Commit Graph

361 Commits

Author SHA1 Message Date
Carlos Maiolino
8ca118e17a xfs: enable quota for realtime volumes [v5.5 08/10]
At some point, I realized that I've refactored enough of the quota code
 in XFS that I should evaluate whether or not quota actually works on
 realtime volumes.  It turns out that it nearly works: the only broken
 pieces are chown and delayed allocation, and reporting of project
 quotas in the statvfs output for projinherit+rtinherit directories.
 
 Fix these things and we can have realtime quotas again after 20 years.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pkh4AQCtjI73mwU9rhzs2MO5nLNlpg9bgOxute+G4eqGCP02CwEAvg/LpT9yA6qk
 1jM5x8C6xy03yIWTUc+DcMPqoCqJzwc=
 =2QMv
 -----END PGP SIGNATURE-----

Merge tag 'realtime-quotas-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: enable quota for realtime volumes [v5.5 08/10]

At some point, I realized that I've refactored enough of the quota code
in XFS that I should evaluate whether or not quota actually works on
realtime volumes.  It turns out that it nearly works: the only broken
pieces are chown and delayed allocation, and reporting of project
quotas in the statvfs output for projinherit+rtinherit directories.

Fix these things and we can have realtime quotas again after 20 years.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:02:25 +01:00
Carlos Maiolino
b939bcdca3 xfs: shard the realtime section [v5.5 06/10]
Right now, the realtime section uses a single pair of metadata inodes to
 store the free space information.  This presents a scalability problem
 since every thread trying to allocate or free rt extents have to lock
 these files.  Solve this problem by sharding the realtime section into
 separate realtime allocation groups.
 
 While we're at it, define a superblock to be stamped into the start of
 the rt section.  This enables utilities such as blkid to identify block
 devices containing realtime sections, and avoids the situation where
 anything written into block 0 of the realtime extent can be
 misinterpreted as file data.
 
 The best advantage for rtgroups will become evident later when we get to
 adding rmap and reflink to the realtime volume, since the geometry
 constraints are the same for rt groups and AGs.  Hence we can reuse all
 that code directly.
 
 This is a very large patchset, but it catches us up with 20 years of
 technical debt that have accumulated.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 pqk4AQD31pupAefiZ39TFLz0oA1+Q2WUOoLxH/3Ovqin1GJNPgD9EG04/14fDmRU
 WDUSVfU8JKKJYEXXZnLeJLsvEUL2EQ0=
 =1/oh
 -----END PGP SIGNATURE-----

Merge tag 'realtime-groups-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: shard the realtime section [v5.5 06/10]

Right now, the realtime section uses a single pair of metadata inodes to
store the free space information.  This presents a scalability problem
since every thread trying to allocate or free rt extents have to lock
these files.  Solve this problem by sharding the realtime section into
separate realtime allocation groups.

While we're at it, define a superblock to be stamped into the start of
the rt section.  This enables utilities such as blkid to identify block
devices containing realtime sections, and avoids the situation where
anything written into block 0 of the realtime extent can be
misinterpreted as file data.

The best advantage for rtgroups will become evident later when we get to
adding rmap and reflink to the realtime volume, since the geometry
constraints are the same for rt groups and AGs.  Hence we can reuse all
that code directly.

This is a very large patchset, but it catches us up with 20 years of
technical debt that have accumulated.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 11:00:42 +01:00
Carlos Maiolino
6b3582aca3 xfs: create incore rt allocation groups [v5.5 04/10]
Add in-memory data structures for sharding the realtime volume into
 independent allocation groups.  For existing filesystems, the entire rt
 volume is modelled as having a single large group, with (potentially) a
 number of rt extents exceeding 2^32 blocks, though these are not likely
 to exist because the codebase has been a bit broken for decades.  The
 next series fills in the ondisk format and other supporting structures.
 
 With a bit of luck, this should all go splendidly.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZyqQdAAKCRBKO3ySh0YR
 ptrrAP41PURivFpHWXqg0sajsIUUezhuAdfg41fJqOop81qWDAEA2CsLf1z0c9/P
 CQS/tlQ3xdwZ0MYZMaw2o0EgSHYjwg8=
 =qVdv
 -----END PGP SIGNATURE-----

Merge tag 'incore-rtgroups-6.13_2024-11-05' of https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge

xfs: create incore rt allocation groups [v5.5 04/10]

Add in-memory data structures for sharding the realtime volume into
independent allocation groups.  For existing filesystems, the entire rt
volume is modelled as having a single large group, with (potentially) a
number of rt extents exceeding 2^32 blocks, though these are not likely
to exist because the codebase has been a bit broken for decades.  The
next series fills in the ondisk format and other supporting structures.

With a bit of luck, this should all go splendidly.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-12 10:59:34 +01:00
Darrick J. Wong
5dd70852b0 xfs: create quota preallocation watermarks for realtime quota
Refactor the quota preallocation watermarking code so that it'll work
for realtime quota too.  Convert the do_div calls into div_u64 for
compactness.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:46 -08:00
Darrick J. Wong
b91afef724 xfs: don't merge ioends across RTGs
Unlike AGs, RTGs don't always have metadata in their first blocks, and
thus we don't get automatic protection from merging I/O completions
across RTG boundaries.  Add code to set the IOMAP_F_BOUNDARY flag for
ioends that start at the first block of a RTG so that they never get
merged into the previous ioend.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-05 13:38:42 -08:00
Christoph Hellwig
f220f6da5f xfs: make RT extent numbers relative to the rtgroup
To prepare for adding per-rtgroup bitmap files, make the xfs_rtxnum_t
type encode the RT extent number relative to the rtgroup.  The biggest
part of this to clearly distinguish between the relative extent number
that gets masked when converting from a global block number and length
values that just have a factor applied to them when converting from
file system blocks.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-05 13:38:38 -08:00
Christoph Hellwig
fe4e0faac9 xfs: remove xfs_page_mkwrite_iomap_ops
Shared the regular buffered write iomap_ops with the page fault path
and just check for the IOMAP_FAULT flag to skip delalloc punching.

This keeps the delalloc punching checks in one place, and will make it
easier to convert iomap to an iter model where the begin and end
handlers are merged into a single callback.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-11-05 13:52:57 +01:00
Linus Torvalds
17fa6a5f93 vfs-6.12-rc6.iomap
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZyTGVAAKCRCRxhvAZXjc
 oltEAP9r8cWa3Tdv8DzMNWu/jezTUXoW/mX5Qe+c1L6faqj0WQD/dIVtBtG37Tfq
 3Ci9F/GEWjKijtCQ5lwMGUq27jQJ1gk=
 =/0iA
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.12-rc6.iomap' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs

Pull iomap fixes from Christian Brauner:
 "Fixes for iomap to prevent data corruption bugs in the fallocate
  unshare range implementation of fsdax and a small cleanup to turn
  iomap_want_unshare_iter() into an inline function"

* tag 'vfs-6.12-rc6.iomap' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs:
  iomap: turn iomap_want_unshare_iter into an inline function
  fsdax: dax_unshare_iter needs to copy entire blocks
  fsdax: remove zeroing code from dax_unshare_iter
  iomap: share iomap_unshare_iter predicate code with fsdax
  xfs: don't allocate COW extents when unsharing a hole
2024-11-01 07:45:00 -10:00
Christoph Hellwig
f6f91d290c xfs: punch delalloc extents from the COW fork for COW writes
When ->iomap_end is called on a short write to the COW fork it needs to
punch stale delalloc data from the COW fork and not the data fork.

Ensure that IOMAP_F_NEW is set for new COW fork allocations in
xfs_buffered_write_iomap_begin, and then use the IOMAP_F_SHARED flag
in xfs_buffered_write_delalloc_punch to decide which fork to punch.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
7d6fe5c586 xfs: set IOMAP_F_SHARED for all COW fork allocations
Change to always set xfs_buffered_write_iomap_begin for COW fork
allocations even if they don't overlap existing data fork extents,
which will allow the iomap_end callback to detect if it has to punch
stale delalloc blocks from the COW fork instead of the data fork.  It
also means we sample the sequence counter for both the data and the COW
fork when writing to the COW fork, which ensures we properly revalidate
when only COW fork changes happens.

This is essentially a revert of commit 72a048c105 ("xfs: only set
IOMAP_F_SHARED when providing a srcmap to a write"). This is fine because
the problem that the commit fixed has now been dealt with in iomap by
only looking at the actual srcmap and not the fallback to the write
iomap.

Note that the direct I/O path was never changed and has always set
IOMAP_F_SHARED for all COW fork allocations.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
c29440ff66 xfs: share more code in xfs_buffered_write_iomap_begin
Introduce a local iomap_flags variable so that the code allocating new
delalloc blocks in the data fork can fall through to the found_imap
label and reuse the code to unlock and fill the iomap.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
8fe3b21efa xfs: support the COW fork in xfs_bmap_punch_delalloc_range
xfs_buffered_write_iomap_begin can also create delallocate reservations
that need cleaning up, prepare for that by adding support for the COW
fork in xfs_bmap_punch_delalloc_range.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
abd7d651ad xfs: IOMAP_ZERO and IOMAP_UNSHARE already hold invalidate_lock
All XFS callers of iomap_zero_range and iomap_file_unshare already hold
invalidate_lock, so we can't take it again in
iomap_file_buffered_write_punch_delalloc.

Use the passed in flags argument to detect if we're called from a zero
or unshare operation and don't take the lock again in this case.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
acfbac7764 xfs: take XFS_MMAPLOCK_EXCL xfs_file_write_zero_eof
xfs_file_write_zero_eof is the only caller of xfs_zero_range that does
not take XFS_MMAPLOCK_EXCL (aka the invalidate lock).  Currently that
is actually the right thing, as an error in the iomap zeroing code will
also take the invalidate_lock to clean up, but to fix that deadlock we
need a consistent locking pattern first.

The only extra thing that XFS_MMAPLOCK_EXCL will lock out are read
pagefaults, which isn't really needed here, but also not actively
harmful.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
b784951662 iomap: move locking out of iomap_write_delalloc_release
XFS (which currently is the only user of iomap_write_delalloc_release)
already holds invalidate_lock for most zeroing operations.  To be able
to avoid a deadlock it needs to stop taking the lock, but doing so
in iomap would leak XFS locking details into iomap.

To avoid this require the caller to hold invalidate_lock when calling
iomap_write_delalloc_release instead of taking it there.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Christoph Hellwig
caf0ea451d iomap: remove iomap_file_buffered_write_punch_delalloc
Currently iomap_file_buffered_write_punch_delalloc can be called from
XFS either with the invalidate lock held or not.  To fix this while
keeping the locking in the file system and not the iomap library
code we'll need to life the locking up into the file system.

To prepare for that, open code iomap_file_buffered_write_punch_delalloc
in the only caller, and instead export iomap_write_delalloc_release.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
2024-10-15 11:37:42 +02:00
Darrick J. Wong
b8c4076db5
xfs: don't allocate COW extents when unsharing a hole
It doesn't make sense to allocate a COW extent when unsharing a hole
because holes cannot be shared.

Fixes: 1f1397b721 ("xfs: don't allocate into the data fork for an unshare request")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/172796813277.1131942.5486112889531210260.stgit@frogsfrogsfrogs
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-10-07 13:51:46 +02:00
Christoph Hellwig
4bceb9ba05
iomap: remove the iomap_file_buffered_write_punch_delalloc return value
iomap_file_buffered_write_punch_delalloc can only return errors if either
the ->punch callback returned an error, or if someone changed the API of
mapping_seek_hole_data to return a negative error code that is not
-ENXIO.

As the only instance of ->punch never returns an error, an such an error
would be fatal anyway remove the entire error propagation and don't
return an error code from iomap_file_buffered_write_punch_delalloc.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-6-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-10 11:14:15 +02:00
Christoph Hellwig
492f53758f
iomap: pass the iomap to the punch callback
XFS will need to look at the flags in the iomap structure, so pass it
down all the way to the callback.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-5-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-10 11:14:15 +02:00
Christoph Hellwig
11596dc3df
iomap: pass flags to iomap_file_buffered_write_punch_delalloc
To fix short write error handling, We'll need to figure out what operation
iomap_file_buffered_write_punch_delalloc is called for.  Pass the flags
argument on to it, and reorder the argument list to match that of
->iomap_end so that the compiler only has to add the new punch argument
to the end of it instead of reshuffling the registers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-4-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-09-10 11:14:14 +02:00
Christoph Hellwig
8626b67acf xfs: move the dio write relocking out of xfs_ilock_for_iomap
About half of xfs_ilock_for_iomap deals with a special case for direct
I/O writes to COW files that need to take the ilock exclusively.  Move
this code into the one callers that cares and simplify
xfs_ilock_for_iomap.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-07-01 09:32:29 +05:30
Darrick J. Wong
288e1f693f xfs: restrict when we try to align cow fork delalloc to cowextsz hints
xfs/205 produces the following failure when always_cow is enabled:

  --- a/tests/xfs/205.out	2024-02-28 16:20:24.437887970 -0800
  +++ b/tests/xfs/205.out.bad	2024-06-03 21:13:40.584000000 -0700
  @@ -1,4 +1,5 @@
   QA output created by 205
   *** one file
  +   !!! disk full (expected)
   *** one file, a few bytes at a time
   *** done

This is the result of overly aggressive attempts to align cow fork
delalloc reservations to the CoW extent size hint.  Looking at the trace
data, we're trying to append a single fsblock to the "fred" file.
Trying to create a speculative post-eof reservation fails because
there's not enough space.

We then set @prealloc_blocks to zero and try again, but the cowextsz
alignment code triggers, which expands our request for a 1-fsblock
reservation into a 39-block reservation.  There's not enough space for
that, so the whole write fails with ENOSPC even though there's
sufficient space in the filesystem to allocate the single block that we
need to land the write.

There are two things wrong here -- first, we shouldn't be attempting
speculative preallocations beyond what was requested when we're low on
space.  Second, if we've already computed a posteof preallocation, we
shouldn't bother trying to align that to the cowextsize hint.

Fix both of these problems by adding a flag that only enables the
expansion of the delalloc reservation to the cowextsize if we're doing a
non-extending write, and only if we're not doing an ENOSPC retry.  This
requires us to move the ENOSPC retry logic to xfs_bmapi_reserve_delalloc.

I probably should have caught this six years ago when 6ca30729c2 was
being reviewed, but oh well.  Update the comments to reflect what the
code does now.

Fixes: 6ca30729c2 ("xfs: bmap code cleanup")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-06-26 14:29:24 +05:30
Christoph Hellwig
25576c5420 xfs: simplify iext overflow checking and upgrade
Currently the calls to xfs_iext_count_may_overflow and
xfs_iext_count_upgrade are always paired.  Merge them into a single
function to simplify the callers and the actual check and upgrade
logic itself.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-05-03 11:20:06 +05:30
Christoph Hellwig
cc3c92e7e7 xfs: xfs_quota_unreserve_blkres can't fail
Unreserving quotas can't fail due to quota limits, and we'll notice a
shut down file system a bit later in all the callers anyway.  Return
void and remove the error checking and propagation in the callers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-05-03 11:15:03 +05:30
Christoph Hellwig
6773da870a xfs: fix error returns from xfs_bmapi_write
xfs_bmapi_write can return 0 without actually returning a mapping in
mval in two different cases:

 1) when there is absolutely no space available to do an allocation
 2) when converting delalloc space, and the allocation is so small
    that it only covers parts of the delalloc extent before the
    range requested by the caller

Callers at best can handle one of these cases, but in many cases can't
cope with either one.  Switch xfs_bmapi_write to always return a
mapping or return an error code instead.  For case 1) above ENOSPC is
the obvious choice which is very much what the callers expect anyway.
For case 2) there is no really good error code, so pick a funky one
from the SysV streams portfolio.

This fixes the reproducer here:

    https://lore.kernel.org/linux-xfs/CAEJPjCvT3Uag-pMTYuigEjWZHn1sGMZ0GCjVVCv29tNHK76Cgg@mail.gmail.com0/

which uses reserved blocks to create file systems that are gravely
out of space and thus cause at least xfs_file_alloc_space to hang
and trigger the lack of ENOSPC handling in xfs_dquot_disk_alloc.

Note that this patch does not actually make any caller but
xfs_alloc_file_space deal intelligently with case 2) above.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: 刘通 <lyutoon@gmail.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-30 09:45:18 +05:30
Zhang Yi
5ce5674187 xfs: convert delayed extents to unwritten when zeroing post eof blocks
Current clone operation could be non-atomic if the destination of a file
is beyond EOF, user could get a file with corrupted (zeroed) data on
crash.

The problem is about preallocations. If you write some data into a file:

	[A...B)

and XFS decides to preallocate some post-eof blocks, then it can create
a delayed allocation reservation:

	[A.........D)

The writeback path tries to convert delayed extents to real ones by
allocating blocks. If there aren't enough contiguous free space, we can
end up with two extents, the first real and the second still delalloc:

	[A....C)[C.D)

After that, both the in-memory and the on-disk file sizes are still B.
If we clone into the range [E...F) from another file:

	[A....C)[C.D)      [E...F)

then xfs_reflink_zero_posteof() calls iomap_zero_range() to zero out the
range [B, E) beyond EOF and flush it. Since [C, D) is still a delalloc
extent, its pagecache will be zeroed and both the in-memory and on-disk
size will be updated to D after flushing but before cloning. This is
wrong, because the user can see the size change and read the zeroes
while the clone operation is ongoing.

We need to keep the in-memory and on-disk size before the clone
operation starts, so instead of writing zeroes through the page cache
for delayed ranges beyond EOF, we convert these ranges to unwritten and
invalidate any cached data over that range beyond EOF.

Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-29 17:23:11 +05:30
Zhang Yi
bb712842a8 xfs: match lock mode in xfs_buffered_write_iomap_begin()
Commit 1aa91d9c99 ("xfs: Add async buffered write support") replace
xfs_ilock(XFS_ILOCK_EXCL) with xfs_ilock_for_iomap() when locking the
writing inode, and a new variable lockmode is used to indicate the lock
mode. Although the lockmode should always be XFS_ILOCK_EXCL, it's still
better to use this variable instead of useing XFS_ILOCK_EXCL directly
when unlocking the inode.

Fixes: 1aa91d9c99 ("xfs: Add async buffered write support")
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-29 17:23:11 +05:30
Christoph Hellwig
6a94b1acda xfs: reinstate delalloc for RT inodes (if sb_rextsize == 1)
Commit aff3a9edb7 ("xfs: Use preallocation for inodes with extsz
hints") disabled delayed allocation for all inodes with extent size
hints due a data exposure problem.  It turns out we fixed this data
exposure problem since by always creating unwritten extents for
delalloc conversions due to more data exposure problems, but the
writeback path doesn't actually support extent size hints when
converting delalloc these days, which probably isn't a problem given
that people using the hints know what they get.

However due to the way how xfs_get_extsz_hint is implemented, it
always claims an extent size hint for RT inodes even if the RT
extent size is a single FSB.  Due to that the above commit effectively
disabled delalloc support for RT inodes.

Switch xfs_get_extsz_hint to return 0 for this case and work around
that in a few places to reinstate delalloc support for RT inodes on
file systems with an sb_rextsize of 1.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-22 18:00:50 +05:30
Christoph Hellwig
727f843163 xfs: look at m_frextents in xfs_iomap_prealloc_size for RT allocations
Add a check for files on the RT subvolume and use m_frextents instead
of m_fdblocks to adjust the preallocation size.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-22 18:00:49 +05:30
Darrick J. Wong
1196f3f5ab xfs: report block map corruption errors to the health tracking system
Whenever we encounter a corrupt block mapping, we should report that to
the health monitoring system for later reporting.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22 12:31:51 -08:00
Dave Chinner
4b2f459d86 xfs: fix SEEK_HOLE/DATA for regions with active COW extents
A data corruption problem was reported by CoreOS image builders
when using reflink based disk image copies and then converting
them to qcow2 images. The converted images failed the conversion
verification step, and it was isolated down to the fact that
qemu-img uses SEEK_HOLE/SEEK_DATA to find the data it is supposed to
copy.

The reproducer allowed me to isolate the issue down to a region of
the file that had overlapping data and COW fork extents, and the
problem was that the COW fork extent was being reported in it's
entirity by xfs_seek_iomap_begin() and so skipping over the real
data fork extents in that range.

This was somewhat hidden by the fact that 'xfs_bmap -vvp' reported
all the extents correctly, and reading the file completely (i.e. not
using seek to skip holes) would map the file correctly and all the
correct data extents are read. Hence the problem is isolated to just
the xfs_seek_iomap_begin() implementation.

Instrumentation with trace_printk made the problem obvious: we are
passing the wrong length to xfs_trim_extent() in
xfs_seek_iomap_begin(). We are passing the end_fsb, not the
maximum length of the extent we want to trim the map too. Hence the
COW extent map never gets trimmed to the start of the next data fork
extent, and so the seek code treats the entire COW fork extent as
unwritten and skips entirely over the data fork extents in that
range.

Link: https://github.com/coreos/coreos-assembler/issues/3728
Fixes: 60271ab79d ("xfs: fix SEEK_DATA for speculative COW fork preallocation")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-21 12:31:12 +05:30
Darrick J. Wong
1f1397b721 xfs: don't allocate into the data fork for an unshare request
For an unshare request, we only have to take action if the data fork has
a shared mapping.  We don't care if someone else set up a cow operation.
If we find nothing in the data fork, return a hole to avoid allocating
space.

Note that fallocate will replace the delalloc reservation with an
unwritten extent anyway, so this has no user-visible effects outside of
avoiding unnecessary updates.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-05-02 09:14:51 +10:00
Darrick J. Wong
fcde88af6a xfs: pass the correct cursor to xfs_iomap_prealloc_size
In xfs_buffered_write_iomap_begin, @icur is the iext cursor for the data
fork and @ccur is the cursor for the cow fork.  Pass in whichever cursor
corresponds to allocfork, because otherwise the xfs_iext_prev_extent
call can use the data fork cursor to walk off the end of the cow fork
structure.  Best case it returns the wrong results, worst case it does
this:

stack segment: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 3141909 Comm: fsstress Tainted: G        W          6.3.0-rc2-xfsx #6.3.0-rc2 7bf5cc2e98997627cae5c930d890aba3aeec65dd
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-builder-01.us.oracle.com-4.el7.1 04/01/2014
RIP: 0010:xfs_iext_prev+0x71/0x150 [xfs]
RSP: 0018:ffffc90002233aa8 EFLAGS: 00010297
RAX: 000000000000000f RBX: 000000000000000e RCX: 000000000000000c
RDX: 0000000000000002 RSI: 000000000000000e RDI: ffff8883d0019ba0
RBP: 989642409af8a7a7 R08: ffffea0000000001 R09: 0000000000000002
R10: 0000000000000000 R11: 000000000000000c R12: ffffc90002233b00
R13: ffff8883d0019ba0 R14: 989642409af8a6bf R15: 000ffffffffe0000
FS:  00007fdf8115f740(0000) GS:ffff88843fd00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdf8115e000 CR3: 0000000357256000 CR4: 00000000003506e0
Call Trace:
 <TASK>
 xfs_iomap_prealloc_size.constprop.0.isra.0+0x1a6/0x410 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
 xfs_buffered_write_iomap_begin+0xa87/0xc60 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
 iomap_iter+0x132/0x2f0
 iomap_file_buffered_write+0x92/0x330
 xfs_file_buffered_write+0xb1/0x330 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
 vfs_write+0x2eb/0x410
 ksys_write+0x65/0xe0
 do_syscall_64+0x2b/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

Found by xfs/538 in alwayscow mode, but this doesn't seem particular to
that test.

Fixes: 590b16516e ("xfs: refactor xfs_iomap_prealloc_size")
Actually-Fixes: 66ae56a53f ("xfs: introduce an always_cow mode")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-03-24 08:40:01 -07:00
Andreas Gruenbacher
471859f57d iomap: Rename page_ops to folio_ops
The operations in struct page_ops all operate on folios, so rename
struct page_ops to struct folio_ops.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: port around not removing iomap_valid]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-01-18 10:44:05 -08:00
Darrick J. Wong
d4542f3145 xfs: make xfs_iomap_page_ops static
Shut up the sparse warnings about this variable that isn't referenced
anywhere else.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-12-26 10:11:18 -08:00
Linus Torvalds
87be949912 New XFS code for 6.2:
- Fix a race condition w.r.t. percpu inode free counters
  - Fix a broken error return in xfs_remove
  - Print FS UUID at mount/unmount time
  - Numerous fixes to the online fsck code
  - Fix inode locking inconsistency problems when dealing with realtime
    metadata files
  - Actually merge pull requests so that we capture the cover letter
    contents
  - Fix a race between rebuilding VFS inode state and the AIL flushing
    inodes that could cause corrupt inodes to be written to the
    filesystem
  - Fix a data corruption problem resulting from a write() to an
    unwritten extent racing with writeback started on behalf of memory
    reclaim changing the extent state
  - Add debugging knobs so that we can test iomap invalidation
  - Fix the blockdev pagecache contents being stale after unmounting the
    filesystem, leading to spurious xfs_db errors and corrupt metadumps
  - Fix a file mapping corruption bug due to ilock cycling when attaching
    dquots to a file during delalloc reservation
  - Fix a refcount btree corruption problem due to the refcount
    adjustment code not handling MAXREFCOUNT correctly, resulting in
    unnecessary record splits
  - Fix COW staging extent alloctions not being classified as USERDATA,
    which results in filestreams being ignored and possible data
    corruption if the allocation was filled from the AGFL and the block
    buffer is still being tracked in the AIL
  - Fix new duplicated includes
  - Fix a race between the dquot shrinker and dquot freeing that could
    cause a UAF
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmOSEWsACgkQ+H93GTRK
 tOvpsg//Y8pgue8GFwyXq0LYEYb1yjueGIxDGz9SwkfMP9vADsdDpXxquHmes5M+
 Q9vMyFnfaizZs2oXD6Nw/+RJMyOa3ZQtNqjxJET5pTIBcWvdjsP9UGW+K+1uN7LT
 NsM7lgpxy8RfQFHjvFHpOysxGIpT70n3lz98qlwy1yIGF/EFE52pkKcArGjpIu4A
 wBdyL0hIBwXc27zLRahLxfwFaW/I40ka3D40EUYpNnAjE5Sy0YgLlsOCzrxN0UvY
 a9dlq+WFJjWDsLp6vr11ruewXAmzYG2m/3RdP2aLbmDHDvo06UkesKkPNhexlClM
 kRE/ZImmakqKlAqgtUbkxT06NbIKOxYslbcoOOLDneqb1grTcgk79J7jsMlLLU1s
 s1WyPMWR3wb0jjclgGBxd3c1nprdkvJSkBpyEOwIYLhwdPNuwqTwEVsq7TvasRLI
 dgals5/J6fBnIeTR7x2YObonQRd4FlkXFv+AVYpGVUJEI02eRgY3i7NJBZWyBKAS
 +Gcd1Bq1F387b0FRqq1iVhGD+NpoHHiP84bOQED9R9t0jP1AHj9t47f+Uuvjj2hN
 ByT7MpA0nZdbYGKU+rFyKsIvONyLdxyjL+jm6FkmrW+G25fJ1af2yhrVhZQhw7dm
 zLb1ntSnXvNTj4OopfKSDD2MPGf+2C/o2XJvAAS501pmsQefKOM=
 =plES
 -----END PGP SIGNATURE-----

Merge tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull XFS updates from Darrick Wong:
 "The highlight of this is a batch of fixes for the online metadata
  checking code as we start the loooong march towards merging online
  repair. I aim to merge that in time for the 2023 LTS.

  There are also a large number of data corruption and race condition
  fixes in this patchset. Most notably fixed are write() calls to
  unwritten extents racing with writeback, which required some late(r
  than I prefer) code changes to iomap to support the necessary
  revalidations. I don't really like iomap changes going in past -rc4,
  but Dave and I have been working on it long enough that I chose to
  push it for 6.2 anyway.

  There are also a number of other subtle problems fixed, including the
  log racing with inode writeback to write inodes with incorrect link
  count to disk; file data mapping corruptions as a result of incorrect
  lock cycling when attaching dquots; refcount metadata corruption if
  one actually manages to share a block 2^32 times; and the log
  clobbering cow staging extents if they were formerly metadata blocks.

  Summary:

   - Fix a race condition w.r.t. percpu inode free counters

   - Fix a broken error return in xfs_remove

   - Print FS UUID at mount/unmount time

   - Numerous fixes to the online fsck code

   - Fix inode locking inconsistency problems when dealing with realtime
     metadata files

   - Actually merge pull requests so that we capture the cover letter
     contents

   - Fix a race between rebuilding VFS inode state and the AIL flushing
     inodes that could cause corrupt inodes to be written to the
     filesystem

   - Fix a data corruption problem resulting from a write() to an
     unwritten extent racing with writeback started on behalf of memory
     reclaim changing the extent state

   - Add debugging knobs so that we can test iomap invalidation

   - Fix the blockdev pagecache contents being stale after unmounting
     the filesystem, leading to spurious xfs_db errors and corrupt
     metadumps

   - Fix a file mapping corruption bug due to ilock cycling when
     attaching dquots to a file during delalloc reservation

   - Fix a refcount btree corruption problem due to the refcount
     adjustment code not handling MAXREFCOUNT correctly, resulting in
     unnecessary record splits

   - Fix COW staging extent alloctions not being classified as USERDATA,
     which results in filestreams being ignored and possible data
     corruption if the allocation was filled from the AGFL and the block
     buffer is still being tracked in the AIL

   - Fix new duplicated includes

   - Fix a race between the dquot shrinker and dquot freeing that could
     cause a UAF"

* tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (50 commits)
  xfs: dquot shrinker doesn't check for XFS_DQFLAG_FREEING
  xfs: Remove duplicated include in xfs_iomap.c
  xfs: invalidate xfs_bufs when allocating cow extents
  xfs: get rid of assert from xfs_btree_islastblock
  xfs: estimate post-merge refcounts correctly
  xfs: hoist refcount record merge predicates
  xfs: fix super block buf log item UAF during force shutdown
  xfs: wait iclog complete before tearing down AIL
  xfs: attach dquots to inode before reading data/cow fork mappings
  xfs: shut up -Wuninitialized in xfsaild_push
  xfs: use memcpy, not strncpy, to format the attr prefix during listxattr
  xfs: invalidate block device page cache during unmount
  xfs: add debug knob to slow down write for fun
  xfs: add debug knob to slow down writeback for fun
  xfs: drop write error injection is unfixable, remove it
  xfs: use iomap_valid method to detect stale cached iomaps
  iomap: write iomap validity checks
  xfs: xfs_bmap_punch_delalloc_range() should take a byte range
  iomap: buffered write failure should not truncate the page cache
  xfs,iomap: move delalloc punching to iomap
  ...
2022-12-14 10:11:51 -08:00
Shiyang Ruan
64e6edc185 xfs: use dax ops for zero and truncate in fsdax mode
Zero and truncate on a dax file may execute CoW.  So use dax ops which
contains end work for CoW.

Link: https://lkml.kernel.org/r/1669908730-131-1-git-send-email-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:16 -08:00
Shiyang Ruan
c6f0b395b2 fsdax,xfs: set the shared flag when file extent is shared
If a dax page is shared, mapread at different offsets can also trigger
page fault on same dax page.  So, change the flag from "cow" to "shared". 
And get the shared flag from filesystem when read.

Link: https://lkml.kernel.org/r/1669908538-55-5-git-send-email-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:16 -08:00
Yang Li
1f5619ed88 xfs: Remove duplicated include in xfs_iomap.c
./fs/xfs/xfs_iomap.c: xfs_error.h is included more than once.
./fs/xfs/xfs_iomap.c: xfs_errortag.h is included more than once.

Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3337
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-12-04 09:42:59 -08:00
Darrick J. Wong
4c6dbfd275 xfs: attach dquots to inode before reading data/cow fork mappings
I've been running near-continuous integration testing of online fsck,
and I've noticed that once a day, one of the ARM VMs will fail the test
with out of order records in the data fork.

xfs/804 races fsstress with online scrub (aka scan but do not change
anything), so I think this might be a bug in the core xfs code.  This
also only seems to trigger if one runs the test for more than ~6 minutes
via TIME_FACTOR=13 or something.
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfstests-dev.git/tree/tests/xfs/804?h=djwong-wtf

I added a debugging patch to the kernel to check the data fork extents
after taking the ILOCK, before dropping ILOCK, and before and after each
bmapping operation.  So far I've narrowed it down to the delalloc code
inserting a record in the wrong place in the iext tree:

xfs_bmap_add_extent_hole_delay, near line 2691:

	case 0:
		/*
		 * New allocation is not contiguous with another
		 * delayed allocation.
		 * Insert a new entry.
		 */
		oldlen = newlen = 0;
		xfs_iunlock_check_datafork(ip);		<-- ok here
		xfs_iext_insert(ip, icur, new, state);
		xfs_iunlock_check_datafork(ip);		<-- bad here
		break;
	}

I recorded the state of the data fork mappings and iext cursor state
when a corrupt data fork is detected immediately after the
xfs_bmap_add_extent_hole_delay call in xfs_bmapi_reserve_delalloc:

ino 0x140bb3 func xfs_bmapi_reserve_delalloc line 4164 data fork:
    ino 0x140bb3 nr 0x0 nr_real 0x0 offset 0xb9 blockcount 0x1f startblock 0x935de2 state 1
    ino 0x140bb3 nr 0x1 nr_real 0x1 offset 0xe6 blockcount 0xa startblock 0xffffffffe0007 state 0
    ino 0x140bb3 nr 0x2 nr_real 0x1 offset 0xd8 blockcount 0xe startblock 0x935e01 state 0

Here we see that a delalloc extent was inserted into the wrong position
in the iext leaf, same as all the other times.  The extra trace data I
collected are as follows:

ino 0x140bb3 fork 0 oldoff 0xe6 oldlen 0x4 oldprealloc 0x6 isize 0xe6000
    ino 0x140bb3 oldgotoff 0xea oldgotstart 0xfffffffffffffffe oldgotcount 0x0 oldgotstate 0
    ino 0x140bb3 crapgotoff 0x0 crapgotstart 0x0 crapgotcount 0x0 crapgotstate 0
    ino 0x140bb3 freshgotoff 0xd8 freshgotstart 0x935e01 freshgotcount 0xe freshgotstate 0
    ino 0x140bb3 nowgotoff 0xe6 nowgotstart 0xffffffffe0007 nowgotcount 0xa nowgotstate 0
    ino 0x140bb3 oldicurpos 1 oldleafnr 2 oldleaf 0xfffffc00f0609a00
    ino 0x140bb3 crapicurpos 2 crapleafnr 2 crapleaf 0xfffffc00f0609a00
    ino 0x140bb3 freshicurpos 1 freshleafnr 2 freshleaf 0xfffffc00f0609a00
    ino 0x140bb3 newicurpos 1 newleafnr 3 newleaf 0xfffffc00f0609a00

The first line shows that xfs_bmapi_reserve_delalloc was called with
whichfork=XFS_DATA_FORK, off=0xe6, len=0x4, prealloc=6.

The second line ("oldgot") shows the contents of @got at the beginning
of the call, which are the results of the first iext lookup in
xfs_buffered_write_iomap_begin.

Line 3 ("crapgot") is the result of duplicating the cursor at the start
of the body of xfs_bmapi_reserve_delalloc and performing a fresh lookup
at @off.

Line 4 ("freshgot") is the result of a new xfs_iext_get_extent right
before the call to xfs_bmap_add_extent_hole_delay.  Totally garbage.

Line 5 ("nowgot") is contents of @got after the
xfs_bmap_add_extent_hole_delay call.

Line 6 is the contents of @icur at the beginning fo the call.  Lines 7-9
are the contents of the iext cursors at the point where the block
mappings were sampled.

I think @oldgot is a HOLESTARTBLOCK extent because the first lookup
didn't find anything, so we filled in imap with "fake hole until the
end".  At the time of the first lookup, I suspect that there's only one
32-block unwritten extent in the mapping (hence oldicurpos==1) but by
the time we get to recording crapgot, crapicurpos==2.

Dave then added:

Ok, that's much simpler to reason about, and implies the smoke is
coming from xfs_buffered_write_iomap_begin() or
xfs_bmapi_reserve_delalloc(). I suspect the former - it does a lot
of stuff with the ILOCK_EXCL held.....

.... including calling xfs_qm_dqattach_locked().

xfs_buffered_write_iomap_begin
  ILOCK_EXCL
  look up icur
  xfs_qm_dqattach_locked
    xfs_qm_dqattach_one
      xfs_qm_dqget_inode
        dquot cache miss
        xfs_iunlock(ip, XFS_ILOCK_EXCL);
        error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
        xfs_ilock(ip, XFS_ILOCK_EXCL);
  ....
  xfs_bmapi_reserve_delalloc(icur)

Yup, that's what is letting the magic smoke out -
xfs_qm_dqattach_locked() can cycle the ILOCK. If that happens, we
can pass a stale icur to xfs_bmapi_reserve_delalloc() and it all
goes downhill from there.

Back to Darrick now:

So.  Fix this by moving the dqattach_locked call up before we take the
ILOCK, like all the other callers in that file.

Fixes: a526c85c22 ("xfs: move xfs_file_iomap_begin_delay around") # goes further back than this
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-30 08:55:18 -08:00
Darrick J. Wong
254e345928 xfs: add debug knob to slow down write for fun
Add a new error injection knob so that we can arbitrarily slow down
pagecache writes to test for race conditions and aberrant reclaim
behavior if the writeback mechanisms are slow to issue writeback.  This
will enable functional testing for the ifork sequence counters
introduced in commit 304a68b9c6 ("xfs: use iomap_valid method to
detect stale cached iomaps") that fixes write racing with reclaim
writeback.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-28 17:54:49 -08:00
Dave Chinner
6e8af15ccd xfs: drop write error injection is unfixable, remove it
With the changes to scan the page cache for dirty data to avoid data
corruptions from partial write cleanup racing with other page cache
operations, the drop writes error injection no longer works the same
way it used to and causes xfs/196 to fail. This is because xfs/196
writes to the file and populates the page cache before it turns on
the error injection and starts failing -overwrites-.

The result is that the original drop-writes code failed writes only
-after- overwriting the data in the cache, followed by invalidates
the cached data, then punching out the delalloc extent from under
that data.

On the surface, this looks fine. The problem is that page cache
invalidation *doesn't guarantee that it removes anything from the
page cache* and it doesn't change the dirty state of the folio. When
block size == page size and we do page aligned IO (as xfs/196 does)
everything happens to align perfectly and page cache invalidation
removes the single page folios that span the written data. Hence the
followup delalloc punch pass does not find cached data over that
range and it can punch the extent out.

IOWs, xfs/196 "works" for block size == page size with the new
code. I say "works", because it actually only works for the case
where IO is page aligned, and no data was read from disk before
writes occur. Because the moment we actually read data first, the
readahead code allocates multipage folios and suddenly the
invalidate code goes back to zeroing subfolio ranges without
changing dirty state.

Hence, with multipage folios in play, block size == page size is
functionally identical to block size < page size behaviour, and
drop-writes is manifestly broken w.r.t to this case. Invalidation of
a subfolio range doesn't result in the folio being removed from the
cache, just the range gets zeroed. Hence after we've sequentially
walked over a folio that we've dirtied (via write data) and then
invalidated, we end up with a dirty folio full of zeroed data.

And because the new code skips punching ranges that have dirty
folios covering them, we end up leaving the delalloc range intact
after failing all the writes. Hence failed writes now end up
writing zeroes to disk in the cases where invalidation zeroes folios
rather than removing them from cache.

This is a fundamental change of behaviour that is needed to avoid
the data corruption vectors that exist in the old write fail path,
and it renders the drop-writes injection non-functional and
unworkable as it stands.

As it is, I think the error injection is also now unnecessary, as
partial writes that need delalloc extent are going to be a lot more
common with stale iomap detection in place. Hence this patch removes
the drop-writes error injection completely. xfs/196 can remain for
testing kernels that don't have this data corruption fix, but those
that do will report:

xfs/196 3s ... [not run] XFS error injection drop_writes unknown on this kernel.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29 09:09:17 +11:00
Dave Chinner
304a68b9c6 xfs: use iomap_valid method to detect stale cached iomaps
Now that iomap supports a mechanism to validate cached iomaps for
buffered write operations, hook it up to the XFS buffered write ops
so that we can avoid data corruptions that result from stale cached
iomaps. See:

https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/

or the ->iomap_valid() introduction commit for exact details of the
corruption vector.

The validity cookie we store in the iomap is based on the type of
iomap we return. It is expected that the iomap->flags we set in
xfs_bmbt_to_iomap() is not perturbed by the iomap core and are
returned to us in the iomap passed via the .iomap_valid() callback.
This ensures that the validity cookie is always checking the correct
inode fork sequence numbers to detect potential changes that affect
the extent cached by the iomap.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29 09:09:17 +11:00
Dave Chinner
7348b32233 xfs: xfs_bmap_punch_delalloc_range() should take a byte range
All the callers of xfs_bmap_punch_delalloc_range() jump through
hoops to convert a byte range to filesystem blocks before calling
xfs_bmap_punch_delalloc_range(). Instead, pass the byte range to
xfs_bmap_punch_delalloc_range() and have it do the conversion to
filesystem blocks internally.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-29 09:09:17 +11:00
Dave Chinner
9c7babf94a xfs,iomap: move delalloc punching to iomap
Because that's what Christoph wants for this error handling path
only XFS uses.

It requires a new iomap export for handling errors over delalloc
ranges. This is basically the XFS code as is stands, but even though
Christoph wants this as iomap funcitonality, we still have 
to call it from the filesystem specific ->iomap_end callback, and
call into the iomap code with yet another filesystem specific
callback to punch the delalloc extent within the defined ranges.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23 12:44:38 +11:00
Dave Chinner
b71f889c18 xfs: use byte ranges for write cleanup ranges
xfs_buffered_write_iomap_end() currently converts the byte ranges
passed to it to filesystem blocks to pass them to the bmap code to
punch out delalloc blocks, but then has to convert filesytem
blocks back to byte ranges for page cache truncate.

We're about to make the page cache truncate go away and replace it
with a page cache walk, so having to convert everything to/from/to
filesystem blocks is messy and error-prone. It is much easier to
pass around byte ranges and convert to page indexes and/or
filesystem blocks only where those units are needed.

In preparation for the page cache walk being added, add a helper
that converts byte ranges to filesystem blocks and calls
xfs_bmap_punch_delalloc_range() and convert
xfs_buffered_write_iomap_end() to calculate limits in byte ranges.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23 12:40:12 +11:00
Dave Chinner
198dd8aede xfs: punching delalloc extents on write failure is racy
xfs_buffered_write_iomap_end() has a comment about the safety of
punching delalloc extents based holding the IOLOCK_EXCL. This
comment is wrong, and punching delalloc extents is not race free.

When we punch out a delalloc extent after a write failure in
xfs_buffered_write_iomap_end(), we punch out the page cache with
truncate_pagecache_range() before we punch out the delalloc extents.
At this point, we only hold the IOLOCK_EXCL, so there is nothing
stopping mmap() write faults racing with this cleanup operation,
reinstantiating a folio over the range we are about to punch and
hence requiring the delalloc extent to be kept.

If this race condition is hit, we can end up with a dirty page in
the page cache that has no delalloc extent or space reservation
backing it. This leads to bad things happening at writeback time.

To avoid this race condition, we need the page cache truncation to
be atomic w.r.t. the extent manipulation. We can do this by holding
the mapping->invalidate_lock exclusively across this operation -
this will prevent new pages from being inserted into the page cache
whilst we are removing the pages and the backing extent and space
reservation.

Taking the mapping->invalidate_lock exclusively in the buffered
write IO path is safe - it naturally nests inside the IOLOCK (see
truncate and fallocate paths). iomap_zero_range() can be called from
under the mapping->invalidate_lock (from the truncate path via
either xfs_zero_eof() or xfs_truncate_page(), but iomap_zero_iter()
will not instantiate new delalloc pages (because it skips holes) and
hence will not ever need to punch out delalloc extents on failure.

Fix the locking issue, and clean up the code logic a little to avoid
unnecessary work if we didn't allocate the delalloc extent or wrote
the entire region we allocated.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-23 12:40:11 +11:00
Dave Chinner
118e021b4b xfs: write page faults in iomap are not buffered writes
When we reserve a delalloc region in xfs_buffered_write_iomap_begin,
we mark the iomap as IOMAP_F_NEW so that the the write context
understands that it allocated the delalloc region.

If we then fail that buffered write, xfs_buffered_write_iomap_end()
checks for the IOMAP_F_NEW flag and if it is set, it punches out
the unused delalloc region that was allocated for the write.

The assumption this code makes is that all buffered write operations
that can allocate space are run under an exclusive lock (i_rwsem).
This is an invalid assumption: page faults in mmap()d regions call
through this same function pair to map the file range being faulted
and this runs only holding the inode->i_mapping->invalidate_lock in
shared mode.

IOWs, we can have races between page faults and write() calls that
fail the nested page cache write operation that result in data loss.
That is, the failing iomap_end call will punch out the data that
the other racing iomap iteration brought into the page cache. This
can be reproduced with generic/34[46] if we arbitrarily fail page
cache copy-in operations from write() syscalls.

Code analysis tells us that the iomap_page_mkwrite() function holds
the already instantiated and uptodate folio locked across the iomap
mapping iterations. Hence the folio cannot be removed from memory
whilst we are mapping the range it covers, and as such we do not
care if the mapping changes state underneath the iomap iteration
loop:

1. if the folio is not already dirty, there is no writeback races
   possible.
2. if we allocated the mapping (delalloc or unwritten), the folio
   cannot already be dirty. See #1.
3. If the folio is already dirty, it must be up to date. As we hold
   it locked, it cannot be reclaimed from memory. Hence we always
   have valid data in the page cache while iterating the mapping.
4. Valid data in the page cache can exist when the underlying
   mapping is DELALLOC, UNWRITTEN or WRITTEN. Having the mapping
   change from DELALLOC->UNWRITTEN or UNWRITTEN->WRITTEN does not
   change the data in the page - it only affects actions if we are
   initialising a new page. Hence #3 applies  and we don't care
   about these extent map transitions racing with
   iomap_page_mkwrite().
5. iomap_page_mkwrite() checks for page invalidation races
   (truncate, hole punch, etc) after it locks the folio. We also
   hold the mapping->invalidation_lock here, and hence the mapping
   cannot change due to extent removal operations while we are
   iterating the folio.

As such, filesystems that don't use bufferheads will never fail
the iomap_folio_mkwrite_iter() operation on the current mapping,
regardless of whether the iomap should be considered stale.

Further, the range we are asked to iterate is limited to the range
inside EOF that the folio spans. Hence, for XFS, we will only map
the exact range we are asked for, and we will only do speculative
preallocation with delalloc if we are mapping a hole at the EOF
page. The iterator will consume the entire range of the folio that
is within EOF, and anything beyond the EOF block cannot be accessed.
We never need to truncate this post-EOF speculative prealloc away in
the context of the iomap_page_mkwrite() iterator because if it
remains unused we'll remove it when the last reference to the inode
goes away.

Hence we don't actually need an .iomap_end() cleanup/error handling
path at all for iomap_page_mkwrite() for XFS. This means we can
separate the page fault processing from the complexity of the
.iomap_end() processing in the buffered write path. This also means
that the buffered write path will also be able to take the
mapping->invalidate_lock as necessary.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-11-07 10:09:11 +11:00
Linus Torvalds
6614a3c316 - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
 
 - Some kmemleak fixes from Patrick Wang and Waiman Long
 
 - DAMON updates from SeongJae Park
 
 - memcg debug/visibility work from Roman Gushchin
 
 - vmalloc speedup from Uladzislau Rezki
 
 - more folio conversion work from Matthew Wilcox
 
 - enhancements for coherent device memory mapping from Alex Sierra
 
 - addition of shared pages tracking and CoW support for fsdax, from
   Shiyang Ruan
 
 - hugetlb optimizations from Mike Kravetz
 
 - Mel Gorman has contributed some pagealloc changes to improve latency
   and realtime behaviour.
 
 - mprotect soft-dirty checking has been improved by Peter Xu
 
 - Many other singleton patches all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
 jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
 SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
 =w/UH
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Most of the MM queue. A few things are still pending.

  Liam's maple tree rework didn't make it. This has resulted in a few
  other minor patch series being held over for next time.

  Multi-gen LRU still isn't merged as we were waiting for mapletree to
  stabilize. The current plan is to merge MGLRU into -mm soon and to
  later reintroduce mapletree, with a view to hopefully getting both
  into 6.1-rc1.

  Summary:

   - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
     Lin, Yang Shi, Anshuman Khandual and Mike Rapoport

   - Some kmemleak fixes from Patrick Wang and Waiman Long

   - DAMON updates from SeongJae Park

   - memcg debug/visibility work from Roman Gushchin

   - vmalloc speedup from Uladzislau Rezki

   - more folio conversion work from Matthew Wilcox

   - enhancements for coherent device memory mapping from Alex Sierra

   - addition of shared pages tracking and CoW support for fsdax, from
     Shiyang Ruan

   - hugetlb optimizations from Mike Kravetz

   - Mel Gorman has contributed some pagealloc changes to improve
     latency and realtime behaviour.

   - mprotect soft-dirty checking has been improved by Peter Xu

   - Many other singleton patches all over the place"

 [ XFS merge from hell as per Darrick Wong in

   https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]

* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
  tools/testing/selftests/vm/hmm-tests.c: fix build
  mm: Kconfig: fix typo
  mm: memory-failure: convert to pr_fmt()
  mm: use is_zone_movable_page() helper
  hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
  hugetlbfs: cleanup some comments in inode.c
  hugetlbfs: remove unneeded header file
  hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
  hugetlbfs: use helper macro SZ_1{K,M}
  mm: cleanup is_highmem()
  mm/hmm: add a test for cross device private faults
  selftests: add soft-dirty into run_vmtests.sh
  selftests: soft-dirty: add test for mprotect
  mm/mprotect: fix soft-dirty check in can_change_pte_writable()
  mm: memcontrol: fix potential oom_lock recursion deadlock
  mm/gup.c: fix formatting in check_and_migrate_movable_page()
  xfs: fail dax mount if reflink is enabled on a partition
  mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
  userfaultfd: don't fail on unrecognized features
  hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
  ...
2022-08-05 16:32:45 -07:00
Linus Torvalds
b2a88c212e New code for 5.20:
- Improve scalability of the XFS log by removing spinlocks and global
   synchronization points.
 - Add security labels to whiteout inodes to match the other filesystems.
 - Clean up per-ag pointer passing to simplify call sites.
 - Reduce verifier overhead by precalculating more AG geometry.
 - Implement fast-path lockless lookups in the buffer cache to reduce
   spinlock hammering.
 - Make attr forks a permanent part of the inode structure to fix a UAF
   bug and because most files these days tend to have security labels and
   soon will have parent pointers too.
 - Clean up XFS_IFORK_Q usage and give it a better name.
 - Fix more UAF bugs in the xattr code.
 - SOB my tags.
 - Fix some typos in the timestamp range documentation.
 - Fix a few more memory leaks.
 - Code cleanups and typo fixes.
 - Fix an unlocked inode fork pointer access in getbmap.
 
 Signed-off-by: Darrick J. Wong <djwong@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmLmrLkACgkQ+H93GTRK
 tOviexAAo7mJ03hCCWnnkcEYbVQNMH4WRuCpR45D8lz4PU/s6yL7/uxuyodc0dMm
 /ZUWjCas1GMZmbOkCkL9eeatrZmgT5SeDbYc4EtHicHYi4sTgCB7ymx0soCUHXYi
 7c0kdz+eQ/oY4QvY6JZwbFkRENDL2pkxM9itGHZT0OXHmAnGcIYvzP5Vuc2GtelL
 0VWCcpusG0uck3+P1qa8e+TtkR2HU5PVGgAU7OhmAIs07aE3AheVEsPydgGKSIS9
 PICnMg1oIgly4VQi28cp/5hU+Au6yBMGogxW8ultPFlM5RWKFt8MKUUhclzS+hZL
 9dGSZ3JjpZrdmuUa9mdPnr1MsgrTF6CWHAeUsblSXUzjRT8S3Yz8I3gUMJAA/H17
 ZGBu55+TlZtE4ZsK3q/4pqZXfylaaumbEqEi5lJX+7/IYh/WLAgxJihWSpSK2B4a
 VBqi12EvMlrjZ4vrD2hqVEJAlguoWiqxgv2gXEZ5wy9dfvzGgysXwAigj0YQeJNQ
 J++AYwdYs0pCK0O4eTGZsvp+6o9wj92irtrxwiucuKreDZTOlpCBOAXVTxqom1nX
 1NS1YmKvC/RM1na6tiOIundwypgSXUe32qdan34xEWBVPY0mnSpX0N9Lcyoc0xbg
 kajAKK9TIy968su/eoBuTQf2AIu1jbWMBNZSg9oELZjfrm0CkWM=
 =fNjj
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.20-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "The biggest changes for this release are the log scalability
  improvements, lockless lookups for the buffer cache, and making the
  attr fork a permanent part of the incore inode in preparation for
  directory parent pointers.

  There's also a bunch of bug fixes that have accumulated since -rc5. I
  might send you a second pull request with some more bug fixes that I'm
  still working on.

  Once the merge window ends, I will hand maintainership back to Dave
  Chinner until the 6.1-rc1 release so that I can conduct the design
  review for the online fsck feature, and try to get it merged.

  Summary:

   - Improve scalability of the XFS log by removing spinlocks and global
     synchronization points.

   - Add security labels to whiteout inodes to match the other
     filesystems.

   - Clean up per-ag pointer passing to simplify call sites.

   - Reduce verifier overhead by precalculating more AG geometry.

   - Implement fast-path lockless lookups in the buffer cache to reduce
     spinlock hammering.

   - Make attr forks a permanent part of the inode structure to fix a
     UAF bug and because most files these days tend to have security
     labels and soon will have parent pointers too.

   - Clean up XFS_IFORK_Q usage and give it a better name.

   - Fix more UAF bugs in the xattr code.

   - SOB my tags.

   - Fix some typos in the timestamp range documentation.

   - Fix a few more memory leaks.

   - Code cleanups and typo fixes.

   - Fix an unlocked inode fork pointer access in getbmap"

* tag 'xfs-5.20-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (61 commits)
  xfs: delete extra space and tab in blank line
  xfs: fix NULL pointer dereference in xfs_getbmap()
  xfs: Fix typo 'the the' in comment
  xfs: Fix comment typo
  xfs: don't leak memory when attr fork loading fails
  xfs: fix for variable set but not used warning
  xfs: xfs_buf cache destroy isn't RCU safe
  xfs: delete unnecessary NULL checks
  xfs: fix comment for start time value of inode with bigtime enabled
  xfs: fix use-after-free in xattr node block inactivation
  xfs: lockless buffer lookup
  xfs: remove a superflous hash lookup when inserting new buffers
  xfs: reduce the number of atomic when locking a buffer after lookup
  xfs: merge xfs_buf_find() and xfs_buf_get_map()
  xfs: break up xfs_buf_find() into individual pieces
  xfs: add in-memory iunlink log item
  xfs: add log item precommit operation
  xfs: combine iunlink inode update functions
  xfs: clean up xfs_iunlink_update_inode()
  xfs: double link the unlinked inode list
  ...
2022-08-04 20:19:16 -07:00