6 Commits

Author SHA1 Message Date
Tejun Heo
06e51be3d5 sched_ext: Add vtime-ordered priority queue to dispatch_q's
Currently, a dsq is always a FIFO. A task which is dispatched earlier gets
consumed or executed earlier. While this is sufficient when dsq's are used
for simple staging areas for tasks which are ready to execute, it'd make
dsq's a lot more useful if they can implement custom ordering.

This patch adds a vtime-ordered priority queue to dsq's. When the BPF
scheduler dispatches a task with the new scx_bpf_dispatch_vtime() helper, it
can specify the vtime tha the task should be inserted at and the task is
inserted into the priority queue in the dsq which is ordered according to
time_before64() comparison of the vtime values.

A DSQ can either be a FIFO or priority queue and automatically switches
between the two depending on whether scx_bpf_dispatch() or
scx_bpf_dispatch_vtime() is used. Using the wrong variant while the DSQ
already has the other type queued is not allowed and triggers an ops error.
Built-in DSQs must always be FIFOs.

This makes it very easy for the BPF schedulers to implement proper vtime
based scheduling within each dsq very easy and efficient at a negligible
cost in terms of code complexity and overhead.

scx_simple and scx_example_flatcg are updated to default to weighted
vtime scheduling (the latter within each cgroup). FIFO scheduling can be
selected with -f option.

v4: - As allowing mixing priority queue and FIFO on the same DSQ sometimes
      led to unexpected starvations, DSQs now error out if both modes are
      used at the same time and the built-in DSQs are no longer allowed to
      be priority queues.

    - Explicit type struct scx_dsq_node added to contain fields needed to be
      linked on DSQs. This will be used to implement stateful iterator.

    - Tasks are now always linked on dsq->list whether the DSQ is in FIFO or
      PRIQ mode. This confines PRIQ related complexities to the enqueue and
      dequeue paths. Other paths only need to look at dsq->list. This will
      also ease implementing BPF iterator.

    - Print p->scx.dsq_flags in debug dump.

v3: - SCX_TASK_DSQ_ON_PRIQ flag is moved from p->scx.flags into its own
      p->scx.dsq_flags. The flag is protected with the dsq lock unlike other
      flags in p->scx.flags. This led to flag corruption in some cases.

    - Add comments explaining the interaction between using consumption of
      p->scx.slice to determine vtime progress and yielding.

v2: - p->scx.dsq_vtime was not initialized on load or across cgroup
      migrations leading to some tasks being stalled for extended period of
      time depending on how saturated the machine is. Fixed.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
2024-06-18 10:09:21 -10:00
Tejun Heo
60c27fb59f sched_ext: Implement sched_ext_ops.cpu_online/offline()
Add ops.cpu_online/offline() which are invoked when CPUs come online and
offline respectively. As the enqueue path already automatically bypasses
tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed
to see tasks only on CPUs which are between online() and offline().

If the BPF scheduler doesn't implement ops.cpu_online/offline(), the
scheduler is automatically exited with SCX_ECODE_RESTART |
SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support
trivially by simply reinitializing and reloading the scheduler.

scx_qmap is updated to print out online CPUs on hotplug events. Other
schedulers are updated to restart based on ecode.

v3: - The previous implementation added @reason to
      sched_class.rq_on/offline() to distinguish between CPU hotplug events
      and topology updates. This was buggy and fragile as the methods are
      skipped if the current state equals the target state. Instead, add
      scx_rq_[de]activate() which are directly called from
      sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to
      sleep which can be useful.

    - ops.dispatch() could be called on a CPU that the BPF scheduler was
      told to be offline. The dispatch patch is updated to bypass in such
      cases.

v2: - To accommodate lock ordering change between scx_cgroup_rwsem and
      cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI
      block and enabled eariler during scx_ope_enable() so that
      cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem.

    - Auto exit with ECODE added.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:20 -10:00
David Vernet
245254f708 sched_ext: Implement sched_ext_ops.cpu_acquire/release()
Scheduler classes are strictly ordered and when a higher priority class has
tasks to run, the lower priority ones lose access to the CPU. Being able to
monitor and act on these events are necessary for use cases includling
strict core-scheduling and latency management.

This patch adds two operations ops.cpu_acquire() and .cpu_release(). The
former is invoked when a CPU becomes available to the BPF scheduler and the
opposite for the latter. This patch also implements
scx_bpf_reenqueue_local() which can be called from .cpu_release() to trigger
requeueing of all tasks in the local dsq of the CPU so that the tasks can be
reassigned to other available CPUs.

scx_pair is updated to use .cpu_acquire/release() along with
%SCX_KICK_WAIT to make the pair scheduling guarantee strict even when a CPU
is preempted by a higher priority scheduler class.

scx_qmap is updated to use .cpu_acquire/release() to empty the local
dsq of a preempted CPU. A similar approach can be adopted by BPF schedulers
that want to have a tight control over latency.

v4: Use the new SCX_KICK_IDLE to wake up a CPU after re-enqueueing.

v3: Drop the const qualifier from scx_cpu_release_args.task. BPF enforces
    access control through the verifier, so the qualifier isn't actually
    operative and only gets in the way when interacting with various
    helpers.

v2: Add p->scx.kf_mask annotation to allow calling scx_bpf_reenqueue_local()
    from ops.cpu_release() nested inside ops.init() and other sleepable
    operations.

Signed-off-by: David Vernet <dvernet@meta.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:20 -10:00
Tejun Heo
81aae78918 sched_ext: Implement scx_bpf_kick_cpu() and task preemption support
It's often useful to wake up and/or trigger reschedule on other CPUs. This
patch adds scx_bpf_kick_cpu() kfunc helper that BPF scheduler can call to
kick the target CPU into the scheduling path.

As a sched_ext task relinquishes its CPU only after its slice is depleted,
this patch also adds SCX_KICK_PREEMPT and SCX_ENQ_PREEMPT which clears the
slice of the target CPU's current task to guarantee that sched_ext's
scheduling path runs on the CPU.

If SCX_KICK_IDLE is specified, the target CPU is kicked iff the CPU is idle
to guarantee that the target CPU will go through at least one full sched_ext
scheduling cycle after the kicking. This can be used to wake up idle CPUs
without incurring unnecessary overhead if it isn't currently idle.

As a demonstration of how backward compatibility can be supported using BPF
CO-RE, tools/sched_ext/include/scx/compat.bpf.h is added. It provides
__COMPAT_scx_bpf_kick_cpu_IDLE() which uses SCX_KICK_IDLE if available or
becomes a regular kicking otherwise. This allows schedulers to use the new
SCX_KICK_IDLE while maintaining support for older kernels. The plan is to
temporarily use compat helpers to ease API updates and drop them after a few
kernel releases.

v5: - SCX_KICK_IDLE added. Note that this also adds a compat mechanism for
      schedulers so that they can support kernels without SCX_KICK_IDLE.
      This is useful as a demonstration of how new feature flags can be
      added in a backward compatible way.

    - kick_cpus_irq_workfn() reimplemented so that it touches the pending
      cpumasks only as necessary to reduce kicking overhead on machines with
      a lot of CPUs.

    - tools/sched_ext/include/scx/compat.bpf.h added.

v4: - Move example scheduler to its own patch.

v3: - Make scx_example_central switch all tasks by default.

    - Convert to BPF inline iterators.

v2: - Julia Lawall reported that scx_example_central can overflow the
      dispatch buffer and malfunction. As scheduling for other CPUs can't be
      handled by the automatic retry mechanism, fix by implementing an
      explicit overflow and retry handling.

    - Updated to use generic BPF cpumask helpers.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:19 -10:00
Tejun Heo
07814a9439 sched_ext: Print debug dump after an error exit
If a BPF scheduler triggers an error, the scheduler is aborted and the
system is reverted to the built-in scheduler. In the process, a lot of
information which may be useful for figuring out what happened can be lost.

This patch adds debug dump which captures information which may be useful
for debugging including runqueue and runnable thread states at the time of
failure. The following shows a debug dump after triggering the watchdog:

  root@test ~# os/work/tools/sched_ext/build/bin/scx_qmap -t 100
  stats  : enq=1 dsp=0 delta=1 deq=0
  stats  : enq=90 dsp=90 delta=0 deq=0
  stats  : enq=156 dsp=156 delta=0 deq=0
  stats  : enq=218 dsp=218 delta=0 deq=0
  stats  : enq=255 dsp=255 delta=0 deq=0
  stats  : enq=271 dsp=271 delta=0 deq=0
  stats  : enq=284 dsp=284 delta=0 deq=0
  stats  : enq=293 dsp=293 delta=0 deq=0

  DEBUG DUMP
  ================================================================================

  kworker/u32:12[320] triggered exit kind 1026:
    runnable task stall (stress[1530] failed to run for 6.841s)

  Backtrace:
    scx_watchdog_workfn+0x136/0x1c0
    process_scheduled_works+0x2b5/0x600
    worker_thread+0x269/0x360
    kthread+0xeb/0x110
    ret_from_fork+0x36/0x40
    ret_from_fork_asm+0x1a/0x30

  QMAP FIFO[0]:
  QMAP FIFO[1]:
  QMAP FIFO[2]: 1436
  QMAP FIFO[3]:
  QMAP FIFO[4]:

  CPU states
  ----------

  CPU 0   : nr_run=1 ops_qseq=244
	    curr=swapper/0[0] class=idle_sched_class

    QMAP: dsp_idx=1 dsp_cnt=0

    R stress[1530] -6841ms
	scx_state/flags=3/0x1 ops_state/qseq=2/20
	sticky/holding_cpu=-1/-1 dsq_id=(n/a)
	cpus=ff

      QMAP: force_local=0

      asm_sysvec_apic_timer_interrupt+0x16/0x20

  CPU 2   : nr_run=2 ops_qseq=142
	    curr=swapper/2[0] class=idle_sched_class

    QMAP: dsp_idx=1 dsp_cnt=0

    R sshd[1703] -5905ms
	scx_state/flags=3/0x9 ops_state/qseq=2/88
	sticky/holding_cpu=-1/-1 dsq_id=(n/a)
	cpus=ff

      QMAP: force_local=1

      __x64_sys_ppoll+0xf6/0x120
      do_syscall_64+0x7b/0x150
      entry_SYSCALL_64_after_hwframe+0x76/0x7e

    R fish[1539] -4141ms
	scx_state/flags=3/0x9 ops_state/qseq=2/124
	sticky/holding_cpu=-1/-1 dsq_id=(n/a)
	cpus=ff

      QMAP: force_local=1

      futex_wait+0x60/0xe0
      do_futex+0x109/0x180
      __x64_sys_futex+0x117/0x190
      do_syscall_64+0x7b/0x150
      entry_SYSCALL_64_after_hwframe+0x76/0x7e

  CPU 3   : nr_run=2 ops_qseq=162
	    curr=kworker/u32:12[320] class=ext_sched_class

    QMAP: dsp_idx=1 dsp_cnt=0

   *R kworker/u32:12[320] +0ms
	scx_state/flags=3/0xd ops_state/qseq=0/0
	sticky/holding_cpu=-1/-1 dsq_id=(n/a)
	cpus=ff

      QMAP: force_local=0

      scx_dump_state+0x613/0x6f0
      scx_ops_error_irq_workfn+0x1f/0x40
      irq_work_run_list+0x82/0xd0
      irq_work_run+0x14/0x30
      __sysvec_irq_work+0x40/0x140
      sysvec_irq_work+0x60/0x70
      asm_sysvec_irq_work+0x16/0x20
      scx_watchdog_workfn+0x15f/0x1c0
      process_scheduled_works+0x2b5/0x600
      worker_thread+0x269/0x360
      kthread+0xeb/0x110
      ret_from_fork+0x36/0x40
      ret_from_fork_asm+0x1a/0x30

    R kworker/3:2[1436] +0ms
	scx_state/flags=3/0x9 ops_state/qseq=2/160
	sticky/holding_cpu=-1/-1 dsq_id=(n/a)
	cpus=08

      QMAP: force_local=0

      kthread+0xeb/0x110
      ret_from_fork+0x36/0x40
      ret_from_fork_asm+0x1a/0x30

  CPU 7   : nr_run=0 ops_qseq=76
	    curr=swapper/7[0] class=idle_sched_class


  ================================================================================

  EXIT: runnable task stall (stress[1530] failed to run for 6.841s)

It shows that CPU 3 was running the watchdog when it triggered the error
condition and the scx_qmap thread has been queued on CPU 0 for over 5
seconds but failed to run. It also prints out scx_qmap specific information
- e.g. which tasks are queued on each FIFO and so on using the dump_*() ops.
This dump has proved pretty useful for developing and debugging BPF
schedulers.

Debug dump is generated automatically when the BPF scheduler exits due to an
error. The debug buffer used in such cases is determined by
sched_ext_ops.exit_dump_len and defaults to 32k. If the debug dump overruns
the available buffer, the output is truncated and marked accordingly.

Debug dump output can also be read through the sched_ext_dump tracepoint.
When read through the tracepoint, there is no length limit.

SysRq-D can be used to trigger debug dump at any time while a BPF scheduler
is loaded. This is non-destructive - the scheduler keeps running afterwards.
The output can be read through the sched_ext_dump tracepoint.

v2: - The size of exit debug dump buffer can now be customized using
      sched_ext_ops.exit_dump_len.

    - sched_ext_ops.dump*() added to enable dumping of BPF scheduler
      specific information.

    - Tracpoint output and SysRq-D triggering added.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
2024-06-18 10:09:18 -10:00
Tejun Heo
2a52ca7c98 sched_ext: Add scx_simple and scx_example_qmap example schedulers
Add two simple example BPF schedulers - simple and qmap.

* simple: In terms of scheduling, it behaves identical to not having any
  operation implemented at all. The two operations it implements are only to
  improve visibility and exit handling. On certain homogeneous
  configurations, this actually can perform pretty well.

* qmap: A fixed five level priority scheduler to demonstrate queueing PIDs
  on BPF maps for scheduling. While not very practical, this is useful as a
  simple example and will be used to demonstrate different features.

v7: - Compat helpers stripped out in prepartion of upstreaming as the
      upstreamed patchset will be the baselinfe. Utility macros that can be
      used to implement compat features are kept.

    - Explicitly disable map autoattach on struct_ops to avoid trying to
      attach twice while maintaining compatbility with older libbpf.

v6: - Common header files reorganized and cleaned up. Compat helpers are
      added to demonstrate how schedulers can maintain backward
      compatibility with older kernels while making use of newly added
      features.

    - simple_select_cpu() added to keep track of the number of local
      dispatches. This is needed because the default ops.select_cpu()
      implementation is updated to dispatch directly and won't call
      ops.enqueue().

    - Updated to reflect the sched_ext API changes. Switching all tasks is
      the default behavior now and scx_qmap supports partial switching when
      `-p` is specified.

    - tools/sched_ext/Kconfig dropped. This will be included in the doc
      instead.

v5: - Improve Makefile. Build artifects are now collected into a separate
      dir which change be changed. Install and help targets are added and
      clean actually cleans everything.

    - MEMBER_VPTR() improved to improve access to structs. ARRAY_ELEM_PTR()
      and RESIZEABLE_ARRAY() are added to support resizable arrays in .bss.

    - Add scx_common.h which provides common utilities to user code such as
      SCX_BUG[_ON]() and RESIZE_ARRAY().

    - Use SCX_BUG[_ON]() to simplify error handling.

v4: - Dropped _example prefix from scheduler names.

v3: - Rename scx_example_dummy to scx_example_simple and restructure a bit
      to ease later additions. Comment updates.

    - Added declarations for BPF inline iterators. In the future, hopefully,
      these will be consolidated into a generic BPF header so that they
      don't need to be replicated here.

v2: - Updated with the generic BPF cpumask helpers.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Acked-by: Josh Don <joshdon@google.com>
Acked-by: Hao Luo <haoluo@google.com>
Acked-by: Barret Rhoden <brho@google.com>
2024-06-18 10:09:17 -10:00