We already have a macro for PREFIX of "ACPI: " in
drivers/acpi/internal.h, so remove the duplicate ones
in ACPI drivers when internal.h is included.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
After recent ACPI core changes acpi_bus_get_device() will always
succeed for dock station ACPI device objects, so show_docked()
should not use that function's return value as an indicator of
whether or not the dock device is present.
Make it use acpi_device_enumerated() for this purpose.
Fixes: 202317a573b2 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
After commit 202317a573b2 (ACPI / scan: Add acpi_device objects for
all device nodes in the namespace) acpi_bus_get_device() will always
return 0 for dock devices in dock_notify(), so the dock station
docking code under ACPI_NOTIFY_DEVICE_CHECK will never be executed
and docking will not work as a result of that.
Fix the problem by making dock_notify() use acpi_device_enumerated()
to check the presence of the device instead of checking the return
value of acpi_bus_get_device().
Fixes: 202317a573b2 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Includes appropriate header file internal.h in dock.c because
function acpi_dock_init() has its prototype declaration in
internal.h.
This eliminates the following warning in dock.c:
drivers/acpi/dock.c:899:13: warning: no previous prototype for ‘acpi_dock_init’ [-Wmissing-prototypes]
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
acpi_dock_init() is only called from acpi_scan_init() and the
code logic shows that it doesn't need to check acpi_disabled:
acpi_init();
if (acpi_disabled) return;
acpi_scan_init();
acpi_dock_init();
if (acpi_disabled) /* redundant */
return;
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
[rjw: Subject and changelog]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Replace direct inclusions of <acpi/acpi.h>, <acpi/acpi_bus.h> and
<acpi/acpi_drivers.h>, which are incorrect, with <linux/acpi.h>
inclusions and remove some inclusions of those files that aren't
necessary.
First of all, <acpi/acpi.h>, <acpi/acpi_bus.h> and <acpi/acpi_drivers.h>
should not be included directly from any files that are built for
CONFIG_ACPI unset, because that generally leads to build warnings about
undefined symbols in !CONFIG_ACPI builds. For CONFIG_ACPI set,
<linux/acpi.h> includes those files and for CONFIG_ACPI unset it
provides stub ACPI symbols to be used in that case.
Second, there are ordering dependencies between those files that always
have to be met. Namely, it is required that <acpi/acpi_bus.h> be included
prior to <acpi/acpi_drivers.h> so that the acpi_pci_root declarations the
latter depends on are always there. And <acpi/acpi.h> which provides
basic ACPICA type declarations should always be included prior to any other
ACPI headers in CONFIG_ACPI builds. That also is taken care of including
<linux/acpi.h> as appropriate.
Signed-off-by: Lv Zheng <lv.zheng@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> (drivers/pci stuff)
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> (Xen stuff)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Modify the ACPI namespace scanning code to register a struct
acpi_device object for every namespace node representing a device,
processor and so on, even if the device represented by that namespace
node is reported to be not present and not functional by _STA.
There are multiple reasons to do that. First of all, it avoids
quite a lot of overhead when struct acpi_device objects are
deleted every time acpi_bus_trim() is run and then added again
by a subsequent acpi_bus_scan() for the same scope, although the
namespace objects they correspond to stay in memory all the time
(which always is the case on a vast majority of systems).
Second, it will allow user space to see that there are namespace
nodes representing devices that are not present at the moment and may
be added to the system. It will also allow user space to evaluate
_SUN for those nodes to check what physical slots the "missing"
devices may be put into and it will make sense to add a sysfs
attribute for _STA evaluation after this change (that will be
useful for thermal management on some systems).
Next, it will help to consolidate the ACPI hotplug handling among
subsystems by making it possible to store hotplug-related information
in struct acpi_device objects in a standard common way.
Finally, it will help to avoid a race condition related to the
deletion of ACPI namespace nodes. Namely, namespace nodes may be
deleted as a result of a table unload triggered by _EJ0 or _DCK.
If a hotplug notification for one of those nodes is triggered
right before the deletion and it executes a hotplug callback
via acpi_hotplug_execute(), the ACPI handle passed to that
callback may be stale when the callback actually runs. One way
to work around that is to always pass struct acpi_device pointers
to hotplug callbacks after doing a get_device() on the objects in
question which eliminates the use-after-free possibility (the ACPI
handles in those objects are invalidated by acpi_scan_drop_device(),
so they will trigger ACPICA errors on attempts to use them).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
There are two different interfaces for queuing up work items on the
ACPI hotplug workqueue, alloc_acpi_hp_work() used by PCI and PCI host
bridge hotplug code and acpi_os_hotplug_execute() used by the common
ACPI hotplug code and docking stations. They both are somewhat
cumbersome to use and work slightly differently.
The users of alloc_acpi_hp_work() have to submit a work function that
will extract the necessary data items from a struct acpi_hp_work
object allocated by alloc_acpi_hp_work() and then will free that
object, while it would be more straightforward to simply use a work
function with one more argument and let the interface take care of
the execution details.
The users of acpi_os_hotplug_execute() also have to deal with the
fact that it takes only one argument in addition to the work function
pointer, although acpi_os_execute_deferred() actually takes care of
the allocation and freeing of memory, so it would have been able to
pass more arguments to the work function if it hadn't been
constrained by the connection with acpi_os_execute().
Moreover, while alloc_acpi_hp_work() makes GFP_KERNEL memory
allocations, which is correct, because hotplug work items are
always queued up from process context, acpi_os_hotplug_execute()
uses GFP_ATOMIC, as that is needed by acpi_os_execute(). Also,
acpi_os_execute_deferred() queued up by it waits for the ACPI event
workqueues to flush before executing the work function, whereas
alloc_acpi_hp_work() can't do anything similar. That leads to
somewhat arbitrary differences in behavior between various ACPI
hotplug code paths and has to be straightened up.
For this reason, replace both alloc_acpi_hp_work() and
acpi_os_hotplug_execute() with a single interface,
acpi_hotplug_execute(), combining their behavior and being more
friendly to its users than any of the two.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
acpi_evaluate_integer() is an ACPI API introduced to evaluate an
ACPI control method that is known to have an integer return value.
This API can simplify the code because the calling function does not need to
use the specified acpi_buffer structure required by acpi_evaluate_object();
Convert acpi_evaluate_object() to acpi_evaluate_integer()
in drivers/acpi/dock.c in this patch.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
__init belongs after the return type on functions, not before it.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Fix to return -ENODEV in the acpi notify handler install error
handling case instead of 0, as done elsewhere in this function.
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The local variable id in dock_add() is not necessary, so drop it.
While we're at it, use an initializer to clear the local variable ds
and drop the memset() used for this purpose.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The only user of the ACPI dock notifier chain is the ACPI-based PCI
hotplug (acpiphp) driver that uses it to carry out post-dock fixups
needed by some systems with broken _DCK. However, it is not
necessary to use a separate notifier chain for that, as it can be
simply replaced with a new callback in struct acpi_dock_ops.
For this reason, add a new .fixup() callback to struct acpi_dock_ops
and make hotplug_dock_devices() execute it for all dock devices with
hotplug operations registered. Accordingly, make acpiphp point that
callback to the function carrying out the post-dock fixups and
do not register a separate dock notifier for each device
registering dock operations. Finally, drop the ACPI dock notifier
chain that has no more users.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The function creating and registering dock station objects,
dock_add(), leaks memory if there's an error after it's walked
the ACPI namespace calling find_dock_devices(), because it doesn't
free the list of dependent devices it's just created in those cases.
Fix that issue by adding the missing code to free the list of
dependent devices on errors.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The ACPI dock driver uses register_acpi_bus_notifier() which
installs a notifier triggered globally for all system notifications.
That first of all is inefficient, because the dock driver is only
interested in notifications associated with the devices it handles,
but it has to handle all system notifies for all devices. Moreover,
it does that even if no docking stations are present in the system
(CONFIG_ACPI_DOCK set is sufficient for that to happen). Besides,
that is inconvenient, because it requires the driver to do extra work
for each notification to find the target dock station object.
For these reasons, rework the dock driver to install a notify
handler individually for each dock station in the system using
acpi_install_notify_handler(). This allows the dock station
object to be passed directly to the notify handler and makes it
possible to simplify the dock driver quite a bit. It also
reduces the overhead related to the handling of all system
notifies when CONFIG_ACPI_DOCK is set.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Make dock_init_hotplug() and dock_release_hotplug() slightly simpler
and move some checks in those functions to the code paths where they
are needed.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
If there are indirect dependencies between devices in a dock
station's dependent devices list, they may be broken if the devices
are removed in the same order in which they have been added.
For this reason, make the code in handle_eject_request() walk the
list of dependent devices in reverse order.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Since acpi_walk_namespace() calls find_dock_devices() during tree
pre-order visit, the latter doesn't need to add devices whose
parents have _EJD pointing to the docking station to the list of
that station's dependent devices, because those parents are going to
be added to that list anyway and the removal of a parent will take
care of the removal of its children in those cases.
For this reason, rework find_dock_devices() to only call
add_dock_dependent_device() for devices whose _EJD point directy to
the docking station represented by its context argument and simplify
it slightly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
The only existing user of the hp_lock mutex in struct dock_station,
hotplug_dock_devices(), is always called under acpi_scan_lock and
cannot race with another instance of itself, so drop the mutex
which is not necessary.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use helper functions introduced previously to simplify the ACPI dock
driver.
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The return value of dock_create_acpi_device() is not used at all,
so change its signature to return void and simplify the
implementation of it.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Mark all initialization functions with __init to reduce runtime
memory consumption.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
All dock station objects are created during initialization and
don't change at runtime, so drop the redundant spin lock from
struct dock_station.
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Function dock_add() will be called multiple times if there are
multiple dock stations, which causes acpi_dock_notifier_list to be
initialized multiple times.
To avoid that, move the initialization of acpi_dock_notifier_list
from dock_add() to acpi_dock_init().
[rjw: Changelog]
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit 94add0f (ACPI / dock: Initialize ACPI dock subsystem upfront)
changed the header of acpi_dock_init() in internal.h so that it is
supposed to be a void function now, but it forgot to update its
actual definition in dock.c according to which it still is supposed
to return int.
Although that didn't cause any visible breakage or even a compiler
warning to be thrown, which is odd enough, fix it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: 3.10+ <stable@vger.kernel.org>
The interactions between the ACPI dock driver and the ACPI-based PCI
hotplug (acpiphp) are currently problematic because of ordering
issues during hot-remove operations.
First of all, the current ACPI glue code expects that physical
devices will always be deleted before deleting the companion ACPI
device objects. Otherwise, acpi_unbind_one() will fail with a
warning message printed to the kernel log, for example:
[ 185.026073] usb usb5: Oops, 'acpi_handle' corrupt
[ 185.035150] pci 0000:1b:00.0: Oops, 'acpi_handle' corrupt
[ 185.035515] pci 0000:18:02.0: Oops, 'acpi_handle' corrupt
[ 180.013656] port1: Oops, 'acpi_handle' corrupt
This means, in particular, that struct pci_dev objects have to
be deleted before the struct acpi_device objects they are "glued"
with.
Now, the following happens the during the undocking of an ACPI-based
dock station:
1) hotplug_dock_devices() invokes registered hotplug callbacks to
destroy physical devices associated with the ACPI device objects
depending on the dock station. It calls dd->ops->handler() for
each of those device objects.
2) For PCI devices dd->ops->handler() points to
handle_hotplug_event_func() that queues up a separate work item
to execute _handle_hotplug_event_func() for the given device and
returns immediately. That work item will be executed later.
3) hotplug_dock_devices() calls dock_remove_acpi_device() for each
device depending on the dock station. This runs acpi_bus_trim()
for each of them, which causes the underlying ACPI device object
to be destroyed, but the work items queued up by
handle_hotplug_event_func() haven't been started yet.
4) _handle_hotplug_event_func() queued up in step 2) are executed
and cause the above failure to happen, because the PCI devices
they handle do not have the companion ACPI device objects any
more (those objects have been deleted in step 3).
The possible breakage doesn't end here, though, because
hotplug_dock_devices() may return before at least some of the
_handle_hotplug_event_func() work items spawned by it have a
chance to complete and then undock() will cause _DCK to be
evaluated and that will cause the devices handled by the
_handle_hotplug_event_func() to go away possibly while they are
being accessed.
This means that dd->ops->handler() for PCI devices should not point
to handle_hotplug_event_func(). Instead, it should point to a
function that will do the work of _handle_hotplug_event_func()
synchronously. For this reason, introduce such a function,
hotplug_event_func(), and modity acpiphp_dock_ops to point to
it as the handler.
Unfortunately, however, this is not sufficient, because if the dock
code were not changed further, hotplug_event_func() would now
deadlock with hotplug_dock_devices() that called it, since it would
run unregister_hotplug_dock_device() which in turn would attempt to
acquire the dock station's hp_lock mutex already acquired by
hotplug_dock_devices().
To resolve that deadlock use the observation that
unregister_hotplug_dock_device() won't need to acquire hp_lock
if PCI bridges the devices on the dock station depend on are
prevented from being removed prematurely while the first loop in
hotplug_dock_devices() is in progress.
To make that possible, introduce a mechanism by which the callers of
register_hotplug_dock_device() can provide "init" and "release"
routines that will be executed, respectively, during the addition
and removal of the physical device object associated with the
given ACPI device handle. Make acpiphp use two new functions,
acpiphp_dock_init() and acpiphp_dock_release(), that call
get_bridge() and put_bridge(), respectively, on the acpiphp bridge
holding the given device, for this purpose.
In addition to that, remove the dock station's list of
"hotplug devices" and make the dock code always walk the whole list
of "dependent devices" instead in such a way that the loops in
hotplug_dock_devices() and dock_event() (replacing the loops over
"hotplug devices") will take references to the list entries that
register_hotplug_dock_device() has been called for. That prevents
the "release" routines associated with those entries from being
called while the given entry is being processed and for PCI
devices this means that their bridges won't be removed (by a
concurrent thread) while hotplug_event_func() handling them is
being executed.
This change is based on two earlier patches from Jiang Liu.
References: https://bugzilla.kernel.org/show_bug.cgi?id=59501
Reported-and-tested-by: Alexander E. Patrakov <patrakov@gmail.com>
Tracked-down-by: Jiang Liu <jiang.liu@huawei.com>
Tested-by: Illya Klymov <xanf@xanf.me>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: 3.9+ <stable@vger.kernel.org>
Commit 3b63aaa70e1 (PCI: acpiphp: Do not use ACPI PCI subdriver
mechanism) introduced an ACPI dock support regression, because it
changed the relative initialization order of the ACPI dock subsystem
and the ACPI-based PCI hotplug (acpiphp).
Namely, the ACPI dock subsystem has to be initialized before
acpiphp_enumerate_slots() is first run, which after commit
3b63aaa70e1 happens during the initial enumeration of the PCI
hierarchy triggered by the initial ACPI namespace scan in
acpi_scan_init(). For this reason, the dock subsystem has to be
initialized before the initial ACPI namespace scan in
acpi_scan_init().
To make that happen, modify the ACPI dock subsystem to be
non-modular and add the invocation of its initialization routine,
acpi_dock_init(), to acpi_scan_init() directly before the initial
namespace scan.
[rjw: Changelog, removal of dock_exit().]
References: https://bugzilla.kernel.org/show_bug.cgi?id=59501
Reported-and-tested-by: Alexander E. Patrakov <patrakov@gmail.com>
Tested-by: Illya Klymov <xanf@xanf.me>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: 3.9+ <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since commit 3757b94 (ACPI / hotplug: Fix concurrency issues and
memory leaks) acpi_bus_scan() and acpi_bus_trim() must always be
called under acpi_scan_lock, but currently the following scenario
violating that requirement is possible:
write_undock()
handle_eject_request()
hotplug_dock_devices()
dock_remove_acpi_device()
acpi_bus_trim()
Fix that by making write_undock() acquire acpi_scan_lock before
calling handle_eject_request() as appropriate (begin_undock() is
under the lock too in analogy with acpi_dock_deferred_cb()).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: 3.9+ <stable@vger.kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
This changeset is aimed at fixing a few different but related
problems in the ACPI hotplug infrastructure.
First of all, since notify handlers may be run in parallel with
acpi_bus_scan(), acpi_bus_trim() and acpi_bus_hot_remove_device()
and some of them are installed for ACPI handles that have no struct
acpi_device objects attached (i.e. before those objects are created),
those notify handlers have to take acpi_scan_lock to prevent races
from taking place (e.g. a struct acpi_device is found to be present
for the given ACPI handle, but right after that it is removed by
acpi_bus_trim() running in parallel to the given notify handler).
Moreover, since some of them call acpi_bus_scan() and
acpi_bus_trim(), this leads to the conclusion that acpi_scan_lock
should be acquired by the callers of these two funtions rather by
these functions themselves.
For these reasons, make all notify handlers that can handle device
addition and eject events take acpi_scan_lock and remove the
acpi_scan_lock locking from acpi_bus_scan() and acpi_bus_trim().
Accordingly, update all of their users to make sure that they
are always called under acpi_scan_lock.
Furthermore, since eject operations are carried out asynchronously
with respect to the notify events that trigger them, with the help
of acpi_bus_hot_remove_device(), even if notify handlers take the
ACPI scan lock, it still is possible that, for example,
acpi_bus_trim() will run between acpi_bus_hot_remove_device() and
the notify handler that scheduled its execution and that
acpi_bus_trim() will remove the device node passed to
acpi_bus_hot_remove_device() for ejection. In that case, the struct
acpi_device object obtained by acpi_bus_hot_remove_device() will be
invalid and not-so-funny things will ensue. To protect agaist that,
make the users of acpi_bus_hot_remove_device() run get_device() on
ACPI device node objects that are about to be passed to it and make
acpi_bus_hot_remove_device() run put_device() on them and check if
their ACPI handles are not NULL (make acpi_device_unregister() clear
the device nodes' ACPI handles for that check to work).
Finally, observe that acpi_os_hotplug_execute() actually can fail,
in which case its caller ought to free memory allocated for the
context object to prevent leaks from happening. It also needs to
run put_device() on the device node that it ran get_device() on
previously in that case. Modify the code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
acpi_bus_get_device() returns int not acpi_status.
The patch change not to apply ACPI_SUCCESS() to the return value of
acpi_bus_get_device().
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Since acpi_bus_trim() cannot fail, change its definition to a void
function, so that its callers don't check the return value in vain
and update the callers.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
The only difference between acpi_bus_scan() and acpi_bus_add() is the
invocation of acpi_update_all_gpes() in the latter which in fact is
unnecessary, because acpi_update_all_gpes() has already been called
by acpi_scan_init() and the way it is implemented guarantees the next
invocations of it to do nothing.
For this reason, drop acpi_bus_add() and make all its callers use
acpi_bus_scan() directly instead of it. Additionally, rearrange the
code in acpi_scan_init() slightly to improve the visibility of the
acpi_update_all_gpes() call in there.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
All callers of acpi_bus_trim() pass 1 (true) as the second argument
of it, so remove that argument entirely and change acpi_bus_trim()
to always behave as though it were 1.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
The callers of acpi_bus_add() usually assume that if it has
succeeded, then a struct acpi_device object has been attached to
the handle passed as the first argument. Unfortunately, however,
this assumption is wrong, because acpi_bus_scan(), and acpi_bus_add()
too as a result, may return a pointer to a different struct
acpi_device object on success (it may be an object corresponding to
one of the descendant ACPI nodes in the namespace scope below that
handle).
For this reason, the callers of acpi_bus_add() who care about
whether or not a struct acpi_device object has been created for
its first argument need to check that using acpi_bus_get_device()
anyway, so the second argument of acpi_bus_add() is not really
useful for them. The same observation applies to acpi_bus_scan()
executed directly from acpi_scan_init().
Therefore modify the relevant callers of acpi_bus_add() to check the
existence of the struct acpi_device in question with the help of
acpi_bus_get_device() and drop the no longer necessary second
argument of acpi_bus_add(). Accordingly, modify acpi_scan_init() to
use acpi_bus_get_device() to get acpi_root and drop the no longer
needed second argument of acpi_bus_scan().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Notice that acpi_bus_add() uses only 2 of its 4 arguments and
redefine its header to match the body. Update all of its callers as
necessary and observe that this leads to quite a number of removed
lines of code (Linus will like that).
Add a kerneldoc comment documenting acpi_bus_add() and wonder how
its callers make wrong assumptions about the second argument (make
note to self to take care of that later).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Updated Dock hotplug error messages with acpi_handle_<level>()
and pr_<level>(). Replaced acpi_get_name() & kfree() with
apci_handle_<level>(). Added error status to the messages where
needed.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Combined two ACPI namespace walks, which look for dock stations
and then bays separately, into a single walk.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
module_param(bool) used to counter-intuitively take an int. In
fddd5201 (mid-2009) we allowed bool or int/unsigned int using a messy
trick.
It's time to remove the int/unsigned int option. For this version
it'll simply give a warning, but it'll break next kernel version.
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Structs battery_file, acpi_dock_ops, file_operations,
thermal_cooling_device_ops, thermal_zone_device_ops, kernel_param_ops
are not changed in runtime. It is safe to make them const.
register_hotplug_dock_device() was altered to take const "ops" argument
to respect acpi_dock_ops' const notion.
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Acked-by: Jeff Garzik <jgarzik@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some function and variable names are renamed to be consistent with
ACPICA code base.
acpi_raw_enable_gpe -> acpi_ev_add_gpe_reference
acpi_raw_disable_gpe -> acpi_ev_remove_gpe_reference
acpi_gpe_can_wake -> acpi_setup_gpe_for_wake
acpi_gpe_wakeup -> acpi_set_gpe_wake_mask
acpi_update_gpes -> acpi_update_all_gpes
acpi_all_gpes_initialized -> acpi_gbl_all_gpes_initialized
acpi_handler_info -> acpi_gpe_handler_info
...
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
find_dock and find_bay are only called by dock_init which lives in
.init.text dock_add is only called by find_dock and find_bay. So all
three functions can be moved to .init.text, too.
This fixes:
WARNING: vmlinux.o(.text+0x2134b7): Section mismatch in reference from the function dock_add() to the function .init.text:platform_device_register_resndata()
The function dock_add() references
the function __init platform_device_register_resndata().
This is often because dock_add lacks a __init
annotation or the annotation of platform_device_register_resndata is wrong.
for a build with unset CONFIG_MODULES.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
The current ACPI GPEs initialization code has a problem that it
enables some GPEs pointed to by device _PRW methods, generally
intended for signaling wakeup events (system or device wakeup).
These GPEs are then almost immediately disabled by the ACPI namespace
scanning code with the help of acpi_gpe_can_wake(), but it would be
better not to enable them at all until really necessary.
Modify the initialization of GPEs so that the ones that have
associated _Lxx or _Exx methods and are not pointed to by any _PRW
methods will be enabled after the namespace scan is complete.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
There may be multiple ACPI dock devices exist in ACPI namespace
and we should probe all of them.
http://bugzilla.kernel.org/show_bug.cgi?id=15521
CC: Li Shaohua <shaohua.li@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>