/* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "mxc_nand" #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53()) #define nfc_is_v3() nfc_is_v3_2() /* Addresses for NFC registers */ #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) #define NFC_V1_V2_CONFIG (host->regs + 0x0a) #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10) #define NFC_V1_V2_WRPROT (host->regs + 0x12) #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) #define NFC_V1_V2_CONFIG1_BIG (1 << 5) #define NFC_V1_V2_CONFIG1_RST (1 << 6) #define NFC_V1_V2_CONFIG1_CE (1 << 7) #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) #define NFC_V2_CONFIG1_FP_INT (1 << 11) #define NFC_V1_V2_CONFIG2_INT (1 << 15) /* * Operation modes for the NFC. Valid for v1, v2 and v3 * type controllers. */ #define NFC_CMD (1 << 0) #define NFC_ADDR (1 << 1) #define NFC_INPUT (1 << 2) #define NFC_OUTPUT (1 << 3) #define NFC_ID (1 << 4) #define NFC_STATUS (1 << 5) #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) #define NFC_V3_CONFIG1 (host->regs_axi + 0x34) #define NFC_V3_CONFIG1_SP_EN (1 << 0) #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) #define NFC_V3_LAUNCH (host->regs_axi + 0x40) #define NFC_V3_WRPROT (host->regs_ip + 0x0) #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) #define NFC_V3_WRPROT_LOCK (1 << 1) #define NFC_V3_WRPROT_UNLOCK (1 << 2) #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) #define NFC_V3_CONFIG2 (host->regs_ip + 0x24) #define NFC_V3_CONFIG2_PS_512 (0 << 0) #define NFC_V3_CONFIG2_PS_2048 (1 << 0) #define NFC_V3_CONFIG2_PS_4096 (2 << 0) #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) #define NFC_V3_CONFIG2_ECC_EN (1 << 3) #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) #define NFC_V3_CONFIG2_INT_MSK (1 << 15) #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) #define NFC_V3_CONFIG3 (host->regs_ip + 0x28) #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) #define NFC_V3_CONFIG3_FW8 (1 << 3) #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) #define NFC_V3_CONFIG3_RBB_MODE (1 << 15) #define NFC_V3_CONFIG3_NO_SDMA (1 << 20) #define NFC_V3_IPC (host->regs_ip + 0x2C) #define NFC_V3_IPC_CREQ (1 << 0) #define NFC_V3_IPC_INT (1 << 31) #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) struct mxc_nand_host; struct mxc_nand_devtype_data { void (*preset)(struct mtd_info *); void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); void (*send_addr)(struct mxc_nand_host *, uint16_t, int); void (*send_page)(struct mtd_info *, unsigned int); void (*send_read_id)(struct mxc_nand_host *); uint16_t (*get_dev_status)(struct mxc_nand_host *); int (*check_int)(struct mxc_nand_host *); void (*irq_control)(struct mxc_nand_host *, int); }; struct mxc_nand_host { struct mtd_info mtd; struct nand_chip nand; struct device *dev; void *spare0; void *main_area0; void __iomem *base; void __iomem *regs; void __iomem *regs_axi; void __iomem *regs_ip; int status_request; struct clk *clk; int clk_act; int irq; int eccsize; int active_cs; struct completion op_completion; uint8_t *data_buf; unsigned int buf_start; int spare_len; const struct mxc_nand_devtype_data *devtype_data; /* * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked * (CONFIG1:INT_MSK is set). To handle this the driver uses * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK */ int irqpending_quirk; }; /* OOB placement block for use with hardware ecc generation */ static struct nand_ecclayout nandv1_hw_eccoob_smallpage = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = {{0, 5}, {12, 4}, } }; static struct nand_ecclayout nandv1_hw_eccoob_largepage = { .eccbytes = 20, .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26, 38, 39, 40, 41, 42, 54, 55, 56, 57, 58}, .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, } }; /* OOB description for 512 byte pages with 16 byte OOB */ static struct nand_ecclayout nandv2_hw_eccoob_smallpage = { .eccbytes = 1 * 9, .eccpos = { 7, 8, 9, 10, 11, 12, 13, 14, 15 }, .oobfree = { {.offset = 0, .length = 5} } }; /* OOB description for 2048 byte pages with 64 byte OOB */ static struct nand_ecclayout nandv2_hw_eccoob_largepage = { .eccbytes = 4 * 9, .eccpos = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, .oobfree = { {.offset = 2, .length = 4}, {.offset = 16, .length = 7}, {.offset = 32, .length = 7}, {.offset = 48, .length = 7} } }; /* OOB description for 4096 byte pages with 128 byte OOB */ static struct nand_ecclayout nandv2_hw_eccoob_4k = { .eccbytes = 8 * 9, .eccpos = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 72, 73, 74, 75, 76, 77, 78, 79, 87, 88, 89, 90, 91, 92, 93, 94, 95, 103, 104, 105, 106, 107, 108, 109, 110, 111, 119, 120, 121, 122, 123, 124, 125, 126, 127, }, .oobfree = { {.offset = 2, .length = 4}, {.offset = 16, .length = 7}, {.offset = 32, .length = 7}, {.offset = 48, .length = 7}, {.offset = 64, .length = 7}, {.offset = 80, .length = 7}, {.offset = 96, .length = 7}, {.offset = 112, .length = 7}, } }; static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; static int check_int_v3(struct mxc_nand_host *host) { uint32_t tmp; tmp = readl(NFC_V3_IPC); if (!(tmp & NFC_V3_IPC_INT)) return 0; tmp &= ~NFC_V3_IPC_INT; writel(tmp, NFC_V3_IPC); return 1; } static int check_int_v1_v2(struct mxc_nand_host *host) { uint32_t tmp; tmp = readw(NFC_V1_V2_CONFIG2); if (!(tmp & NFC_V1_V2_CONFIG2_INT)) return 0; if (!host->irqpending_quirk) writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); return 1; } static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) { uint16_t tmp; tmp = readw(NFC_V1_V2_CONFIG1); if (activate) tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; else tmp |= NFC_V1_V2_CONFIG1_INT_MSK; writew(tmp, NFC_V1_V2_CONFIG1); } static void irq_control_v3(struct mxc_nand_host *host, int activate) { uint32_t tmp; tmp = readl(NFC_V3_CONFIG2); if (activate) tmp &= ~NFC_V3_CONFIG2_INT_MSK; else tmp |= NFC_V3_CONFIG2_INT_MSK; writel(tmp, NFC_V3_CONFIG2); } static void irq_control(struct mxc_nand_host *host, int activate) { if (host->irqpending_quirk) { if (activate) enable_irq(host->irq); else disable_irq_nosync(host->irq); } else { host->devtype_data->irq_control(host, activate); } } static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) { struct mxc_nand_host *host = dev_id; if (!host->devtype_data->check_int(host)) return IRQ_NONE; irq_control(host, 0); complete(&host->op_completion); return IRQ_HANDLED; } /* This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */ static void wait_op_done(struct mxc_nand_host *host, int useirq) { int max_retries = 8000; if (useirq) { if (!host->devtype_data->check_int(host)) { INIT_COMPLETION(host->op_completion); irq_control(host, 1); wait_for_completion(&host->op_completion); } } else { while (max_retries-- > 0) { if (host->devtype_data->check_int(host)) break; udelay(1); } if (max_retries < 0) pr_debug("%s: INT not set\n", __func__); } } static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) { /* fill command */ writel(cmd, NFC_V3_FLASH_CMD); /* send out command */ writel(NFC_CMD, NFC_V3_LAUNCH); /* Wait for operation to complete */ wait_op_done(host, useirq); } /* This function issues the specified command to the NAND device and * waits for completion. */ static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) { pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq); writew(cmd, NFC_V1_V2_FLASH_CMD); writew(NFC_CMD, NFC_V1_V2_CONFIG2); if (host->irqpending_quirk && (cmd == NAND_CMD_RESET)) { int max_retries = 100; /* Reset completion is indicated by NFC_CONFIG2 */ /* being set to 0 */ while (max_retries-- > 0) { if (readw(NFC_V1_V2_CONFIG2) == 0) { break; } udelay(1); } if (max_retries < 0) pr_debug("%s: RESET failed\n", __func__); } else { /* Wait for operation to complete */ wait_op_done(host, useirq); } } static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) { /* fill address */ writel(addr, NFC_V3_FLASH_ADDR0); /* send out address */ writel(NFC_ADDR, NFC_V3_LAUNCH); wait_op_done(host, 0); } /* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) { pr_debug("send_addr(host, 0x%x %d)\n", addr, islast); writew(addr, NFC_V1_V2_FLASH_ADDR); writew(NFC_ADDR, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, islast); } static void send_page_v3(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint32_t tmp; tmp = readl(NFC_V3_CONFIG1); tmp &= ~(7 << 4); writel(tmp, NFC_V3_CONFIG1); /* transfer data from NFC ram to nand */ writel(ops, NFC_V3_LAUNCH); wait_op_done(host, false); } static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; int bufs, i; if (nfc_is_v1() && mtd->writesize > 512) bufs = 4; else bufs = 1; for (i = 0; i < bufs; i++) { /* NANDFC buffer 0 is used for page read/write */ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); writew(ops, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); } } static void send_read_id_v3(struct mxc_nand_host *host) { /* Read ID into main buffer */ writel(NFC_ID, NFC_V3_LAUNCH); wait_op_done(host, true); memcpy(host->data_buf, host->main_area0, 16); } /* Request the NANDFC to perform a read of the NAND device ID. */ static void send_read_id_v1_v2(struct mxc_nand_host *host) { struct nand_chip *this = &host->nand; /* NANDFC buffer 0 is used for device ID output */ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); writew(NFC_ID, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); memcpy(host->data_buf, host->main_area0, 16); if (this->options & NAND_BUSWIDTH_16) { /* compress the ID info */ host->data_buf[1] = host->data_buf[2]; host->data_buf[2] = host->data_buf[4]; host->data_buf[3] = host->data_buf[6]; host->data_buf[4] = host->data_buf[8]; host->data_buf[5] = host->data_buf[10]; } } static uint16_t get_dev_status_v3(struct mxc_nand_host *host) { writew(NFC_STATUS, NFC_V3_LAUNCH); wait_op_done(host, true); return readl(NFC_V3_CONFIG1) >> 16; } /* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) { void __iomem *main_buf = host->main_area0; uint32_t store; uint16_t ret; writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); /* * The device status is stored in main_area0. To * prevent corruption of the buffer save the value * and restore it afterwards. */ store = readl(main_buf); writew(NFC_STATUS, NFC_V1_V2_CONFIG2); wait_op_done(host, true); ret = readw(main_buf); writel(store, main_buf); return ret; } /* This functions is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct mtd_info *mtd) { /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1; } static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) { /* * If HW ECC is enabled, we turn it on during init. There is * no need to enable again here. */ } static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; /* * 1-Bit errors are automatically corrected in HW. No need for * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } return 0; } static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; u32 ecc_stat, err; int no_subpages = 1; int ret = 0; u8 ecc_bit_mask, err_limit; ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; err_limit = (host->eccsize == 4) ? 0x4 : 0x8; no_subpages = mtd->writesize >> 9; if (nfc_is_v21()) ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT); else ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT); do { err = ecc_stat & ecc_bit_mask; if (err > err_limit) { printk(KERN_WARNING "UnCorrectable RS-ECC Error\n"); return -1; } else { ret += err; } ecc_stat >>= 4; } while (--no_subpages); mtd->ecc_stats.corrected += ret; pr_debug("%d Symbol Correctable RS-ECC Error\n", ret); return ret; } static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { return 0; } static u_char mxc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint8_t ret; /* Check for status request */ if (host->status_request) return host->devtype_data->get_dev_status(host) & 0xFF; ret = *(uint8_t *)(host->data_buf + host->buf_start); host->buf_start++; return ret; } static uint16_t mxc_nand_read_word(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t ret; ret = *(uint16_t *)(host->data_buf + host->buf_start); host->buf_start += 2; return ret; } /* Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */ static void mxc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; u16 col = host->buf_start; int n = mtd->oobsize + mtd->writesize - col; n = min(n, len); memcpy(host->data_buf + col, buf, n); host->buf_start += n; } /* Read the data buffer from the NAND Flash. To read the data from NAND * Flash first the data output cycle is initiated by the NFC, which copies * the data to RAMbuffer. This data of length len is then copied to buffer buf. */ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; u16 col = host->buf_start; int n = mtd->oobsize + mtd->writesize - col; n = min(n, len); memcpy(buf, host->data_buf + col, n); host->buf_start += n; } /* Used by the upper layer to verify the data in NAND Flash * with the data in the buf. */ static int mxc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { return -EFAULT; } /* This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; if (chip == -1) { /* Disable the NFC clock */ if (host->clk_act) { clk_disable(host->clk); host->clk_act = 0; } return; } if (!host->clk_act) { /* Enable the NFC clock */ clk_enable(host->clk); host->clk_act = 1; } if (nfc_is_v21()) { host->active_cs = chip; writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); } } /* * Function to transfer data to/from spare area. */ static void copy_spare(struct mtd_info *mtd, bool bfrom) { struct nand_chip *this = mtd->priv; struct mxc_nand_host *host = this->priv; u16 i, j; u16 n = mtd->writesize >> 9; u8 *d = host->data_buf + mtd->writesize; u8 *s = host->spare0; u16 t = host->spare_len; j = (mtd->oobsize / n >> 1) << 1; if (bfrom) { for (i = 0; i < n - 1; i++) memcpy(d + i * j, s + i * t, j); /* the last section */ memcpy(d + i * j, s + i * t, mtd->oobsize - i * j); } else { for (i = 0; i < n - 1; i++) memcpy(&s[i * t], &d[i * j], j); /* the last section */ memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j); } } static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; /* Write out column address, if necessary */ if (column != -1) { /* * MXC NANDFC can only perform full page+spare or * spare-only read/write. When the upper layers * perform a read/write buf operation, the saved column * address is used to index into the full page. */ host->devtype_data->send_addr(host, 0, page_addr == -1); if (mtd->writesize > 512) /* another col addr cycle for 2k page */ host->devtype_data->send_addr(host, 0, false); } /* Write out page address, if necessary */ if (page_addr != -1) { /* paddr_0 - p_addr_7 */ host->devtype_data->send_addr(host, (page_addr & 0xff), false); if (mtd->writesize > 512) { if (mtd->size >= 0x10000000) { /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, false); host->devtype_data->send_addr(host, (page_addr >> 16) & 0xff, true); } else /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, true); } else { /* One more address cycle for higher density devices */ if (mtd->size >= 0x4000000) { /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, false); host->devtype_data->send_addr(host, (page_addr >> 16) & 0xff, true); } else /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, true); } } } /* * v2 and v3 type controllers can do 4bit or 8bit ecc depending * on how much oob the nand chip has. For 8bit ecc we need at least * 26 bytes of oob data per 512 byte block. */ static int get_eccsize(struct mtd_info *mtd) { int oobbytes_per_512 = 0; oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; if (oobbytes_per_512 < 26) return 4; else return 8; } static void preset_v1_v2(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; uint16_t config1 = 0; if (nand_chip->ecc.mode == NAND_ECC_HW) config1 |= NFC_V1_V2_CONFIG1_ECC_EN; if (nfc_is_v21()) config1 |= NFC_V2_CONFIG1_FP_INT; if (!host->irqpending_quirk) config1 |= NFC_V1_V2_CONFIG1_INT_MSK; if (nfc_is_v21() && mtd->writesize) { uint16_t pages_per_block = mtd->erasesize / mtd->writesize; host->eccsize = get_eccsize(mtd); if (host->eccsize == 4) config1 |= NFC_V2_CONFIG1_ECC_MODE_4; config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); } else { host->eccsize = 1; } writew(config1, NFC_V1_V2_CONFIG1); /* preset operation */ /* Unlock the internal RAM Buffer */ writew(0x2, NFC_V1_V2_CONFIG); /* Blocks to be unlocked */ if (nfc_is_v21()) { writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); } else if (nfc_is_v1()) { writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); } else BUG(); /* Unlock Block Command for given address range */ writew(0x4, NFC_V1_V2_WRPROT); } static void preset_v3(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct mxc_nand_host *host = chip->priv; uint32_t config2, config3; int i, addr_phases; writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); /* Unlock the internal RAM Buffer */ writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, NFC_V3_WRPROT); /* Blocks to be unlocked */ for (i = 0; i < NAND_MAX_CHIPS; i++) writel(0x0 | (0xffff << 16), NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); writel(0, NFC_V3_IPC); config2 = NFC_V3_CONFIG2_ONE_CYCLE | NFC_V3_CONFIG2_2CMD_PHASES | NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | NFC_V3_CONFIG2_ST_CMD(0x70) | NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_NUM_ADDR_PHASE0; if (chip->ecc.mode == NAND_ECC_HW) config2 |= NFC_V3_CONFIG2_ECC_EN; addr_phases = fls(chip->pagemask) >> 3; if (mtd->writesize == 2048) { config2 |= NFC_V3_CONFIG2_PS_2048; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); } else if (mtd->writesize == 4096) { config2 |= NFC_V3_CONFIG2_PS_4096; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); } else { config2 |= NFC_V3_CONFIG2_PS_512; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); } if (mtd->writesize) { config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6); host->eccsize = get_eccsize(mtd); if (host->eccsize == 8) config2 |= NFC_V3_CONFIG2_ECC_MODE_8; } writel(config2, NFC_V3_CONFIG2); config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | NFC_V3_CONFIG3_NO_SDMA | NFC_V3_CONFIG3_RBB_MODE | NFC_V3_CONFIG3_SBB(6) | /* Reset default */ NFC_V3_CONFIG3_ADD_OP(0); if (!(chip->options & NAND_BUSWIDTH_16)) config3 |= NFC_V3_CONFIG3_FW8; writel(config3, NFC_V3_CONFIG3); writel(0, NFC_V3_DELAY_LINE); } /* Used by the upper layer to write command to NAND Flash for * different operations to be carried out on NAND Flash */ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ host->status_request = false; /* Command pre-processing step */ switch (command) { case NAND_CMD_RESET: host->devtype_data->preset(mtd); host->devtype_data->send_cmd(host, command, false); break; case NAND_CMD_STATUS: host->buf_start = 0; host->status_request = true; host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_READ0: case NAND_CMD_READOOB: if (command == NAND_CMD_READ0) host->buf_start = column; else host->buf_start = column + mtd->writesize; command = NAND_CMD_READ0; /* only READ0 is valid */ host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); if (mtd->writesize > 512) host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); host->devtype_data->send_page(mtd, NFC_OUTPUT); memcpy(host->data_buf, host->main_area0, mtd->writesize); copy_spare(mtd, true); break; case NAND_CMD_SEQIN: if (column >= mtd->writesize) /* call ourself to read a page */ mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); host->buf_start = column; host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_PAGEPROG: memcpy(host->main_area0, host->data_buf, mtd->writesize); copy_spare(mtd, false); host->devtype_data->send_page(mtd, NFC_INPUT); host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_READID: host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); host->devtype_data->send_read_id(host); host->buf_start = column; break; case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); break; } } /* * The generic flash bbt decriptors overlap with our ecc * hardware, so define some i.MX specific ones. */ static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = mirror_pattern, }; /* v1: i.MX21, i.MX27, i.MX31 */ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { .preset = preset_v1_v2, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1_v2, .send_read_id = send_read_id_v1_v2, .get_dev_status = get_dev_status_v1_v2, .check_int = check_int_v1_v2, .irq_control = irq_control_v1_v2, }; /* v21: i.MX25, i.MX35 */ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .preset = preset_v1_v2, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1_v2, .send_read_id = send_read_id_v1_v2, .get_dev_status = get_dev_status_v1_v2, .check_int = check_int_v1_v2, .irq_control = irq_control_v1_v2, }; /* v3: i.MX51, i.MX53 */ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .preset = preset_v3, .send_cmd = send_cmd_v3, .send_addr = send_addr_v3, .send_page = send_page_v3, .send_read_id = send_read_id_v3, .get_dev_status = get_dev_status_v3, .check_int = check_int_v3, .irq_control = irq_control_v3, }; static int __init mxcnd_probe(struct platform_device *pdev) { struct nand_chip *this; struct mtd_info *mtd; struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; struct mxc_nand_host *host; struct resource *res; int err = 0; struct nand_ecclayout *oob_smallpage, *oob_largepage; /* Allocate memory for MTD device structure and private data */ host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL); if (!host) return -ENOMEM; host->data_buf = (uint8_t *)(host + 1); host->dev = &pdev->dev; /* structures must be linked */ this = &host->nand; mtd = &host->mtd; mtd->priv = this; mtd->owner = THIS_MODULE; mtd->dev.parent = &pdev->dev; mtd->name = DRIVER_NAME; /* 50 us command delay time */ this->chip_delay = 5; this->priv = host; this->dev_ready = mxc_nand_dev_ready; this->cmdfunc = mxc_nand_command; this->select_chip = mxc_nand_select_chip; this->read_byte = mxc_nand_read_byte; this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; this->verify_buf = mxc_nand_verify_buf; host->clk = clk_get(&pdev->dev, "nfc"); if (IS_ERR(host->clk)) { err = PTR_ERR(host->clk); goto eclk; } clk_enable(host->clk); host->clk_act = 1; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { err = -ENODEV; goto eres; } host->base = ioremap(res->start, resource_size(res)); if (!host->base) { err = -ENOMEM; goto eres; } host->main_area0 = host->base; if (nfc_is_v1()) { host->devtype_data = &imx21_nand_devtype_data; if (cpu_is_mx21()) host->irqpending_quirk = 1; host->regs = host->base + 0xe00; host->spare0 = host->base + 0x800; host->spare_len = 16; oob_smallpage = &nandv1_hw_eccoob_smallpage; oob_largepage = &nandv1_hw_eccoob_largepage; this->ecc.bytes = 3; host->eccsize = 1; } else if (nfc_is_v21()) { host->devtype_data = &imx25_nand_devtype_data; host->regs = host->base + 0x1e00; host->spare0 = host->base + 0x1000; host->spare_len = 64; oob_smallpage = &nandv2_hw_eccoob_smallpage; oob_largepage = &nandv2_hw_eccoob_largepage; this->ecc.bytes = 9; } else if (nfc_is_v3_2()) { host->devtype_data = &imx51_nand_devtype_data; res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) { err = -ENODEV; goto eirq; } host->regs_ip = ioremap(res->start, resource_size(res)); if (!host->regs_ip) { err = -ENOMEM; goto eirq; } host->regs_axi = host->base + 0x1e00; host->spare0 = host->base + 0x1000; host->spare_len = 64; oob_smallpage = &nandv2_hw_eccoob_smallpage; oob_largepage = &nandv2_hw_eccoob_largepage; } else BUG(); this->ecc.size = 512; this->ecc.layout = oob_smallpage; if (pdata->hw_ecc) { this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; if (nfc_is_v1()) this->ecc.correct = mxc_nand_correct_data_v1; else this->ecc.correct = mxc_nand_correct_data_v2_v3; this->ecc.mode = NAND_ECC_HW; } else { this->ecc.mode = NAND_ECC_SOFT; } /* NAND bus width determines access funtions used by upper layer */ if (pdata->width == 2) this->options |= NAND_BUSWIDTH_16; if (pdata->flash_bbt) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; /* update flash based bbt */ this->bbt_options |= NAND_BBT_USE_FLASH; } init_completion(&host->op_completion); host->irq = platform_get_irq(pdev, 0); /* * Use host->devtype_data->irq_control() here instead of irq_control() * because we must not disable_irq_nosync without having requested the * irq. */ host->devtype_data->irq_control(host, 0); err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host); if (err) goto eirq; /* * Now that we "own" the interrupt make sure the interrupt mask bit is * cleared on i.MX21. Otherwise we can't read the interrupt status bit * on this machine. */ if (host->irqpending_quirk) { disable_irq_nosync(host->irq); host->devtype_data->irq_control(host, 1); } /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) { err = -ENXIO; goto escan; } /* Call preset again, with correct writesize this time */ host->devtype_data->preset(mtd); if (mtd->writesize == 2048) this->ecc.layout = oob_largepage; if (nfc_is_v21() && mtd->writesize == 4096) this->ecc.layout = &nandv2_hw_eccoob_4k; /* second phase scan */ if (nand_scan_tail(mtd)) { err = -ENXIO; goto escan; } if (this->ecc.mode == NAND_ECC_HW) { if (nfc_is_v1()) this->ecc.strength = 1; else this->ecc.strength = (host->eccsize == 4) ? 4 : 8; } /* Register the partitions */ mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts, pdata->nr_parts); platform_set_drvdata(pdev, host); return 0; escan: free_irq(host->irq, host); eirq: if (host->regs_ip) iounmap(host->regs_ip); iounmap(host->base); eres: clk_put(host->clk); eclk: kfree(host); return err; } static int __devexit mxcnd_remove(struct platform_device *pdev) { struct mxc_nand_host *host = platform_get_drvdata(pdev); clk_put(host->clk); platform_set_drvdata(pdev, NULL); nand_release(&host->mtd); free_irq(host->irq, host); if (host->regs_ip) iounmap(host->regs_ip); iounmap(host->base); kfree(host); return 0; } static struct platform_driver mxcnd_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, .remove = __devexit_p(mxcnd_remove), }; static int __init mxc_nd_init(void) { return platform_driver_probe(&mxcnd_driver, mxcnd_probe); } static void __exit mxc_nd_cleanup(void) { /* Unregister the device structure */ platform_driver_unregister(&mxcnd_driver); } module_init(mxc_nd_init); module_exit(mxc_nd_cleanup); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MXC NAND MTD driver"); MODULE_LICENSE("GPL");