373 Commits

Author SHA1 Message Date
Jason A. Donenfeld
5acd35487d random: replace custom notifier chain with standard one
We previously rolled our own randomness readiness notifier, which only
has two users in the whole kernel. Replace this with a more standard
atomic notifier block that serves the same purpose with less code. Also
unexport the symbols, because no modules use it, only unconditional
builtins. The only drawback is that it's possible for a notification
handler returning the "stop" code to prevent further processing, but
given that there are only two users, and that we're unexporting this
anyway, that doesn't seem like a significant drawback for the
simplification we receive here.

Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:56 -07:00
Jason A. Donenfeld
a4107d34f9 random: do not export add_vmfork_randomness() unless needed
Since add_vmfork_randomness() is only called from vmgenid.o, we can
guard it in CONFIG_VMGENID, similarly to how we do with
add_disk_randomness() and CONFIG_BLOCK. If we ever have multiple things
calling into add_vmfork_randomness(), we can add another shared Kconfig
symbol for that, but for now, this is good enough. Even though
add_vmfork_randomess() is a pretty small function, removing it means
that there are only calls to crng_reseed(false) and none to
crng_reseed(true), which means the compiler can constant propagate the
false, removing branches from crng_reseed() and its descendants.

Additionally, we don't even need the symbol to be exported if
CONFIG_VMGENID is not a module, so conditionalize that too.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:56 -07:00
Jason A. Donenfeld
ae099e8e98 random: add mechanism for VM forks to reinitialize crng
When a VM forks, we must immediately mix in additional information to
the stream of random output so that two forks or a rollback don't
produce the same stream of random numbers, which could have catastrophic
cryptographic consequences. This commit adds a simple API, add_vmfork_
randomness(), for that, by force reseeding the crng.

This has the added benefit of also draining the entropy pool and setting
its timer back, so that any old entropy that was there prior -- which
could have already been used by a different fork, or generally gone
stale -- does not contribute to the accounting of the next 256 bits.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jann Horn <jannh@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:56 -07:00
Jason A. Donenfeld
77553cf8f4 random: don't let 644 read-only sysctls be written to
We leave around these old sysctls for compatibility, and we keep them
"writable" for compatibility, but even after writing, we should keep
reporting the same value. This is consistent with how userspaces tend to
use sysctl_random_write_wakeup_bits, writing to it, and then later
reading from it and using the value.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:56 -07:00
Jason A. Donenfeld
d0efdf35a6 random: give sysctl_random_min_urandom_seed a more sensible value
This isn't used by anything or anywhere, but we can't delete it due to
compatibility. So at least give it the correct value of what it's
supposed to be instead of a garbage one.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:56 -07:00
Jason A. Donenfeld
6f98a4bfee random: block in /dev/urandom
This topic has come up countless times, and usually doesn't go anywhere.
This time I thought I'd bring it up with a slightly narrower focus,
updated for some developments over the last three years: we finally can
make /dev/urandom always secure, in light of the fact that our RNG is
now always seeded.

Ever since Linus' 50ee7529ec45 ("random: try to actively add entropy
rather than passively wait for it"), the RNG does a haveged-style jitter
dance around the scheduler, in order to produce entropy (and credit it)
for the case when we're stuck in wait_for_random_bytes(). How ever you
feel about the Linus Jitter Dance is beside the point: it's been there
for three years and usually gets the RNG initialized in a second or so.

As a matter of fact, this is what happens currently when people use
getrandom(). It's already there and working, and most people have been
using it for years without realizing.

So, given that the kernel has grown this mechanism for seeding itself
from nothing, and that this procedure happens pretty fast, maybe there's
no point any longer in having /dev/urandom give insecure bytes. In the
past we didn't want the boot process to deadlock, which was
understandable. But now, in the worst case, a second goes by, and the
problem is resolved. It seems like maybe we're finally at a point when
we can get rid of the infamous "urandom read hole".

The one slight drawback is that the Linus Jitter Dance relies on random_
get_entropy() being implemented. The first lines of try_to_generate_
entropy() are:

	stack.now = random_get_entropy();
	if (stack.now == random_get_entropy())
		return;

On most platforms, random_get_entropy() is simply aliased to get_cycles().
The number of machines without a cycle counter or some other
implementation of random_get_entropy() in 2022, which can also run a
mainline kernel, and at the same time have a both broken and out of date
userspace that relies on /dev/urandom never blocking at boot is thought
to be exceedingly low. And to be clear: those museum pieces without
cycle counters will continue to run Linux just fine, and even
/dev/urandom will be operable just like before; the RNG just needs to be
seeded first through the usual means, which should already be the case
now.

On systems that really do want unseeded randomness, we already offer
getrandom(GRND_INSECURE), which is in use by, e.g., systemd for seeding
their hash tables at boot. Nothing in this commit would affect
GRND_INSECURE, and it remains the means of getting those types of random
numbers.

This patch goes a long way toward eliminating a long overdue userspace
crypto footgun. After several decades of endless user confusion, we will
finally be able to say, "use any single one of our random interfaces and
you'll be fine. They're all the same. It doesn't matter." And that, I
think, is really something. Finally all of those blog posts and
disagreeing forums and contradictory articles will all become correct
about whatever they happened to recommend, and along with it, a whole
class of vulnerabilities eliminated.

With very minimal downside, we're finally in a position where we can
make this change.

Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Guo Ren <guoren@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Joshua Kinard <kumba@gentoo.org>
Cc: David Laight <David.Laight@aculab.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lennart Poettering <mzxreary@0pointer.de>
Cc: Konstantin Ryabitsev <konstantin@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-03-12 18:00:55 -07:00
Jason A. Donenfeld
c2a7de4feb random: do crng pre-init loading in worker rather than irq
Taking spinlocks from IRQ context is generally problematic for
PREEMPT_RT. That is, in part, why we take trylocks instead. However, a
spin_try_lock() is also problematic since another spin_lock() invocation
can potentially PI-boost the wrong task, as the spin_try_lock() is
invoked from an IRQ-context, so the task on CPU (random task or idle) is
not the actual owner.

Additionally, by deferring the crng pre-init loading to the worker, we
can use the cryptographic hash function rather than xor, which is
perhaps a meaningful difference when considering this data has only been
through the relatively weak fast_mix() function.

The biggest downside of this approach is that the pre-init loading is
now deferred until later, which means things that need random numbers
after interrupts are enabled, but before workqueues are running -- or
before this particular worker manages to run -- are going to get into
trouble. Hopefully in the real world, this window is rather small,
especially since this code won't run until 64 interrupts had occurred.

Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-28 16:05:25 +01:00
Jason A. Donenfeld
abded93ec1 random: unify cycles_t and jiffies usage and types
random_get_entropy() returns a cycles_t, not an unsigned long, which is
sometimes 64 bits on various 32-bit platforms, including x86.
Conversely, jiffies is always unsigned long. This commit fixes things to
use cycles_t for fields that use random_get_entropy(), named "cycles",
and unsigned long for fields that use jiffies, named "now". It's also
good to mix in a cycles_t and a jiffies in the same way for both
add_device_randomness and add_timer_randomness, rather than using xor in
one case. Finally, we unify the order of these volatile reads, always
reading the more precise cycles counter, and then jiffies, so that the
cycle counter is as close to the event as possible.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-28 16:05:25 +01:00
Jason A. Donenfeld
64276a9939 random: cleanup UUID handling
Rather than hard coding various lengths, we can use the right constants.
Strings should be `char *` while buffers should be `u8 *`. Rather than
have a nonsensical and unused maxlength, just remove it. Finally, use
snprintf instead of sprintf, just out of good hygiene.

As well, remove the old comment about returning a binary UUID via the
binary sysctl syscall. That syscall was removed from the kernel in 5.5,
and actually, the "uuid_strategy" function and related infrastructure
for even serving it via the binary sysctl syscall was removed with
894d2491153a ("sysctl drivers: Remove dead binary sysctl support") back
in 2.6.33.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-28 16:05:25 +01:00
Jason A. Donenfeld
a3f9e8910e random: only wake up writers after zap if threshold was passed
The only time that we need to wake up /dev/random writers on
RNDCLEARPOOL/RNDZAPPOOL is when we're changing from a value that is
greater than or equal to POOL_MIN_BITS to zero, because if we're
changing from below POOL_MIN_BITS to zero, the writers are already
unblocked.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-24 16:32:35 +01:00
Jason A. Donenfeld
da3951ebdc random: round-robin registers as ulong, not u32
When the interrupt handler does not have a valid cycle counter, it calls
get_reg() to read a register from the irq stack, in round-robin.
Currently it does this assuming that registers are 32-bit. This is
_probably_ the case, and probably all platforms without cycle counters
are in fact 32-bit platforms. But maybe not, and either way, it's not
quite correct. This commit fixes that to deal with `unsigned long`
rather than `u32`.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-24 16:32:26 +01:00
Jason A. Donenfeld
3191dd5a11 random: clear fast pool, crng, and batches in cpuhp bring up
For the irq randomness fast pool, rather than having to use expensive
atomics, which were visibly the most expensive thing in the entire irq
handler, simply take care of the extreme edge case of resetting count to
zero in the cpuhp online handler, just after workqueues have been
reenabled. This simplifies the code a bit and lets us use vanilla
variables rather than atomics, and performance should be improved.

As well, very early on when the CPU comes up, while interrupts are still
disabled, we clear out the per-cpu crng and its batches, so that it
always starts with fresh randomness.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:21 +01:00
Jason A. Donenfeld
1daf2f3876 random: check for crng_init == 0 in add_device_randomness()
This has no real functional change, as crng_pre_init_inject() (and
before that, crng_slow_init()) always checks for == 0, not >= 2. So
correct the outer unlocked change to reflect that. Before this used
crng_ready(), which was not correct.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:21 +01:00
Jason A. Donenfeld
da792c6d5f random: unify early init crng load accounting
crng_fast_load() and crng_slow_load() have different semantics:

- crng_fast_load() xors and accounts with crng_init_cnt.
- crng_slow_load() hashes and doesn't account.

However add_hwgenerator_randomness() can afford to hash (it's called
from a kthread), and it should account. Additionally, ones that can
afford to hash don't need to take a trylock but can take a normal lock.
So, we combine these into one function, crng_pre_init_inject(), which
allows us to control these in a uniform way. This will make it simpler
later to simplify this all down when the time comes for that.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
afba0b80b9 random: do not take pool spinlock at boot
Since rand_initialize() is run while interrupts are still off and
nothing else is running, we don't need to repeatedly take and release
the pool spinlock, especially in the RDSEED loop.

Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
58340f8e95 random: defer fast pool mixing to worker
On PREEMPT_RT, it's problematic to take spinlocks from hard irq
handlers. We can fix this by deferring to a workqueue the dumping of
the fast pool into the input pool.

We accomplish this with some careful rules on fast_pool->count:

  - When it's incremented to >= 64, we schedule the work.
  - If the top bit is set, we never schedule the work, even if >= 64.
  - The worker is responsible for setting it back to 0 when it's done.

There are two small issues around using workqueues for this purpose that
we work around.

The first issue is that mix_interrupt_randomness() might be migrated to
another CPU during CPU hotplug. This issue is rectified by checking that
it hasn't been migrated (after disabling irqs). If it has been migrated,
then we set the count to zero, so that when the CPU comes online again,
it can requeue the work. As part of this, we switch to using an
atomic_t, so that the increment in the irq handler doesn't wipe out the
zeroing if the CPU comes back online while this worker is running.

The second issue is that, though relatively minor in effect, we probably
want to make sure we get a consistent view of the pool onto the stack,
in case it's interrupted by an irq while reading. To do this, we don't
reenable irqs until after the copy. There are only 18 instructions
between the cli and sti, so this is a pretty tiny window.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
5f75d9f3ba random: rewrite header introductory comment
Now that we've re-documented the various sections, we can remove the
outdated text here and replace it with a high-level overview.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
0deff3c432 random: group sysctl functions
This pulls all of the sysctl-focused functions into the sixth labeled
section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
a6adf8e7a6 random: group userspace read/write functions
This pulls all of the userspace read/write-focused functions into the
fifth labeled section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:17 +01:00
Jason A. Donenfeld
92c653cf14 random: group entropy collection functions
This pulls all of the entropy collection-focused functions into the
fourth labeled section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:09 +01:00
Jason A. Donenfeld
a5ed7cb1a7 random: group entropy extraction functions
This pulls all of the entropy extraction-focused functions into the
third labeled section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:09 +01:00
Jason A. Donenfeld
3655adc708 random: group crng functions
This pulls all of the crng-focused functions into the second labeled
section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:09 +01:00
Jason A. Donenfeld
5f1bb11200 random: group initialization wait functions
This pulls all of the readiness waiting-focused functions into the first
labeled section.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:04 +01:00
Jason A. Donenfeld
87e7d5abad random: remove whitespace and reorder includes
This is purely cosmetic. Future work involves figuring out which of
these headers we need and which we don't.

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:04 +01:00
Jason A. Donenfeld
246c03dd89 random: introduce drain_entropy() helper to declutter crng_reseed()
In preparation for separating responsibilities, break out the entropy
count management part of crng_reseed() into its own function.

No functional changes.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
b2f408fe40 random: deobfuscate irq u32/u64 contributions
In the irq handler, we fill out 16 bytes differently on 32-bit and
64-bit platforms, and for 32-bit vs 64-bit cycle counters, which doesn't
always correspond with the bitness of the platform. Whether or not you
like this strangeness, it is a matter of fact.  But it might not be a
fact you well realized until now, because the code that loaded the irq
info into 4 32-bit words was quite confusing.  Instead, this commit
makes everything explicit by having separate (compile-time) branches for
32-bit and 64-bit types.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
a07fdae346 random: add proper SPDX header
Convert the current license into the SPDX notation of "(GPL-2.0 OR
BSD-3-Clause)". This infers GPL-2.0 from the text "ALTERNATIVELY, this
product may be distributed under the terms of the GNU General Public
License, in which case the provisions of the GPL are required INSTEAD OF
the above restrictions" and it infers BSD-3-Clause from the verbatim
BSD 3 clause license in the file.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
14c174633f random: remove unused tracepoints
These explicit tracepoints aren't really used and show sign of aging.
It's work to keep these up to date, and before I attempted to keep them
up to date, they weren't up to date, which indicates that they're not
really used. These days there are better ways of introspecting anyway.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
95e6060c20 random: remove ifdef'd out interrupt bench
With tools like kbench9000 giving more finegrained responses, and this
basically never having been used ever since it was initially added,
let's just get rid of this. There *is* still work to be done on the
interrupt handler, but this really isn't the way it's being developed.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
0791e8b655 random: tie batched entropy generation to base_crng generation
Now that we have an explicit base_crng generation counter, we don't need
a separate one for batched entropy. Rather, we can just move the
generation forward every time we change crng_init state or update the
base_crng key.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Dominik Brodowski
7191c628fe random: fix locking for crng_init in crng_reseed()
crng_init is protected by primary_crng->lock. Therefore, we need
to hold this lock when increasing crng_init to 2. As we shouldn't
hold this lock for too long, only hold it for those parts which
require protection.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
7b5164fb12 random: zero buffer after reading entropy from userspace
This buffer may contain entropic data that shouldn't stick around longer
than needed, so zero out the temporary buffer at the end of write_pool().

Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
434537ae54 random: remove outdated INT_MAX >> 6 check in urandom_read()
In 79a8468747c5 ("random: check for increase of entropy_count because of
signed conversion"), a number of checks were added around what values
were passed to account(), because account() was doing fancy fixed point
fractional arithmetic, and a user had some ability to pass large values
directly into it. One of things in that commit was limiting those values
to INT_MAX >> 6. The first >> 3 was for bytes to bits, and the next >> 3
was for bits to 1/8 fractional bits.

However, for several years now, urandom reads no longer touch entropy
accounting, and so this check serves no purpose. The current flow is:

urandom_read_nowarn()-->get_random_bytes_user()-->chacha20_block()

Of course, we don't want that size_t to be truncated when adding it into
the ssize_t. But we arrive at urandom_read_nowarn() in the first place
either via ordinary fops, which limits reads to MAX_RW_COUNT, or via
getrandom() which limits reads to INT_MAX.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:14:00 +01:00
Jason A. Donenfeld
04ec96b768 random: make more consistent use of integer types
We've been using a flurry of int, unsigned int, size_t, and ssize_t.
Let's unify all of this into size_t where it makes sense, as it does in
most places, and leave ssize_t for return values with possible errors.

In addition, keeping with the convention of other functions in this
file, functions that are dealing with raw bytes now take void *
consistently instead of a mix of that and u8 *, because much of the time
we're actually passing some other structure that is then interpreted as
bytes by the function.

We also take the opportunity to fix the outdated and incorrect comment
in get_random_bytes_arch().

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 21:13:54 +01:00
Jason A. Donenfeld
66e4c2b954 random: use hash function for crng_slow_load()
Since we have a hash function that's really fast, and the goal of
crng_slow_load() is reportedly to "touch all of the crng's state", we
can just hash the old state together with the new state and call it a
day. This way we dont need to reason about another LFSR or worry about
various attacks there. This code is only ever used at early boot and
then never again.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 20:11:35 +01:00
Jason A. Donenfeld
186873c549 random: use simpler fast key erasure flow on per-cpu keys
Rather than the clunky NUMA full ChaCha state system we had prior, this
commit is closer to the original "fast key erasure RNG" proposal from
<https://blog.cr.yp.to/20170723-random.html>, by simply treating ChaCha
keys on a per-cpu basis.

All entropy is extracted to a base crng key of 32 bytes. This base crng
has a birthdate and a generation counter. When we go to take bytes from
the crng, we first check if the birthdate is too old; if it is, we
reseed per usual. Then we start working on a per-cpu crng.

This per-cpu crng makes sure that it has the same generation counter as
the base crng. If it doesn't, it does fast key erasure with the base
crng key and uses the output as its new per-cpu key, and then updates
its local generation counter. Then, using this per-cpu state, we do
ordinary fast key erasure. Half of this first block is used to overwrite
the per-cpu crng key for the next call -- this is the fast key erasure
RNG idea -- and the other half, along with the ChaCha state, is returned
to the caller. If the caller desires more than this remaining half, it
can generate more ChaCha blocks, unlocked, using the now detached ChaCha
state that was just returned. Crypto-wise, this is more or less what we
were doing before, but this simply makes it more explicit and ensures
that we always have backtrack protection by not playing games with a
shared block counter.

The flow looks like this:

──extract()──► base_crng.key ◄──memcpy()───┐
                   │                       │
                   └──chacha()──────┬─► new_base_key
                                    └─► crngs[n].key ◄──memcpy()───┐
                                              │                    │
                                              └──chacha()───┬─► new_key
                                                            └─► random_bytes
                                                                      │
                                                                      └────►

There are a few hairy details around early init. Just as was done
before, prior to having gathered enough entropy, crng_fast_load() and
crng_slow_load() dump bytes directly into the base crng, and when we go
to take bytes from the crng, in that case, we're doing fast key erasure
with the base crng rather than the fast unlocked per-cpu crngs. This is
fine as that's only the state of affairs during very early boot; once
the crng initializes we never use these paths again.

In the process of all this, the APIs into the crng become a bit simpler:
we have get_random_bytes(buf, len) and get_random_bytes_user(buf, len),
which both do what you'd expect. All of the details of fast key erasure
and per-cpu selection happen only in a very short critical section of
crng_make_state(), which selects the right per-cpu key, does the fast
key erasure, and returns a local state to the caller's stack. So, we no
longer have a need for a separate backtrack function, as this happens
all at once here. The API then allows us to extend backtrack protection
to batched entropy without really having to do much at all.

The result is a bit simpler than before and has fewer foot guns. The
init time state machine also gets a lot simpler as we don't need to wait
for workqueues to come online and do deferred work. And the multi-core
performance should be increased significantly, by virtue of having hardly
any locking on the fast path.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Jann Horn <jannh@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 20:11:35 +01:00
Jason A. Donenfeld
c30c575db4 random: absorb fast pool into input pool after fast load
During crng_init == 0, we never credit entropy in add_interrupt_
randomness(), but instead dump it directly into the primary_crng. That's
fine, except for the fact that we then wind up throwing away that
entropy later when we switch to extracting from the input pool and
xoring into (and later in this series overwriting) the primary_crng key.
The two other early init sites -- add_hwgenerator_randomness()'s use
crng_fast_load() and add_device_ randomness()'s use of crng_slow_load()
-- always additionally give their inputs to the input pool. But not
add_interrupt_randomness().

This commit fixes that shortcoming by calling mix_pool_bytes() after
crng_fast_load() in add_interrupt_randomness(). That's partially
verboten on PREEMPT_RT, where it implies taking spinlock_t from an IRQ
handler. But this also only happens during early boot and then never
again after that. Plus it's a trylock so it has the same considerations
as calling crng_fast_load(), which we're already using.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Suggested-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 20:11:26 +01:00
Jason A. Donenfeld
91c2afca29 random: do not xor RDRAND when writing into /dev/random
Continuing the reasoning of "random: ensure early RDSEED goes through
mixer on init", we don't want RDRAND interacting with anything without
going through the mixer function, as a backdoored CPU could presumably
cancel out data during an xor, which it'd have a harder time doing when
being forced through a cryptographic hash function. There's actually no
need at all to be calling RDRAND in write_pool(), because before we
extract from the pool, we always do so with 32 bytes of RDSEED hashed in
at that stage. Xoring at this stage is needless and introduces a minor
liability.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
a02cf3d0dd random: ensure early RDSEED goes through mixer on init
Continuing the reasoning of "random: use RDSEED instead of RDRAND in
entropy extraction" from this series, at init time we also don't want to
be xoring RDSEED directly into the crng. Instead it's safer to put it
into our entropy collector and then re-extract it, so that it goes
through a hash function with preimage resistance. As a matter of hygiene,
we also order these now so that the RDSEED byte are hashed in first,
followed by the bytes that are likely more predictable (e.g. utsname()).

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
8566417221 random: inline leaves of rand_initialize()
This is a preparatory commit for the following one. We simply inline the
various functions that rand_initialize() calls that have no other
callers. The compiler was doing this anyway before. Doing this will
allow us to reorganize this after. We can then move the trust_cpu and
parse_trust_cpu definitions a bit closer to where they're actually used,
which makes the code easier to read.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
a9412d510a random: get rid of secondary crngs
As the comment said, this is indeed a "hack". Since it was introduced,
it's been a constant state machine nightmare, with lots of subtle early
boot issues and a wildly complex set of machinery to keep everything in
sync. Rather than continuing to play whack-a-mole with this approach,
this commit simply removes it entirely. This commit is preparation for
"random: use simpler fast key erasure flow on per-cpu keys" in this
series, which introduces a simpler (and faster) mechanism to accomplish
the same thing.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
28f425e573 random: use RDSEED instead of RDRAND in entropy extraction
When /dev/random was directly connected with entropy extraction, without
any expansion stage, extract_buf() was called for every 10 bytes of data
read from /dev/random. For that reason, RDRAND was used rather than
RDSEED. At the same time, crng_reseed() was still only called every 5
minutes, so there RDSEED made sense.

Those olden days were also a time when the entropy collector did not use
a cryptographic hash function, which meant most bets were off in terms
of real preimage resistance. For that reason too it didn't matter
_that_ much whether RDSEED was mixed in before or after entropy
extraction; both choices were sort of bad.

But now we have a cryptographic hash function at work, and with that we
get real preimage resistance. We also now only call extract_entropy()
every 5 minutes, rather than every 10 bytes. This allows us to do two
important things.

First, we can switch to using RDSEED in extract_entropy(), as Dominik
suggested. Second, we can ensure that RDSEED input always goes into the
cryptographic hash function with other things before being used
directly. This eliminates a category of attacks in which the CPU knows
the current state of the crng and knows that we're going to xor RDSEED
into it, and so it computes a malicious RDSEED. By going through our
hash function, it would require the CPU to compute a preimage on the
fly, which isn't going to happen.

Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Suggested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Dominik Brodowski
7c2fe2b32b random: fix locking in crng_fast_load()
crng_init is protected by primary_crng->lock, so keep holding that lock
when incrementing crng_init from 0 to 1 in crng_fast_load(). The call to
pr_notice() can wait until the lock is released; this code path cannot
be reached twice, as crng_fast_load() aborts early if crng_init > 0.

Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
77760fd7f7 random: remove batched entropy locking
Rather than use spinlocks to protect batched entropy, we can instead
disable interrupts locally, since we're dealing with per-cpu data, and
manage resets with a basic generation counter. At the same time, we
can't quite do this on PREEMPT_RT, where we still want spinlocks-as-
mutexes semantics. So we use a local_lock_t, which provides the right
behavior for each. Because this is a per-cpu lock, that generation
counter is still doing the necessary CPU-to-CPU communication.

This should improve performance a bit. It will also fix the linked splat
that Jonathan received with a PROVE_RAW_LOCK_NESTING=y.

Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Reported-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Tested-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Link: https://lore.kernel.org/lkml/YfMa0QgsjCVdRAvJ@latitude/
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Eric Biggers
5d58ea3a31 random: remove use_input_pool parameter from crng_reseed()
The primary_crng is always reseeded from the input_pool, while the NUMA
crngs are always reseeded from the primary_crng.  Remove the redundant
'use_input_pool' parameter from crng_reseed() and just directly check
whether the crng is the primary_crng.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
a49c010e61 random: make credit_entropy_bits() always safe
This is called from various hwgenerator drivers, so rather than having
one "safe" version for userspace and one "unsafe" version for the
kernel, just make everything safe; the checks are cheap and sensible to
have anyway.

Reported-by: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
489c7fc44b random: always wake up entropy writers after extraction
Now that POOL_BITS == POOL_MIN_BITS, we must unconditionally wake up
entropy writers after every extraction. Therefore there's no point of
write_wakeup_threshold, so we can move it to the dustbin of unused
compatibility sysctls. While we're at it, we can fix a small comparison
where we were waking up after <= min rather than < min.

Cc: Theodore Ts'o <tytso@mit.edu>
Suggested-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
c570449094 random: use linear min-entropy accumulation crediting
30e37ec516ae ("random: account for entropy loss due to overwrites")
assumed that adding new entropy to the LFSR pool probabilistically
cancelled out old entropy there, so entropy was credited asymptotically,
approximating Shannon entropy of independent sources (rather than a
stronger min-entropy notion) using 1/8th fractional bits and replacing
a constant 2-2/√𝑒 term (~0.786938) with 3/4 (0.75) to slightly
underestimate it. This wasn't superb, but it was perhaps better than
nothing, so that's what was done. Which entropy specifically was being
cancelled out and how much precisely each time is hard to tell, though
as I showed with the attack code in my previous commit, a motivated
adversary with sufficient information can actually cancel out
everything.

Since we're no longer using an LFSR for entropy accumulation, this
probabilistic cancellation is no longer relevant. Rather, we're now
using a computational hash function as the accumulator and we've
switched to working in the random oracle model, from which we can now
revisit the question of min-entropy accumulation, which is done in
detail in <https://eprint.iacr.org/2019/198>.

Consider a long input bit string that is built by concatenating various
smaller independent input bit strings. Each one of these inputs has a
designated min-entropy, which is what we're passing to
credit_entropy_bits(h). When we pass the concatenation of these to a
random oracle, it means that an adversary trying to receive back the
same reply as us would need to become certain about each part of the
concatenated bit string we passed in, which means becoming certain about
all of those h values. That means we can estimate the accumulation by
simply adding up the h values in calls to credit_entropy_bits(h);
there's no probabilistic cancellation at play like there was said to be
for the LFSR. Incidentally, this is also what other entropy accumulators
based on computational hash functions do as well.

So this commit replaces credit_entropy_bits(h) with essentially `total =
min(POOL_BITS, total + h)`, done with a cmpxchg loop as before.

What if we're wrong and the above is nonsense? It's not, but let's
assume we don't want the actual _behavior_ of the code to change much.
Currently that behavior is not extracting from the input pool until it
has 128 bits of entropy in it. With the old algorithm, we'd hit that
magic 128 number after roughly 256 calls to credit_entropy_bits(1). So,
we can retain more or less the old behavior by waiting to extract from
the input pool until it hits 256 bits of entropy using the new code. For
people concerned about this change, it means that there's not that much
practical behavioral change. And for folks actually trying to model
the behavior rigorously, it means that we have an even higher margin
against attacks.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
9c07f57869 random: simplify entropy debiting
Our pool is 256 bits, and we only ever use all of it or don't use it at
all, which is decided by whether or not it has at least 128 bits in it.
So we can drastically simplify the accounting and cmpxchg loop to do
exactly this.  While we're at it, we move the minimum bit size into a
constant so it can be shared between the two places where it matters.

The reason we want any of this is for the case in which an attacker has
compromised the current state, and then bruteforces small amounts of
entropy added to it. By demanding a particular minimum amount of entropy
be present before reseeding, we make that bruteforcing difficult.

Note that this rationale no longer includes anything about /dev/random
blocking at the right moment, since /dev/random no longer blocks (except
for at ~boot), but rather uses the crng. In a former life, /dev/random
was different and therefore required a more nuanced account(), but this
is no longer.

Behaviorally, nothing changes here. This is just a simplification of
the code.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00
Jason A. Donenfeld
6e8ec2552c random: use computational hash for entropy extraction
The current 4096-bit LFSR used for entropy collection had a few
desirable attributes for the context in which it was created. For
example, the state was huge, which meant that /dev/random would be able
to output quite a bit of accumulated entropy before blocking. It was
also, in its time, quite fast at accumulating entropy byte-by-byte,
which matters given the varying contexts in which mix_pool_bytes() is
called. And its diffusion was relatively high, which meant that changes
would ripple across several words of state rather quickly.

However, it also suffers from a few security vulnerabilities. In
particular, inputs learned by an attacker can be undone, but moreover,
if the state of the pool leaks, its contents can be controlled and
entirely zeroed out. I've demonstrated this attack with this SMT2
script, <https://xn--4db.cc/5o9xO8pb>, which Boolector/CaDiCal solves in
a matter of seconds on a single core of my laptop, resulting in little
proof of concept C demonstrators such as <https://xn--4db.cc/jCkvvIaH/c>.

For basically all recent formal models of RNGs, these attacks represent
a significant cryptographic flaw. But how does this manifest
practically? If an attacker has access to the system to such a degree
that he can learn the internal state of the RNG, arguably there are
other lower hanging vulnerabilities -- side-channel, infoleak, or
otherwise -- that might have higher priority. On the other hand, seed
files are frequently used on systems that have a hard time generating
much entropy on their own, and these seed files, being files, often leak
or are duplicated and distributed accidentally, or are even seeded over
the Internet intentionally, where their contents might be recorded or
tampered with. Seen this way, an otherwise quasi-implausible
vulnerability is a bit more practical than initially thought.

Another aspect of the current mix_pool_bytes() function is that, while
its performance was arguably competitive for the time in which it was
created, it's no longer considered so. This patch improves performance
significantly: on a high-end CPU, an i7-11850H, it improves performance
of mix_pool_bytes() by 225%, and on a low-end CPU, a Cortex-A7, it
improves performance by 103%.

This commit replaces the LFSR of mix_pool_bytes() with a straight-
forward cryptographic hash function, BLAKE2s, which is already in use
for pool extraction. Universal hashing with a secret seed was considered
too, something along the lines of <https://eprint.iacr.org/2013/338>,
but the requirement for a secret seed makes for a chicken & egg problem.
Instead we go with a formally proven scheme using a computational hash
function, described in sections 5.1, 6.4, and B.1.8 of
<https://eprint.iacr.org/2019/198>.

BLAKE2s outputs 256 bits, which should give us an appropriate amount of
min-entropy accumulation, and a wide enough margin of collision
resistance against active attacks. mix_pool_bytes() becomes a simple
call to blake2s_update(), for accumulation, while the extraction step
becomes a blake2s_final() to generate a seed, with which we can then do
a HKDF-like or BLAKE2X-like expansion, the first part of which we fold
back as an init key for subsequent blake2s_update()s, and the rest we
produce to the caller. This then is provided to our CRNG like usual. In
that expansion step, we make opportunistic use of 32 bytes of RDRAND
output, just as before. We also always reseed the crng with 32 bytes,
unconditionally, or not at all, rather than sometimes with 16 as before,
as we don't win anything by limiting beyond the 16 byte threshold.

Going for a hash function as an entropy collector is a conservative,
proven approach. The result of all this is a much simpler and much less
bespoke construction than what's there now, which not only plugs a
vulnerability but also improves performance considerably.

Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-02-21 16:48:06 +01:00