This patch renames VM_MASK to X86_VM_MASK (which
in turn defined as alias to X86_EFLAGS_VM) to better
distinguish from virtual memory flags. We can't just
use X86_EFLAGS_VM instead because it is also used
for conditional compilation
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The memory resource is also used for main memory, and we need it to
allocate physical addresses for memory hotplug. Knobbling io space is
enough to get the job done anyway.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Report when microcode was successfully updated. It used to be there but
now with DEBUG unset it becomes very silent. Also some cosmetic fixes.
Signed-off-by: Ben Castricum <lk08@bencastricum.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Upcoming 64 bit processors from Centaur can use sysenter.
Signed-off-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Jesse Ahrens <jahrens@centtech.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
By including processor-flags.h we are allowed to use predefined
macroses instead of keeping own ones
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On AMD SMM protected memory is part of the address map, but handled
internally like an MTRR. That leads to large pages getting split
internally which has some performance implications. Check for the
AMD TSEG MSR and split the large page mapping on that area
explicitely if it is part of the direct mapping.
There is also SMM ASEG, but it is in the first 1MB and already covered by
the earlier split first page patch.
Idea for this came from an earlier patch by Andreas Herrmann
On a RevF dual Socket Opteron system kernbench shows a clear
improvement from this:
(together with the earlier patches in this series, especially the
split first 2MB patch)
[lower is better]
no split stddev split stddev delta
Elapsed Time 87.146 (0.727516) 84.296 (1.09098) -3.2%
User Time 274.537 (4.05226) 273.692 (3.34344) -0.3%
System Time 34.907 (0.42492) 34.508 (0.26832) -1.1%
Percent CPU 322.5 (38.3007) 326.5 (44.5128) +1.2%
=> About 3.2% improvement in elapsed time for kernbench.
With GB pages on AMD Fam1h the impact of splitting is much higher of course,
since it would split two full GB pages (together with the first
1MB split patch) instead of two 2MB pages. I could not benchmark
a clear difference in kernbench on gbpages, so I kept it disabled
for that case
That was only limited benchmarking of course, so if someone
was interested in running more tests for the gbpages case
that could be revisited (contributions welcome)
I didn't bother implementing this for 32bit because it is very
unlikely the 32bit lowmem mapping overlaps into the TSEG near 4GB
and the 2MB low split is already handled for both.
[ mingo@elte.hu: do it on gbpages kernels too, there's no clear reason
why it shouldnt help there. ]
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: andreas.herrmann3@amd.com
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Intel recommends to not use large pages for the first 1MB
of the physical memory because there are fixed size MTRRs there
which cause splitups in the TLBs.
On AMD doing so is also a good idea.
The implementation is a little different between 32bit and 64bit.
On 32bit I just taught the initial page table set up about this
because it was very simple to do. This also has the advantage
that the risk of a prefetch ever seeing the page even
if it only exists for a short time is minimized.
On 64bit that is not quite possible, so use set_memory_4k() a little
later (in check_bugs) instead.
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: andreas.herrmann3@amd.com
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When end_pfn is not aligned to 2MB (or 1GB) then the kernel might
map more memory than end_pfn. Account this in max_pfn_mapped.
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: andreas.herrmann3@amd.com
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently they are in .text.head because the rest of head_64.S.
.text.head is not removed as init data, but the early exception handlers
should be because they are not needed after early boot of the BP.
So move them over.
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The early exception handlers are currently set up using a macro
recursion. There is only one user left. Replace the macro with a
standard loop in place.
Noop patch, just a cleanup.
[ tglx@linutronix.de: simplified ]
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All of early setup runs with interrupts disabled, so there is no
need to set up early exception handlers for vectors >= 32
This saves some minor text size.
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: mingo@elte.hu
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Ingo Molnar (mingo@elte.hu) wrote:
>
> * Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> wrote:
>
> > The shadow vmap for DEBUG_RODATA kernel text modification uses
> > virt_to_page to get the pages from the pointer address.
> >
> > However, I think vmalloc_to_page would be required in case the page is
> > used for modules.
> >
> > Since only the core kernel text is marked read-only, use
> > kernel_text_address() to make sure we only shadow map the core kernel
> > text, not modules.
>
> actually, i think we should mark module text readonly too.
>
Yes, but in the meantime, the x86 tree would need this patch to make
kprobes work correctly on modules.
I suspect that without this fix, with the enhanced hotplug and kprobes
patch, kprobes will use text_poke to insert breakpoints in modules
(vmalloced pages used), which will map the wrong pages and corrupt
random kernel locations instead of updating the correct page.
Work that would write protect the module pages should clearly be done,
but it can come in a later time. We have to make sure we interact
correctly with the page allocation debugging, as an example.
Here is the patch against x86.git 2.6.25-rc5 :
The shadow vmap for DEBUG_RODATA kernel text modification uses virt_to_page to
get the pages from the pointer address.
However, I think vmalloc_to_page would be required in case the page is used for
modules.
Since only the core kernel text is marked read-only, use kernel_text_address()
to make sure we only shadow map the core kernel text, not modules.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
CC: akpm@linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
vSMP detection: access pci config space early in boot to detect if the
system is a vSMPowered box, and cache the result in a flag, so that
is_vsmp_box() retrieves the value of the flag always.
Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The sysenter path tries to enable interrupts immediately. Unfortunately
this doesn't work in a paravirt environment, because not enough kernel
state has been set up at that point (namely, pointing %fs to the kernel
percpu data segment). To fix this, defer ENABLE_INTERRUPTS until after
the kernel state has been set up.
Unfortunately this means that we're running with interrupts disabled
for a while without calling the IRQ tracing code, but that can't be
called without setting up %fs either.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>