// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2016 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_rmap_item.h" #include "xfs_log.h" #include "xfs_rmap.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_ag.h" #include "xfs_btree.h" #include "xfs_trace.h" struct kmem_cache *xfs_rui_cache; struct kmem_cache *xfs_rud_cache; static const struct xfs_item_ops xfs_rui_item_ops; static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_rui_log_item, rui_item); } STATIC void xfs_rui_item_free( struct xfs_rui_log_item *ruip) { kvfree(ruip->rui_item.li_lv_shadow); if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) kfree(ruip); else kmem_cache_free(xfs_rui_cache, ruip); } /* * Freeing the RUI requires that we remove it from the AIL if it has already * been placed there. However, the RUI may not yet have been placed in the AIL * when called by xfs_rui_release() from RUD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the RUI. */ STATIC void xfs_rui_release( struct xfs_rui_log_item *ruip) { ASSERT(atomic_read(&ruip->rui_refcount) > 0); if (!atomic_dec_and_test(&ruip->rui_refcount)) return; xfs_trans_ail_delete(&ruip->rui_item, 0); xfs_rui_item_free(ruip); } STATIC void xfs_rui_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); *nvecs += 1; *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); } /* * This is called to fill in the vector of log iovecs for the * given rui log item. We use only 1 iovec, and we point that * at the rui_log_format structure embedded in the rui item. * It is at this point that we assert that all of the extent * slots in the rui item have been filled. */ STATIC void xfs_rui_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&ruip->rui_next_extent) == ruip->rui_format.rui_nextents); ruip->rui_format.rui_type = XFS_LI_RUI; ruip->rui_format.rui_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); } /* * The unpin operation is the last place an RUI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the RUI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the RUI to either construct * and commit the RUD or drop the RUD's reference in the event of error. Simply * drop the log's RUI reference now that the log is done with it. */ STATIC void xfs_rui_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_rui_log_item *ruip = RUI_ITEM(lip); xfs_rui_release(ruip); } /* * The RUI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an RUD isn't going to be * constructed and thus we free the RUI here directly. */ STATIC void xfs_rui_item_release( struct xfs_log_item *lip) { xfs_rui_release(RUI_ITEM(lip)); } /* * Allocate and initialize an rui item with the given number of extents. */ STATIC struct xfs_rui_log_item * xfs_rui_init( struct xfs_mount *mp, uint nextents) { struct xfs_rui_log_item *ruip; ASSERT(nextents > 0); if (nextents > XFS_RUI_MAX_FAST_EXTENTS) ruip = kzalloc(xfs_rui_log_item_sizeof(nextents), GFP_KERNEL | __GFP_NOFAIL); else ruip = kmem_cache_zalloc(xfs_rui_cache, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); ruip->rui_format.rui_nextents = nextents; ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; atomic_set(&ruip->rui_next_extent, 0); atomic_set(&ruip->rui_refcount, 2); return ruip; } static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_rud_log_item, rud_item); } STATIC void xfs_rud_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += sizeof(struct xfs_rud_log_format); } /* * This is called to fill in the vector of log iovecs for the * given rud log item. We use only 1 iovec, and we point that * at the rud_log_format structure embedded in the rud item. * It is at this point that we assert that all of the extent * slots in the rud item have been filled. */ STATIC void xfs_rud_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_rud_log_item *rudp = RUD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; rudp->rud_format.rud_type = XFS_LI_RUD; rudp->rud_format.rud_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, sizeof(struct xfs_rud_log_format)); } /* * The RUD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the RUI and free the * RUD. */ STATIC void xfs_rud_item_release( struct xfs_log_item *lip) { struct xfs_rud_log_item *rudp = RUD_ITEM(lip); xfs_rui_release(rudp->rud_ruip); kvfree(rudp->rud_item.li_lv_shadow); kmem_cache_free(xfs_rud_cache, rudp); } static struct xfs_log_item * xfs_rud_item_intent( struct xfs_log_item *lip) { return &RUD_ITEM(lip)->rud_ruip->rui_item; } static const struct xfs_item_ops xfs_rud_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | XFS_ITEM_INTENT_DONE, .iop_size = xfs_rud_item_size, .iop_format = xfs_rud_item_format, .iop_release = xfs_rud_item_release, .iop_intent = xfs_rud_item_intent, }; static inline struct xfs_rmap_intent *ri_entry(const struct list_head *e) { return list_entry(e, struct xfs_rmap_intent, ri_list); } /* Sort rmap intents by AG. */ static int xfs_rmap_update_diff_items( void *priv, const struct list_head *a, const struct list_head *b) { struct xfs_rmap_intent *ra = ri_entry(a); struct xfs_rmap_intent *rb = ri_entry(b); return ra->ri_group->xg_gno - rb->ri_group->xg_gno; } /* Log rmap updates in the intent item. */ STATIC void xfs_rmap_update_log_item( struct xfs_trans *tp, struct xfs_rui_log_item *ruip, struct xfs_rmap_intent *ri) { uint next_extent; struct xfs_map_extent *map; /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&ruip->rui_next_extent) - 1; ASSERT(next_extent < ruip->rui_format.rui_nextents); map = &ruip->rui_format.rui_extents[next_extent]; map->me_owner = ri->ri_owner; map->me_startblock = ri->ri_bmap.br_startblock; map->me_startoff = ri->ri_bmap.br_startoff; map->me_len = ri->ri_bmap.br_blockcount; map->me_flags = 0; if (ri->ri_bmap.br_state == XFS_EXT_UNWRITTEN) map->me_flags |= XFS_RMAP_EXTENT_UNWRITTEN; if (ri->ri_whichfork == XFS_ATTR_FORK) map->me_flags |= XFS_RMAP_EXTENT_ATTR_FORK; switch (ri->ri_type) { case XFS_RMAP_MAP: map->me_flags |= XFS_RMAP_EXTENT_MAP; break; case XFS_RMAP_MAP_SHARED: map->me_flags |= XFS_RMAP_EXTENT_MAP_SHARED; break; case XFS_RMAP_UNMAP: map->me_flags |= XFS_RMAP_EXTENT_UNMAP; break; case XFS_RMAP_UNMAP_SHARED: map->me_flags |= XFS_RMAP_EXTENT_UNMAP_SHARED; break; case XFS_RMAP_CONVERT: map->me_flags |= XFS_RMAP_EXTENT_CONVERT; break; case XFS_RMAP_CONVERT_SHARED: map->me_flags |= XFS_RMAP_EXTENT_CONVERT_SHARED; break; case XFS_RMAP_ALLOC: map->me_flags |= XFS_RMAP_EXTENT_ALLOC; break; case XFS_RMAP_FREE: map->me_flags |= XFS_RMAP_EXTENT_FREE; break; default: ASSERT(0); } } static struct xfs_log_item * xfs_rmap_update_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_rui_log_item *ruip = xfs_rui_init(mp, count); struct xfs_rmap_intent *ri; ASSERT(count > 0); if (sort) list_sort(mp, items, xfs_rmap_update_diff_items); list_for_each_entry(ri, items, ri_list) xfs_rmap_update_log_item(tp, ruip, ri); return &ruip->rui_item; } /* Get an RUD so we can process all the deferred rmap updates. */ static struct xfs_log_item * xfs_rmap_update_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { struct xfs_rui_log_item *ruip = RUI_ITEM(intent); struct xfs_rud_log_item *rudp; rudp = kmem_cache_zalloc(xfs_rud_cache, GFP_KERNEL | __GFP_NOFAIL); xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops); rudp->rud_ruip = ruip; rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; return &rudp->rud_item; } /* Add this deferred RUI to the transaction. */ void xfs_rmap_defer_add( struct xfs_trans *tp, struct xfs_rmap_intent *ri) { struct xfs_mount *mp = tp->t_mountp; trace_xfs_rmap_defer(mp, ri); ri->ri_group = xfs_group_intent_get(mp, ri->ri_bmap.br_startblock, XG_TYPE_AG); xfs_defer_add(tp, &ri->ri_list, &xfs_rmap_update_defer_type); } /* Cancel a deferred rmap update. */ STATIC void xfs_rmap_update_cancel_item( struct list_head *item) { struct xfs_rmap_intent *ri = ri_entry(item); xfs_group_intent_put(ri->ri_group); kmem_cache_free(xfs_rmap_intent_cache, ri); } /* Process a deferred rmap update. */ STATIC int xfs_rmap_update_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_rmap_intent *ri = ri_entry(item); int error; error = xfs_rmap_finish_one(tp, ri, state); xfs_rmap_update_cancel_item(item); return error; } /* Clean up after calling xfs_rmap_finish_one. */ STATIC void xfs_rmap_finish_one_cleanup( struct xfs_trans *tp, struct xfs_btree_cur *rcur, int error) { struct xfs_buf *agbp = NULL; if (rcur == NULL) return; agbp = rcur->bc_ag.agbp; xfs_btree_del_cursor(rcur, error); if (error && agbp) xfs_trans_brelse(tp, agbp); } /* Abort all pending RUIs. */ STATIC void xfs_rmap_update_abort_intent( struct xfs_log_item *intent) { xfs_rui_release(RUI_ITEM(intent)); } /* Is this recovered RUI ok? */ static inline bool xfs_rui_validate_map( struct xfs_mount *mp, struct xfs_map_extent *map) { if (!xfs_has_rmapbt(mp)) return false; if (map->me_flags & ~XFS_RMAP_EXTENT_FLAGS) return false; switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { case XFS_RMAP_EXTENT_MAP: case XFS_RMAP_EXTENT_MAP_SHARED: case XFS_RMAP_EXTENT_UNMAP: case XFS_RMAP_EXTENT_UNMAP_SHARED: case XFS_RMAP_EXTENT_CONVERT: case XFS_RMAP_EXTENT_CONVERT_SHARED: case XFS_RMAP_EXTENT_ALLOC: case XFS_RMAP_EXTENT_FREE: break; default: return false; } if (!XFS_RMAP_NON_INODE_OWNER(map->me_owner) && !xfs_verify_ino(mp, map->me_owner)) return false; if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len)) return false; return xfs_verify_fsbext(mp, map->me_startblock, map->me_len); } static inline void xfs_rui_recover_work( struct xfs_mount *mp, struct xfs_defer_pending *dfp, const struct xfs_map_extent *map) { struct xfs_rmap_intent *ri; ri = kmem_cache_alloc(xfs_rmap_intent_cache, GFP_KERNEL | __GFP_NOFAIL); switch (map->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { case XFS_RMAP_EXTENT_MAP: ri->ri_type = XFS_RMAP_MAP; break; case XFS_RMAP_EXTENT_MAP_SHARED: ri->ri_type = XFS_RMAP_MAP_SHARED; break; case XFS_RMAP_EXTENT_UNMAP: ri->ri_type = XFS_RMAP_UNMAP; break; case XFS_RMAP_EXTENT_UNMAP_SHARED: ri->ri_type = XFS_RMAP_UNMAP_SHARED; break; case XFS_RMAP_EXTENT_CONVERT: ri->ri_type = XFS_RMAP_CONVERT; break; case XFS_RMAP_EXTENT_CONVERT_SHARED: ri->ri_type = XFS_RMAP_CONVERT_SHARED; break; case XFS_RMAP_EXTENT_ALLOC: ri->ri_type = XFS_RMAP_ALLOC; break; case XFS_RMAP_EXTENT_FREE: ri->ri_type = XFS_RMAP_FREE; break; default: ASSERT(0); return; } ri->ri_owner = map->me_owner; ri->ri_whichfork = (map->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? XFS_ATTR_FORK : XFS_DATA_FORK; ri->ri_bmap.br_startblock = map->me_startblock; ri->ri_bmap.br_startoff = map->me_startoff; ri->ri_bmap.br_blockcount = map->me_len; ri->ri_bmap.br_state = (map->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? XFS_EXT_UNWRITTEN : XFS_EXT_NORM; ri->ri_group = xfs_group_intent_get(mp, map->me_startblock, XG_TYPE_AG); xfs_defer_add_item(dfp, &ri->ri_list); } /* * Process an rmap update intent item that was recovered from the log. * We need to update the rmapbt. */ STATIC int xfs_rmap_recover_work( struct xfs_defer_pending *dfp, struct list_head *capture_list) { struct xfs_trans_res resv; struct xfs_log_item *lip = dfp->dfp_intent; struct xfs_rui_log_item *ruip = RUI_ITEM(lip); struct xfs_trans *tp; struct xfs_mount *mp = lip->li_log->l_mp; int i; int error = 0; /* * First check the validity of the extents described by the * RUI. If any are bad, then assume that all are bad and * just toss the RUI. */ for (i = 0; i < ruip->rui_format.rui_nextents; i++) { if (!xfs_rui_validate_map(mp, &ruip->rui_format.rui_extents[i])) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, &ruip->rui_format, sizeof(ruip->rui_format)); return -EFSCORRUPTED; } xfs_rui_recover_work(mp, dfp, &ruip->rui_format.rui_extents[i]); } resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); error = xfs_trans_alloc(mp, &resv, mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); if (error) return error; error = xlog_recover_finish_intent(tp, dfp); if (error == -EFSCORRUPTED) XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, &ruip->rui_format, sizeof(ruip->rui_format)); if (error) goto abort_error; return xfs_defer_ops_capture_and_commit(tp, capture_list); abort_error: xfs_trans_cancel(tp); return error; } /* Relog an intent item to push the log tail forward. */ static struct xfs_log_item * xfs_rmap_relog_intent( struct xfs_trans *tp, struct xfs_log_item *intent, struct xfs_log_item *done_item) { struct xfs_rui_log_item *ruip; struct xfs_map_extent *map; unsigned int count; count = RUI_ITEM(intent)->rui_format.rui_nextents; map = RUI_ITEM(intent)->rui_format.rui_extents; ruip = xfs_rui_init(tp->t_mountp, count); memcpy(ruip->rui_format.rui_extents, map, count * sizeof(*map)); atomic_set(&ruip->rui_next_extent, count); return &ruip->rui_item; } const struct xfs_defer_op_type xfs_rmap_update_defer_type = { .name = "rmap", .max_items = XFS_RUI_MAX_FAST_EXTENTS, .create_intent = xfs_rmap_update_create_intent, .abort_intent = xfs_rmap_update_abort_intent, .create_done = xfs_rmap_update_create_done, .finish_item = xfs_rmap_update_finish_item, .finish_cleanup = xfs_rmap_finish_one_cleanup, .cancel_item = xfs_rmap_update_cancel_item, .recover_work = xfs_rmap_recover_work, .relog_intent = xfs_rmap_relog_intent, }; STATIC bool xfs_rui_item_match( struct xfs_log_item *lip, uint64_t intent_id) { return RUI_ITEM(lip)->rui_format.rui_id == intent_id; } static const struct xfs_item_ops xfs_rui_item_ops = { .flags = XFS_ITEM_INTENT, .iop_size = xfs_rui_item_size, .iop_format = xfs_rui_item_format, .iop_unpin = xfs_rui_item_unpin, .iop_release = xfs_rui_item_release, .iop_match = xfs_rui_item_match, }; static inline void xfs_rui_copy_format( struct xfs_rui_log_format *dst, const struct xfs_rui_log_format *src) { unsigned int i; memcpy(dst, src, offsetof(struct xfs_rui_log_format, rui_extents)); for (i = 0; i < src->rui_nextents; i++) memcpy(&dst->rui_extents[i], &src->rui_extents[i], sizeof(struct xfs_map_extent)); } /* * This routine is called to create an in-core extent rmap update * item from the rui format structure which was logged on disk. * It allocates an in-core rui, copies the extents from the format * structure into it, and adds the rui to the AIL with the given * LSN. */ STATIC int xlog_recover_rui_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_mount *mp = log->l_mp; struct xfs_rui_log_item *ruip; struct xfs_rui_log_format *rui_formatp; size_t len; rui_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len < xfs_rui_log_format_sizeof(0)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } len = xfs_rui_log_format_sizeof(rui_formatp->rui_nextents); if (item->ri_buf[0].i_len != len) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, item->ri_buf[0].i_addr, item->ri_buf[0].i_len); return -EFSCORRUPTED; } ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); xfs_rui_copy_format(&ruip->rui_format, rui_formatp); atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); xlog_recover_intent_item(log, &ruip->rui_item, lsn, &xfs_rmap_update_defer_type); return 0; } const struct xlog_recover_item_ops xlog_rui_item_ops = { .item_type = XFS_LI_RUI, .commit_pass2 = xlog_recover_rui_commit_pass2, }; /* * This routine is called when an RUD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding RUI if it * was still in the log. To do this it searches the AIL for the RUI with an id * equal to that in the RUD format structure. If we find it we drop the RUD * reference, which removes the RUI from the AIL and frees it. */ STATIC int xlog_recover_rud_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_rud_log_format *rud_formatp; rud_formatp = item->ri_buf[0].i_addr; if (item->ri_buf[0].i_len != sizeof(struct xfs_rud_log_format)) { XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, rud_formatp, item->ri_buf[0].i_len); return -EFSCORRUPTED; } xlog_recover_release_intent(log, XFS_LI_RUI, rud_formatp->rud_rui_id); return 0; } const struct xlog_recover_item_ops xlog_rud_item_ops = { .item_type = XFS_LI_RUD, .commit_pass2 = xlog_recover_rud_commit_pass2, };