactive = true;
spin_unlock_irqrestore(&fod->flock, flags);
/* transfer the next chunk */
nvmet_fc_transfer_fcp_data(tgtport, fod,
NVMET_FCOP_WRITEDATA);
@ -1854,12 +1918,11 @@ nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
case NVMET_FCOP_READDATA:
case NVMET_FCOP_READDATA_RSP:
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
if (fcpreq->fcp_error ||
fcpreq->transferred_length != fcpreq->transfer_length) {
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_abort_op(tgtport, fod->fcpreq);
nvmet_fc_abort_op(tgtport, fod);
return;
}
@ -1868,8 +1931,6 @@ nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
nvmet_fc_free_fcp_iod(fod->queue, fod);
return;
}
@ -1892,19 +1953,38 @@ nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
break;
case NVMET_FCOP_RSP:
case NVMET_FCOP_ABORT:
fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
sizeof(fod->rspiubuf), DMA_TO_DEVICE);
if (__nvmet_fc_fod_op_abort(fod, abort))
return;
nvmet_fc_free_fcp_iod(fod->queue, fod);
break;
default:
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_abort_op(tgtport, fod->fcpreq);
break;
}
}
static void
nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
{
struct nvmet_fc_fcp_iod *fod =
container_of(work, struct nvmet_fc_fcp_iod, done_work);
nvmet_fc_fod_op_done(fod);
}
static void
nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
struct nvmet_fc_tgt_queue *queue = fod->queue;
if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
/* context switch so completion is not in ISR context */
queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
else
nvmet_fc_fod_op_done(fod);
}
/*
* actual completion handler after execution by the nvmet layer
*/
@ -1926,10 +2006,7 @@ __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
fod->queue->sqhd = cqe->sq_head;
if (abort) {
/* data no longer needed */
nvmet_fc_free_tgt_pgs(fod);
nvmet_fc_abort_op(tgtport, fod->fcpreq);
nvmet_fc_abort_op(tgtport, fod);
return;
}
@ -2025,8 +2102,8 @@ nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
&fod->queue->nvme_cq,
&fod->queue->nvme_sq,
&nvmet_fc_tgt_fcp_ops);
if (!ret) { /* bad SQE content */
nvmet_fc_abort_op(tgtport, fod->fcpreq);
if (!ret) { /* bad SQE content or invalid ctrl state */
nvmet_fc_abort_op(tgtport, fod);
return;
}
@ -2066,7 +2143,7 @@ nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
return;
transport_error:
nvmet_fc_abort_op(tgtport, fod->fcpreq);
nvmet_fc_abort_op(tgtport, fod);
}
/*
@ -2096,7 +2173,7 @@ nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
* If this routine returns error, the lldd should abort the exchange.
*
* @target_port: pointer to the (registered) target port the FCP CMD IU
* was receive on.
* was received on.
* @fcpreq: pointer to a fcpreq request structure to be used to reference
* the exchange corresponding to the FCP Exchange.
* @cmdiubuf: pointer to the buffer containing the FCP CMD IU
@ -2119,7 +2196,6 @@ nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
return -EIO;
queue = nvmet_fc_find_target_queue(tgtport,
be64_to_cpu(cmdiu->connection_id));
if (!queue)
@ -2149,12 +2225,68 @@ nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
queue_work_on(queue->cpu, queue->work_q, &fod->work);
else
nvmet_fc_handle_fcp_rqst(tgtport, fod);
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
/**
* nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
* upon the reception of an ABTS for a FCP command
*
* Notify the transport that an ABTS has been received for a FCP command
* that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
* LLDD believes the command is still being worked on
* (template_ops->fcp_req_release() has not been called).
*
* The transport will wait for any outstanding work (an op to the LLDD,
* which the lldd should complete with error due to the ABTS; or the
* completion from the nvmet layer of the nvme command), then will
* stop processing and call the nvmet_fc_rcv_fcp_req() callback to
* return the i/o context to the LLDD. The LLDD may send the BA_ACC
* to the ABTS either after return from this function (assuming any
* outstanding op work has been terminated) or upon the callback being
* called.
*
* @target_port: pointer to the (registered) target port the FCP CMD IU
* was received on.
* @fcpreq: pointer to the fcpreq request structure that corresponds
* to the exchange that received the ABTS.
*/
void
nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
struct nvmefc_tgt_fcp_req *fcpreq)
{
struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
struct nvmet_fc_tgt_queue *queue;
unsigned long flags;
if (!fod || fod->fcpreq != fcpreq)
/* job appears to have already completed, ignore abort */
return;
queue = fod->queue;
spin_lock_irqsave(&queue->qlock, flags);
if (fod->active) {
/*
* mark as abort. The abort handler, invoked upon completion
* of any work, will detect the aborted status and do the
* callback.
*/
spin_lock(&fod->flock);
fod->abort = true;
fod->aborted = true;
spin_unlock(&fod->flock);
}
spin_unlock_irqrestore(&queue->qlock, flags);
}
EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
enum {
FCT_TRADDR_ERR = 0,
FCT_TRADDR_WWNN = 1 << 0,
@ -2184,7 +2316,7 @@ nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf)
if (!options)
return -ENOMEM;
while ((p = strsep(&o, ",\n")) != NULL) {
while ((p = strsep(&o, ":\n")) != NULL) {
if (!*p)
continue;
@ -2245,6 +2377,7 @@ nvmet_fc_add_port(struct nvmet_port *port)
if (!tgtport->port) {
tgtport->port = port;
port->priv = tgtport;
nvmet_fc_tgtport_get(tgtport);
ret = 0;
} else
ret = -EALREADY;

View File

@ -246,11 +246,19 @@ struct fcloop_lsreq {
struct fcloop_fcpreq {
struct fcloop_tport *tport;
struct nvmefc_fcp_req *fcpreq;
spinlock_t reqlock;
u16 status;
bool active;
bool aborted;
struct work_struct work;
struct nvmefc_tgt_fcp_req tgt_fcp_req;
};
struct fcloop_ini_fcpreq {
struct nvmefc_fcp_req *fcpreq;
struct fcloop_fcpreq *tfcp_req;
struct work_struct iniwork;
};
static inline struct fcloop_lsreq *
tgt_ls_req_to_lsreq(struct nvmefc_tgt_ls_req *tgt_lsreq)
@ -341,7 +349,21 @@ fcloop_xmt_ls_rsp(struct nvmet_fc_target_port *tport,
}
/*
* FCP IO operation done. call back up initiator "done" flows.
* FCP IO operation done by initiator abort.
* call back up initiator "done" flows.
*/
static void
fcloop_tgt_fcprqst_ini_done_work(struct work_struct *work)
{
struct fcloop_ini_fcpreq *inireq =
container_of(work, struct fcloop_ini_fcpreq, iniwork);
inireq->fcpreq->done(inireq->fcpreq);
}
/*
* FCP IO operation done by target completion.
* call back up initiator "done" flows.
*/
static void
fcloop_tgt_fcprqst_done_work(struct work_struct *work)
@ -349,12 +371,18 @@ fcloop_tgt_fcprqst_done_work(struct work_struct *work)
struct fcloop_fcpreq *tfcp_req =
container_of(work, struct fcloop_fcpreq, work);
struct fcloop_tport *tport = tfcp_req->tport;
struct nvmefc_fcp_req *fcpreq = tfcp_req->fcpreq;
struct nvmefc_fcp_req *fcpreq;
if (tport->remoteport) {
spin_lock(&tfcp_req->reqlock);
fcpreq = tfcp_req->fcpreq;
spin_unlock(&tfcp_req->reqlock);
if (tport->remoteport && fcpreq) {
fcpreq->status = tfcp_req->status;
fcpreq->done(fcpreq);
}
kfree(tfcp_req);
}
@ -364,20 +392,25 @@ fcloop_fcp_req(struct nvme_fc_local_port *localport,
void *hw_queue_handle,
struct nvmefc_fcp_req *fcpreq)
{
struct fcloop_fcpreq *tfcp_req = fcpreq->private;
struct fcloop_rport *rport = remoteport->private;
struct fcloop_ini_fcpreq *inireq = fcpreq->private;
struct fcloop_fcpreq *tfcp_req;
int ret = 0;
INIT_WORK(&tfcp_req->work, fcloop_tgt_fcprqst_done_work);
if (!rport->targetport)
return -ECONNREFUSED;
if (!rport->targetport) {
tfcp_req->status = NVME_SC_FC_TRANSPORT_ERROR;
schedule_work(&tfcp_req->work);
return ret;
}
tfcp_req = kzalloc(sizeof(*tfcp_req), GFP_KERNEL);
if (!tfcp_req)
return -ENOMEM;
inireq->fcpreq = fcpreq;
inireq->tfcp_req = tfcp_req;
INIT_WORK(&inireq->iniwork, fcloop_tgt_fcprqst_ini_done_work);
tfcp_req->fcpreq = fcpreq;
tfcp_req->tport = rport->targetport->private;
spin_lock_init(&tfcp_req->reqlock);
INIT_WORK(&tfcp_req->work, fcloop_tgt_fcprqst_done_work);
ret = nvmet_fc_rcv_fcp_req(rport->targetport, &tfcp_req->tgt_fcp_req,
fcpreq->cmdaddr, fcpreq->cmdlen);
@ -444,31 +477,66 @@ fcloop_fcp_op(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *tgt_fcpreq)
{
struct fcloop_fcpreq *tfcp_req = tgt_fcp_req_to_fcpreq(tgt_fcpreq);
struct nvmefc_fcp_req *fcpreq = tfcp_req->fcpreq;
struct nvmefc_fcp_req *fcpreq;
u32 rsplen = 0, xfrlen = 0;
int fcp_err = 0;
int fcp_err = 0, active, aborted;
u8 op = tgt_fcpreq->op;
spin_lock(&tfcp_req->reqlock);
fcpreq = tfcp_req->fcpreq;
active = tfcp_req->active;
aborted = tfcp_req->aborted;
tfcp_req->active = true;
spin_unlock(&tfcp_req->reqlock);
if (unlikely(active))
/* illegal - call while i/o active */
return -EALREADY;
if (unlikely(aborted)) {
/* target transport has aborted i/o prior */
spin_lock(&tfcp_req->reqlock);
tfcp_req->active = false;
spin_unlock(&tfcp_req->reqlock);
tgt_fcpreq->transferred_length = 0;
tgt_fcpreq->fcp_error = -ECANCELED;
tgt_fcpreq->done(tgt_fcpreq);
return 0;
}
/*
* if fcpreq is NULL, the I/O has been aborted (from
* initiator side). For the target side, act as if all is well
* but don't actually move data.
*/
switch (op) {
case NVMET_FCOP_WRITEDATA:
xfrlen = tgt_fcpreq->transfer_length;
fcloop_fcp_copy_data(op, tgt_fcpreq->sg, fcpreq->first_sgl,
tgt_fcpreq->offset, xfrlen);
if (fcpreq) {
fcloop_fcp_copy_data(op, tgt_fcpreq->sg,
fcpreq->first_sgl, tgt_fcpreq->offset,
xfrlen);
fcpreq->transferred_length += xfrlen;
}
break;
case NVMET_FCOP_READDATA:
case NVMET_FCOP_READDATA_RSP:
xfrlen = tgt_fcpreq->transfer_length;
fcloop_fcp_copy_data(op, tgt_fcpreq->sg, fcpreq->first_sgl,
tgt_fcpreq->offset, xfrlen);
if (fcpreq) {
fcloop_fcp_copy_data(op, tgt_fcpreq->sg,
fcpreq->first_sgl, tgt_fcpreq->offset,
xfrlen);
fcpreq->transferred_length += xfrlen;
}
if (op == NVMET_FCOP_READDATA)
break;
/* Fall-Thru to RSP handling */
case NVMET_FCOP_RSP:
if (fcpreq) {
rsplen = ((fcpreq->rsplen < tgt_fcpreq->rsplen) ?
fcpreq->rsplen : tgt_fcpreq->rsplen);
memcpy(fcpreq->rspaddr, tgt_fcpreq->rspaddr, rsplen);
@ -476,30 +544,61 @@ fcloop_fcp_op(struct nvmet_fc_target_port *tgtport,
fcp_err = -E2BIG;
fcpreq->rcv_rsplen = rsplen;
fcpreq->status = 0;
}
tfcp_req->status = 0;
break;
case NVMET_FCOP_ABORT:
tfcp_req->status = NVME_SC_FC_TRANSPORT_ABORTED;
break;
default:
fcp_err = -EINVAL;
break;
}
spin_lock(&tfcp_req->reqlock);
tfcp_req->active = false;
spin_unlock(&tfcp_req->reqlock);
tgt_fcpreq->transferred_length = xfrlen;
tgt_fcpreq->fcp_error = fcp_err;
tgt_fcpreq->done(tgt_fcpreq);
if ((!fcp_err) && (op == NVMET_FCOP_RSP ||
op == NVMET_FCOP_READDATA_RSP ||
op == NVMET_FCOP_ABORT))
schedule_work(&tfcp_req->work);
return 0;
}
static void
fcloop_tgt_fcp_abort(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *tgt_fcpreq)
{
struct fcloop_fcpreq *tfcp_req = tgt_fcp_req_to_fcpreq(tgt_fcpreq);
int active;
/*
* mark aborted only in case there were 2 threads in transport
* (one doing io, other doing abort) and only kills ops posted
* after the abort request
*/
spin_lock(&tfcp_req->reqlock);
active = tfcp_req->active;
tfcp_req->aborted = true;
spin_unlock(&tfcp_req->reqlock);
tfcp_req->status = NVME_SC_FC_TRANSPORT_ABORTED;
/*
* nothing more to do. If io wasn't active, the transport should
* immediately call the req_release. If it was active, the op
* will complete, and the lldd should call req_release.
*/
}
static void
fcloop_fcp_req_release(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *tgt_fcpreq)
{
struct fcloop_fcpreq *tfcp_req = tgt_fcp_req_to_fcpreq(tgt_fcpreq);
schedule_work(&tfcp_req->work);
}
static void
fcloop_ls_abort(struct nvme_fc_local_port *localport,
struct nvme_fc_remote_port *remoteport,
@ -513,6 +612,27 @@ fcloop_fcp_abort(struct nvme_fc_local_port *localport,
void *hw_queue_handle,
struct nvmefc_fcp_req *fcpreq)
{
struct fcloop_rport *rport = remoteport->private;
struct fcloop_ini_fcpreq *inireq = fcpreq->private;
struct fcloop_fcpreq *tfcp_req = inireq->tfcp_req;
if (!tfcp_req)
/* abort has already been called */
return;
if (rport->targetport)
nvmet_fc_rcv_fcp_abort(rport->targetport,
&tfcp_req->tgt_fcp_req);
/* break initiator/target relationship for io */
spin_lock(&tfcp_req->reqlock);
inireq->tfcp_req = NULL;
tfcp_req->fcpreq = NULL;
spin_unlock(&tfcp_req->reqlock);
/* post the aborted io completion */
fcpreq->status = -ECANCELED;
schedule_work(&inireq->iniwork);
}
static void
@ -563,20 +683,23 @@ struct nvme_fc_port_template fctemplate = {
.local_priv_sz = sizeof(struct fcloop_lport),
.remote_priv_sz = sizeof(struct fcloop_rport),
.lsrqst_priv_sz = sizeof(struct fcloop_lsreq),
.fcprqst_priv_sz = sizeof(struct fcloop_fcpreq),
.fcprqst_priv_sz = sizeof(struct fcloop_ini_fcpreq),
};
struct nvmet_fc_target_template tgttemplate = {
.targetport_delete = fcloop_targetport_delete,
.xmt_ls_rsp = fcloop_xmt_ls_rsp,
.fcp_op = fcloop_fcp_op,
.fcp_abort = fcloop_tgt_fcp_abort,
.fcp_req_release = fcloop_fcp_req_release,
.max_hw_queues = FCLOOP_HW_QUEUES,
.max_sgl_segments = FCLOOP_SGL_SEGS,
.max_dif_sgl_segments = FCLOOP_SGL_SEGS,
.dma_boundary = FCLOOP_DMABOUND_4G,
/* optional features */
.target_features = NVMET_FCTGTFEAT_READDATA_RSP |
NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED,
.target_features = NVMET_FCTGTFEAT_CMD_IN_ISR |
NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED |
NVMET_FCTGTFEAT_OPDONE_IN_ISR,
/* sizes of additional private data for data structures */
.target_priv_sz = sizeof(struct fcloop_tport),
};

View File

@ -408,9 +408,7 @@ out:
if (phba->ktime_on)
lpfc_nvmet_ktime(phba, ctxp);
#endif
/* Let Abort cmpl repost the context */
if (!(ctxp->flag & LPFC_NVMET_ABORT_OP))
lpfc_nvmet_rq_post(phba, ctxp, &ctxp->rqb_buffer->hbuf);
/* lpfc_nvmet_xmt_fcp_release() will recycle the context */
} else {
ctxp->entry_cnt++;
start_clean = offsetof(struct lpfc_iocbq, wqe);
@ -544,27 +542,6 @@ lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
}
#endif
if (rsp->op == NVMET_FCOP_ABORT) {
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6103 Abort op: oxri x%x %d cnt %d\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
lpfc_nvmeio_data(phba, "NVMET FCP ABRT: "
"xri x%x state x%x cnt x%x\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
ctxp->entry_cnt++;
ctxp->flag |= LPFC_NVMET_ABORT_OP;
if (ctxp->flag & LPFC_NVMET_IO_INP)
lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
else
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
return 0;
}
/* Sanity check */
if (ctxp->state == LPFC_NVMET_STE_ABORT) {
atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
@ -634,10 +611,75 @@ lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
complete(&tport->tport_unreg_done);
}
static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *req)
{
struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
struct lpfc_nvmet_rcv_ctx *ctxp =
container_of(req, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
struct lpfc_hba *phba = ctxp->phba;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6103 Abort op: oxri x%x %d cnt %d\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x state x%x cnt x%x\n",
ctxp->oxid, ctxp->state, ctxp->entry_cnt);
atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
ctxp->entry_cnt++;
ctxp->flag |= LPFC_NVMET_ABORT_OP;
if (ctxp->flag & LPFC_NVMET_IO_INP)
lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
else
lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
ctxp->oxid);
}
static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *rsp)
{
struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
struct lpfc_nvmet_rcv_ctx *ctxp =
container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.fcp_req);
struct lpfc_hba *phba = ctxp->phba;
unsigned long flags;
bool aborting = false;
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVMET_ABORT_OP) {
aborting = true;
ctxp->flag |= LPFC_NVMET_CTX_RLS;
}
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
if (aborting)
/* let the abort path do the real release */
return;
/* Sanity check */
if (ctxp->state != LPFC_NVMET_STE_DONE) {
atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
lpfc_printf_log(phba, KERN_ERR, LOG_NVME_IOERR,
"6117 Bad state IO x%x aborted\n",
ctxp->oxid);
}
lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d\n", ctxp->oxid,
ctxp->state, 0);
lpfc_nvmet_rq_post(phba, ctxp, &ctxp->rqb_buffer->hbuf);
}
static struct nvmet_fc_target_template lpfc_tgttemplate = {
.targetport_delete = lpfc_nvmet_targetport_delete,
.xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
.fcp_op = lpfc_nvmet_xmt_fcp_op,
.fcp_abort = lpfc_nvmet_xmt_fcp_abort,
.fcp_req_release = lpfc_nvmet_xmt_fcp_release,
.max_hw_queues = 1,
.max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
@ -669,7 +711,9 @@ lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
lpfc_tgttemplate.max_hw_queues = phba->cfg_nvme_io_channel;
lpfc_tgttemplate.max_sgl_segments = phba->cfg_sg_seg_cnt;
lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP |
NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED;
NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED |
NVMET_FCTGTFEAT_CMD_IN_ISR |
NVMET_FCTGTFEAT_OPDONE_IN_ISR;
#if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
@ -832,6 +876,7 @@ dropit:
ctxp->wqeq = NULL;
ctxp->state = LPFC_NVMET_STE_RCV;
ctxp->rqb_buffer = (void *)nvmebuf;
spin_lock_init(&ctxp->ctxlock);
lpfc_nvmeio_data(phba, "NVMET LS RCV: xri x%x sz %d from %06x\n",
oxid, size, sid);
@ -1593,6 +1638,8 @@ lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_nvmet_rcv_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
uint32_t status, result;
unsigned long flags;
bool released = false;
ctxp = cmdwqe->context2;
status = bf_get(lpfc_wcqe_c_status, wcqe);
@ -1607,6 +1654,17 @@ lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
result, wcqe->word3);
ctxp->state = LPFC_NVMET_STE_DONE;
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVMET_CTX_RLS)
released = true;
ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
/*
* if transport has released ctx, then can reuse it. Otherwise,
* will be recycled by transport release call.
*/
if (released)
lpfc_nvmet_rq_post(phba, ctxp, &ctxp->rqb_buffer->hbuf);
cmdwqe->context2 = NULL;
@ -1630,7 +1688,9 @@ lpfc_nvmet_xmt_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
{
struct lpfc_nvmet_rcv_ctx *ctxp;
struct lpfc_nvmet_tgtport *tgtp;
unsigned long flags;
uint32_t status, result;
bool released = false;
ctxp = cmdwqe->context2;
status = bf_get(lpfc_wcqe_c_status, wcqe);
@ -1652,7 +1712,19 @@ lpfc_nvmet_xmt_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
ctxp->state, ctxp->oxid);
}
ctxp->state = LPFC_NVMET_STE_DONE;
spin_lock_irqsave(&ctxp->ctxlock, flags);
if (ctxp->flag & LPFC_NVMET_CTX_RLS)
released = true;
ctxp->flag &= ~LPFC_NVMET_ABORT_OP;
spin_unlock_irqrestore(&ctxp->ctxlock, flags);
/*
* if transport has released ctx, then can reuse it. Otherwise,
* will be recycled by transport release call.
*/
if (released)
lpfc_nvmet_rq_post(phba, ctxp, &ctxp->rqb_buffer->hbuf);
cmdwqe->context2 = NULL;
cmdwqe->context3 = NULL;
}

View File

@ -81,6 +81,7 @@ struct lpfc_nvmet_rcv_ctx {
struct lpfc_iocbq *wqeq;
struct lpfc_iocbq *abort_wqeq;
dma_addr_t txrdy_phys;
spinlock_t ctxlock; /* protect flag access */
uint32_t *txrdy;
uint32_t sid;
uint32_t offset;
@ -97,8 +98,10 @@ struct lpfc_nvmet_rcv_ctx {
#define LPFC_NVMET_STE_RSP 4
#define LPFC_NVMET_STE_DONE 5
uint16_t flag;
#define LPFC_NVMET_IO_INP 1
#define LPFC_NVMET_ABORT_OP 2
#define LPFC_NVMET_IO_INP 0x1
#define LPFC_NVMET_ABORT_OP 0x2
#define LPFC_NVMET_CTX_RLS 0x4
struct rqb_dmabuf *rqb_buffer;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS

View File

@ -533,9 +533,6 @@ enum {
* rsp as well
*/
NVMET_FCOP_RSP = 4, /* send rsp frame */
NVMET_FCOP_ABORT = 5, /* abort exchange via ABTS */
NVMET_FCOP_BA_ACC = 6, /* send BA_ACC */
NVMET_FCOP_BA_RJT = 7, /* send BA_RJT */
};
/**
@ -572,8 +569,6 @@ enum {
* upon compeletion of the operation. The nvmet-fc layer will also set a
* private pointer for its own use in the done routine.
*
* Note: the LLDD must never fail a NVMET_FCOP_ABORT request !!
*
* Values set by the NVMET-FC layer prior to calling the LLDD fcp_op
* entrypoint.
* @op: Indicates the FCP IU operation to perform (see NVMET_FCOP_xxx)
@ -655,6 +650,22 @@ enum {
* on. The transport should pick a cpu to schedule the work
* on.
*/
NVMET_FCTGTFEAT_CMD_IN_ISR = (1 << 2),
/* Bit 2: When 0, the LLDD is calling the cmd rcv handler
* in a non-isr context, allowing the transport to finish
* op completion in the calling context. When 1, the LLDD
* is calling the cmd rcv handler in an ISR context,
* requiring the transport to transition to a workqueue
* for op completion.
*/
NVMET_FCTGTFEAT_OPDONE_IN_ISR = (1 << 3),
/* Bit 3: When 0, the LLDD is calling the op done handler
* in a non-isr context, allowing the transport to finish
* op completion in the calling context. When 1, the LLDD
* is calling the op done handler in an ISR context,
* requiring the transport to transition to a workqueue
* for op completion.
*/
};
@ -725,12 +736,12 @@ struct nvmet_fc_target_port {
* be freed/released.
* Entrypoint is Mandatory.
*
* @fcp_op: Called to perform a data transfer, transmit a response, or
* abort an FCP opertion. The nvmefc_tgt_fcp_req structure is the same
* LLDD-supplied exchange structure specified in the
* nvmet_fc_rcv_fcp_req() call made when the FCP CMD IU was received.
* The op field in the structure shall indicate the operation for
* the LLDD to perform relative to the io.
* @fcp_op: Called to perform a data transfer or transmit a response.
* The nvmefc_tgt_fcp_req structure is the same LLDD-supplied
* exchange structure specified in the nvmet_fc_rcv_fcp_req() call
* made when the FCP CMD IU was received. The op field in the
* structure shall indicate the operation for the LLDD to perform
* relative to the io.
* NVMET_FCOP_READDATA operation: the LLDD is to send the
* payload data (described by sglist) to the host in 1 or
* more FC sequences (preferrably 1). Note: the fc-nvme layer
@ -752,29 +763,31 @@ struct nvmet_fc_target_port {
* successfully, the LLDD is to update the nvmefc_tgt_fcp_req
* transferred_length field and may subsequently transmit the
* FCP_RSP iu payload (described by rspbuf, rspdma, rsplen).
* The LLDD is to await FCP_CONF reception to confirm the RSP
* reception by the host. The LLDD may retramsit the FCP_RSP iu
* if necessary per FC-NVME. Upon reception of FCP_CONF, or upon
* FCP_CONF failure, the LLDD is to set the nvmefc_tgt_fcp_req
* fcp_error field and consider the operation complete..
* NVMET_FCOP_RSP: the LLDD is to transmit the FCP_RSP iu payload
* (described by rspbuf, rspdma, rsplen). The LLDD is to await
* FCP_CONF reception to confirm the RSP reception by the host.
* The LLDD may retramsit the FCP_RSP iu if necessary per FC-NVME.
* Upon reception of FCP_CONF, or upon FCP_CONF failure, the
* If FCP_CONF is supported, the LLDD is to await FCP_CONF
* reception to confirm the RSP reception by the host. The LLDD
* may retramsit the FCP_RSP iu if necessary per FC-NVME. Upon
* transmission of the FCP_RSP iu if FCP_CONF is not supported,
* or upon success/failure of FCP_CONF if it is supported, the
* LLDD is to set the nvmefc_tgt_fcp_req fcp_error field and
* consider the operation complete..
* NVMET_FCOP_ABORT: the LLDD is to terminate the exchange
* corresponding to the fcp operation. The LLDD shall send
* ABTS and follow FC exchange abort-multi rules, including
* ABTS retries and possible logout.
* consider the operation complete.
* NVMET_FCOP_RSP: the LLDD is to transmit the FCP_RSP iu payload
* (described by rspbuf, rspdma, rsplen). If FCP_CONF is
* supported, the LLDD is to await FCP_CONF reception to confirm
* the RSP reception by the host. The LLDD may retramsit the
* FCP_RSP iu if FCP_CONF is not received per FC-NVME. Upon
* transmission of the FCP_RSP iu if FCP_CONF is not supported,
* or upon success/failure of FCP_CONF if it is supported, the
* LLDD is to set the nvmefc_tgt_fcp_req fcp_error field and
* consider the operation complete.
* Upon completing the indicated operation, the LLDD is to set the
* status fields for the operation (tranferred_length and fcp_error
* status) in the request, then all the "done" routine
* indicated in the fcp request. Upon return from the "done"
* routine for either a NVMET_FCOP_RSP or NVMET_FCOP_ABORT operation
* the fc-nvme layer will not longer reference the fcp request,
* allowing the LLDD to free/release the fcp request.
* status) in the request, then call the "done" routine
* indicated in the fcp request. After the operation completes,
* regardless of whether the FCP_RSP iu was successfully transmit,
* the LLDD-supplied exchange structure must remain valid until the
* transport calls the fcp_req_release() callback to return ownership
* of the exchange structure back to the LLDD so that it may be used
* for another fcp command.
* Note: when calling the done routine for READDATA or WRITEDATA
* operations, the fc-nvme layer may immediate convert, in the same
* thread and before returning to the LLDD, the fcp operation to
@ -786,6 +799,22 @@ struct nvmet_fc_target_port {
* Returns 0 on success, -<errno> on failure (Ex: -EIO)
* Entrypoint is Mandatory.
*
* @fcp_abort: Called by the transport to abort an active command.
* The command may be in-between operations (nothing active in LLDD)
* or may have an active WRITEDATA operation pending. The LLDD is to
* initiate the ABTS process for the command and return from the
* callback. The ABTS does not need to be complete on the command.
* The fcp_abort callback inherently cannot fail. After the
* fcp_abort() callback completes, the transport will wait for any
* outstanding operation (if there was one) to complete, then will
* call the fcp_req_release() callback to return the command's
* exchange context back to the LLDD.
*
* @fcp_req_release: Called by the transport to return a nvmefc_tgt_fcp_req
* to the LLDD after all operations on the fcp operation are complete.
* This may be due to the command completing or upon completion of
* abort cleanup.
*
* @max_hw_queues: indicates the maximum number of hw queues the LLDD
* supports for cpu affinitization.
* Value is Mandatory. Must be at least 1.
@ -820,7 +849,11 @@ struct nvmet_fc_target_template {
int (*xmt_ls_rsp)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_ls_req *tls_req);
int (*fcp_op)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *);
struct nvmefc_tgt_fcp_req *fcpreq);
void (*fcp_abort)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq);
void (*fcp_req_release)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq);
u32 max_hw_queues;
u16 max_sgl_segments;
@ -848,4 +881,7 @@ int nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq,
void *cmdiubuf, u32 cmdiubuf_len);
void nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq);
#endif /* _NVME_FC_DRIVER_H */

View File

@ -245,6 +245,7 @@ enum {
NVME_CTRL_ONCS_WRITE_ZEROES = 1 << 3,
NVME_CTRL_VWC_PRESENT = 1 << 0,
NVME_CTRL_OACS_SEC_SUPP = 1 << 0,
NVME_CTRL_OACS_DBBUF_SUPP = 1 << 7,
};
struct nvme_lbaf {
@ -603,6 +604,7 @@ enum nvme_admin_opcode {
nvme_admin_download_fw = 0x11,
nvme_admin_ns_attach = 0x15,
nvme_admin_keep_alive = 0x18,
nvme_admin_dbbuf = 0x7C,
nvme_admin_format_nvm = 0x80,
nvme_admin_security_send = 0x81,
nvme_admin_security_recv = 0x82,
@ -874,6 +876,16 @@ struct nvmf_property_get_command {
__u8 resv4[16];
};
struct nvme_dbbuf {
__u8 opcode;
__u8 flags;
__u16 command_id;
__u32 rsvd1[5];
__le64 prp1;
__le64 prp2;
__u32 rsvd12[6];
};
struct nvme_command {
union {
struct nvme_common_command common;
@ -893,6 +905,7 @@ struct nvme_command {
struct nvmf_connect_command connect;
struct nvmf_property_set_command prop_set;
struct nvmf_property_get_command prop_get;
struct nvme_dbbuf dbbuf;
};
};