doing the load balance will change cfs_rq->load.weight (that's the whole point)
but since that's part of the scale factor, we'll scale back with a different
amount.
Weight getting smaller would result in an inflated moved_load which causes
it to stop balancing too soon.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
find_busiest_group() has some assumptions about task weight being in the
NICE_0_LOAD range. Hierarchical task groups break this assumption - fix this
by replacing it with the average task weight, which will adapt the situation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With hierarchical grouping we can't just compare task weight to rq weight - we
need to scale the weight appropriately.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the fall-back to SCHED_LOAD_SCALE by remembering the previous value of
cpu_avg_load_per_task() - this is useful because of the hierarchical group
model in which task weight can be much smaller.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Finding the least idle cpu is more accurate when done with updated shares.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Re-compute the shares on newidle - so we can make a decision based on
recent data.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While thinking about the previous patch - I realized that using per domain
aggregate load values in load_balance_fair() is wrong. We should use the
load value for that CPU.
By not needing per domain hierarchical load values we don't need to store
per domain aggregate shares, which greatly simplifies all the math.
It basically falls apart in two separate computations:
- per domain update of the shares
- per CPU update of the hierarchical load
Also get rid of the move_group_shares() stuff - just re-compute the shares
again after a successful load balance.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We only need to know the task_weight of the busiest rq - nothing to do
if there are no tasks there.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We used to try and contain the loss of 'shares' by playing arithmetic
games. Replace that by noticing that at the top sched_domain we'll
always have the full weight in shares to distribute.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The idea was to balance groups until we've reached the global goal, however
Vatsa rightly pointed out that we might never reach that goal this way -
hence take out this logic.
[ the initial rationale for this 'feature' was to promote max concurrency
within a group - it does not however affect fairness ]
Reported-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It was observed that in __update_group_shares_cpu()
rq_weight > aggregate()->rq_weight
This is caused by forks/wakeups in between the initial aggregate pass and
locking of the RQs for load balance. To avoid this situation partially re-do
the aggregation once we have the RQs locked (which avoids new tasks from
appearing).
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Keeping the aggregate on the first cpu of the sched domain has two problems:
- it could collide between different sched domains on different cpus
- it could slow things down because of the remote accesses
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
show all the schedstats in /debug/sched_debug as well.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Uncouple buddy selection from wakeup granularity.
The initial idea was that buddies could run ahead as far as a normal task
can - do this by measuring a pair 'slice' just as we do for a normal task.
This means we can drop the wakeup_granularity back to 5ms.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
with sched_clock_cpu() being reasonably in sync between cpus (max 1 jiffy
difference) use this to provide cpu_clock().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ok, so why are we in this mess, it was:
1/w
but now we mixed that rw in the mix like:
rw/w
rw being \Sum w suggests: fiddling w, we should also fiddle rw, humm?
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
calc_delta_asym() is supposed to do the same as calc_delta_fair() except
linearly shrink the result for negative nice processes - this causes them
to have a smaller preemption threshold so that they are more easily preempted.
The problem is that for task groups se->load.weight is the per cpu share of
the actual task group weight; take that into account.
Also provide a debug switch to disable the asymmetry (which I still don't
like - but it does greatly benefit some workloads)
This would explain the interactivity issues reported against group scheduling.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In file included from /mnt/build/linux-2.6/kernel/sched.c:1496:
/mnt/build/linux-2.6/kernel/sched_rt.c: In function '__enable_runtime':
/mnt/build/linux-2.6/kernel/sched_rt.c:339: warning: unused variable 'rd'
/mnt/build/linux-2.6/kernel/sched_rt.c: In function 'requeue_rt_entity':
/mnt/build/linux-2.6/kernel/sched_rt.c:692: warning: unused variable 'queue'
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
- Fix warning reported by sparse
kernel/kgdb.c:1502:6: warning: symbol 'kgdb_console_write' was not declared.
Should it be static?
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
This patch addresses a very sporadic pi-futex related failure in
highly threaded java apps on large SMP systems.
David Holmes reported that the pi_state consistency check in
lookup_pi_state triggered with his test application. This means that
the kernel internal pi_state and the user space futex variable are out
of sync. First we assumed that this is a user space data corruption,
but deeper investigation revieled that the problem happend because the
pi-futex code is not handling a fault in the futex_lock_pi path when
the user space variable needs to be fixed up.
The fault happens when a fork mapped the anon memory which contains
the futex readonly for COW or the page got swapped out exactly between
the unlock of the futex and the return of either the new futex owner
or the task which was the expected owner but failed to acquire the
kernel internal rtmutex. The current futex_lock_pi() code drops out
with an inconsistent in case it faults and returns -EFAULT to user
space. User space has no way to fixup that state.
When we wrote this code we thought that we could not drop the hash
bucket lock at this point to handle the fault.
After analysing the code again it turned out to be wrong because there
are only two tasks involved which might modify the pi_state and the
user space variable:
- the task which acquired the rtmutex
- the pending owner of the pi_state which did not get the rtmutex
Both tasks drop into the fixup_pi_state() function before returning to
user space. The first task which acquired the hash bucket lock faults
in the fixup of the user space variable, drops the spinlock and calls
futex_handle_fault() to fault in the page. Now the second task could
acquire the hash bucket lock and tries to fixup the user space
variable as well. It either faults as well or it succeeds because the
first task already faulted the page in.
One caveat is to avoid a double fixup. After returning from the fault
handling we reacquire the hash bucket lock and check whether the
pi_state owner has been modified already.
Reported-by: David Holmes <david.holmes@sun.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Holmes <david.holmes@sun.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/futex.c | 93 ++++++++++++++++++++++++++++++++++++++++++++-------------
1 file changed, 73 insertions(+), 20 deletions(-)
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
softlockup: fix NMI hangs due to lock race - 2.6.26-rc regression
rcupreempt: remove export of rcu_batches_completed_bh
cpuset: limit the input of cpuset.sched_relax_domain_level
Simplify the code and fix the boundary condition of
wait_for_completion_timeout(,0).
We can kill the first __remove_wait_queue() as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
It seems that the current implementaton of wait_for_completion_timeout()
has a small problem under very high load for the common pattern:
if (!wait_for_completion_timeout(&done, timeout))
/* handle failure */
because the implementation very roughly does (lots of code deleted to
show the basic flow):
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (x->done)
return timeout;
do {
timeout = schedule_timeout(timeout);
if (!timeout)
return timeout;
} while (!x->done);
return timeout;
}
so if the system is very busy and x->done is not set when
do_wait_for_common() is entered, it is possible that the first call to
schedule_timeout() returns 0 because the task doing wait_for_completion
doesn't get rescheduled for a long time, even if it is woken up early
enough.
In this case, wait_for_completion_timeout() returns 0 without even
checking x->done again, and the code above falls into its failure case
purely for scheduler reasons, even if the hardware event or whatever was
being waited for happened early enough.
It would make sense to add an extra test to do_wait_for() in the timeout
case and return 1 if x->done is actually set.
A quick audit (not exhaustive) of wait_for_completion_timeout() callers
seems to indicate that no one actually cares about the return value in
the success case -- they just test for 0 (timed out) versus non-zero
(wait succeeded).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So if the group ever gets throttled, it will never wake up again.
Reported-by: "Daniel K." <dk@uw.no>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Daniel K. <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
So if the group ever gets throttled, it will never wake up again.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Daniel K." <dk@uw.no>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: "Daniel K." <dk@uw.no>
Now we exceed the runtime and get throttled - the period rollover tick
will subtract the cpu quota from the runtime and check if we're below
quota. However with this cpu having a very small portion of the runtime
it will not refresh as fast as it should.
Therefore, also rebalance the runtime when we're throttled.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Daniel K." <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch corrects the incorrect value of per process run-queue wait
time reported by delay statistics. The anomaly was due to the following
reason. When a process leaves the CPU and immediately starts waiting for
CPU on the runqueue (which means it remains in the TASK_RUNNABLE state),
the time of re-entry into the run-queue is never recorded. Due to this,
the waiting time on the runqueue from this point of re-entry upto the
next time it hits the CPU is not accounted for. This is solved by
recording the time of re-entry of a process leaving the CPU in the
sched_info_depart() function IF the process will go back to waiting on
the run-queue. This IF condition is verified by checking whether the
process is still in the TASK_RUNNABLE state.
The patch was tested on 2.6.26-rc6 using two simple CPU hog programs.
The values noted prior to the fix did not account for the time spent on
the runqueue waiting. After the fix, the correct values were reported
back to user space.
Signed-off-by: Bharath Ravi <bharathravi1@gmail.com>
Signed-off-by: Madhava K R <madhavakr@gmail.com>
Cc: dhaval@linux.vnet.ibm.com
Cc: vatsa@in.ibm.com
Cc: balbir@in.ibm.com
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The touch_nmi_watchdog() routine on x86 ultimately calls
touch_softlockup_watchdog(). The problem is that to touch the
softlockup watchdog, the cpu_clock code has to be called which could
involve multiple cpu locks and can lead to a hard hang if one of the
locks is held by a processor that is not going to return anytime soon
(such as could be the case with kgdb or perhaps even with some other
kind of exception).
This patch causes the public version of the
touch_softlockup_watchdog() to defer the cpu clock access to a later
point.
The test case for this problem is to use the following kernel config
options:
CONFIG_KGDB_TESTS=y
CONFIG_KGDB_TESTS_ON_BOOT=y
CONFIG_KGDB_TESTS_BOOT_STRING="V1F100I100000"
It should be noted that kgdb test suite and these options were not
available until 2.6.26-rc2, so it was necessary to patch the kgdb
test suite during the bisection.
I would consider this patch a regression fix because the problem first
appeared in commit 27ec4407790d075c325e1f4da0a19c56953cce23 when some
logic was added to try to periodically sync the clocks. It was
possible to work around this particular problem by simply not
performing the sync anytime the system was in a critical context.
This was ok until commit 3e51f33fcc7f55e6df25d15b55ed10c8b4da84cd,
which added config option CONFIG_HAVE_UNSTABLE_SCHED_CLOCK and some
multi-cpu locks to sync the clocks. It became clear that accessing
this code from an nmi was the source of the lockups. Avoiding the
access to the low level clock code from an code inside the NMI
processing also fixed the problem with the 27ec44... commit.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In rcupreempt, rcu_batches_completed_bh is defined as a static inline in
the header file. This does not need to be exported, and not only that,
this breaks my PPC build.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: paulus@samba.org
Cc: linuxppc-dev@ozlabs.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We allow the inputs to be [-1 ... SD_LV_MAX), and return -EINVAL
for inputs outside this range.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Paul Jackson <pj@sgi.com>
Acked-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
First issue is not related to the cpusets. We're simply leaking doms_cur.
It's allocated in arch_init_sched_domains() which is called for every
hotplug event. So we just keep reallocation doms_cur without freeing it.
I introduced free_sched_domains() function that cleans things up.
Second issue is that sched domains created by the cpusets are
completely destroyed by the CPU hotplug events. For all CPU hotplug
events scheduler attaches all CPUs to the NULL domain and then puts
them all into the single domain thereby destroying domains created
by the cpusets (partition_sched_domains).
The solution is simple, when cpusets are enabled scheduler should not
create default domain and instead let cpusets do that. Which is
exactly what the patch does.
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: pj@sgi.com
Cc: menage@google.com
Cc: rostedt@goodmis.org
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In tick_task_rt() we first call update_curr_rt() which can dequeue a runqueue
due to it running out of runtime, and then we try to requeue it, of it also
having exhausted its RR quota. Obviously requeueing something that is no longer
on the runqueue will not have the expected result.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Daniel K. <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The bandwidth throttle code dequeues a group when it runs out of quota, and
re-queues it once the period rolls over and the quota gets refreshed.
Sadly it failed to take the hierarchy into consideration. Share more of the
enqueue/dequeue code with regular task opterations.
Also, some operations like sched_setscheduler() can dequeue/enqueue tasks that
are in throttled runqueues, we should not inadvertly re-enqueue empty runqueues
so check for that.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Daniel K. <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Don't re-set the entity's runqueue to the wrong rq after we've set it
to the right one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Daniel K. <dk@uw.no>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
regarding this commit: 45c01e824991b2dd0a332e19efc4901acb31209f
I think we can do it simpler. Please take a look at the patch below.
Instead of having 2 separate arrays (which is + ~800 bytes on x86_32 and
twice so on x86_64), let's add "exclusive" (the ones that are bound to
this CPU) tasks to the head of the queue and "shared" ones -- to the
end.
In case of a few newly woken up "exclusive" tasks, they are 'stacked'
(not queued as now), meaning that a task {i+1} is being placed in front
of the previously woken up task {i}. But I don't think that this
behavior may cause any realistic problems.
There are a couple of changes on top of this one.
(1) in check_preempt_curr_rt()
I don't think there is a need for the "pick_next_rt_entity(rq, &rq->rt)
!= &rq->curr->rt" check.
enqueue_task_rt(p) and check_preempt_curr_rt() are always called one
after another with rq->lock being held so the following check
"p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1" should
be enough (well, just its left part) to guarantee that 'p' has been
queued in front of the 'curr'.
(2) in set_cpus_allowed_rt()
I don't thinks there is a need for requeue_task_rt() here.
Perhaps, the only case when 'requeue' (+ reschedule) might be useful is
as follows:
i) weight == 1 && cpu_isset(task_cpu(p), *new_mask)
i.e. a task is being bound to this CPU);
ii) 'p' != rq->curr
but here, 'p' has already been on this CPU for a while and was not
migrated. i.e. it's possible that 'rq->curr' would not have high chances
to be migrated right at this particular moment (although, has chance in
a bit longer term), should we allow it to be preempted.
Anyway, I think we should not perhaps make it more complex trying to
address some rare corner cases. For instance, that's why a single queue
approach would be preferable. Unless I'm missing something obvious, this
approach gives us similar functionality at lower cost.
Verified only compilation-wise.
(Almost)-Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix this warning, which appears with !CONFIG_SMP:
kernel/sched.c:1216: warning: `init_hrtick' defined but not used
Signed-off-by: Rabin Vincent <rabin@rab.in>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix error checking routine to catch an error which occurs in first
__register_*probe().
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@us.ibm.com>
Cc: David Miller <davem@davemloft.net>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>