/* * Freescale Memory Controller kernel module * * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and * ARM-based Layerscape SoCs including LS2xxx. Originally split * out from mpc85xx_edac EDAC driver. * * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc. * * Author: Dave Jiang * * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "edac_module.h" #include "edac_core.h" #include "fsl_ddr_edac.h" #define EDAC_MOD_STR "fsl_ddr_edac" static int edac_mc_idx; static u32 orig_ddr_err_disable; static u32 orig_ddr_err_sbe; static bool little_endian; static inline u32 ddr_in32(void __iomem *addr) { return little_endian ? ioread32(addr) : ioread32be(addr); } static inline void ddr_out32(void __iomem *addr, u32 value) { if (little_endian) iowrite32(value, addr); else iowrite32be(value, addr); } /************************ MC SYSFS parts ***********************************/ #define to_mci(k) container_of(k, struct mem_ctl_info, dev) static ssize_t fsl_mc_inject_data_hi_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; return sprintf(data, "0x%08x", ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI)); } static ssize_t fsl_mc_inject_data_lo_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; return sprintf(data, "0x%08x", ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO)); } static ssize_t fsl_mc_inject_ctrl_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; return sprintf(data, "0x%08x", ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT)); } static ssize_t fsl_mc_inject_data_hi_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; if (isdigit(*data)) { ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, simple_strtoul(data, NULL, 0)); return count; } return 0; } static ssize_t fsl_mc_inject_data_lo_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; if (isdigit(*data)) { ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, simple_strtoul(data, NULL, 0)); return count; } return 0; } static ssize_t fsl_mc_inject_ctrl_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct fsl_mc_pdata *pdata = mci->pvt_info; if (isdigit(*data)) { ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, simple_strtoul(data, NULL, 0)); return count; } return 0; } DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR, fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store); DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR, fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store); DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR, fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store); static struct attribute *fsl_ddr_dev_attrs[] = { &dev_attr_inject_data_hi.attr, &dev_attr_inject_data_lo.attr, &dev_attr_inject_ctrl.attr, NULL }; ATTRIBUTE_GROUPS(fsl_ddr_dev); /**************************** MC Err device ***************************/ /* * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the * MPC8572 User's Manual. Each line represents a syndrome bit column as a * 64-bit value, but split into an upper and lower 32-bit chunk. The labels * below correspond to Freescale's manuals. */ static unsigned int ecc_table[16] = { /* MSB LSB */ /* [0:31] [32:63] */ 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */ 0x00ff00ff, 0x00fff0ff, 0x0f0f0f0f, 0x0f0fff00, 0x11113333, 0x7777000f, 0x22224444, 0x8888222f, 0x44448888, 0xffff4441, 0x8888ffff, 0x11118882, 0xffff1111, 0x22221114, /* Syndrome bit 0 */ }; /* * Calculate the correct ECC value for a 64-bit value specified by high:low */ static u8 calculate_ecc(u32 high, u32 low) { u32 mask_low; u32 mask_high; int bit_cnt; u8 ecc = 0; int i; int j; for (i = 0; i < 8; i++) { mask_high = ecc_table[i * 2]; mask_low = ecc_table[i * 2 + 1]; bit_cnt = 0; for (j = 0; j < 32; j++) { if ((mask_high >> j) & 1) bit_cnt ^= (high >> j) & 1; if ((mask_low >> j) & 1) bit_cnt ^= (low >> j) & 1; } ecc |= bit_cnt << i; } return ecc; } /* * Create the syndrome code which is generated if the data line specified by * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641 * User's Manual and 9-61 in the MPC8572 User's Manual. */ static u8 syndrome_from_bit(unsigned int bit) { int i; u8 syndrome = 0; /* * Cycle through the upper or lower 32-bit portion of each value in * ecc_table depending on if 'bit' is in the upper or lower half of * 64-bit data. */ for (i = bit < 32; i < 16; i += 2) syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2); return syndrome; } /* * Decode data and ecc syndrome to determine what went wrong * Note: This can only decode single-bit errors */ static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc, int *bad_data_bit, int *bad_ecc_bit) { int i; u8 syndrome; *bad_data_bit = -1; *bad_ecc_bit = -1; /* * Calculate the ECC of the captured data and XOR it with the captured * ECC to find an ECC syndrome value we can search for */ syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc; /* Check if a data line is stuck... */ for (i = 0; i < 64; i++) { if (syndrome == syndrome_from_bit(i)) { *bad_data_bit = i; return; } } /* If data is correct, check ECC bits for errors... */ for (i = 0; i < 8; i++) { if ((syndrome >> i) & 0x1) { *bad_ecc_bit = i; return; } } } #define make64(high, low) (((u64)(high) << 32) | (low)) static void fsl_mc_check(struct mem_ctl_info *mci) { struct fsl_mc_pdata *pdata = mci->pvt_info; struct csrow_info *csrow; u32 bus_width; u32 err_detect; u32 syndrome; u64 err_addr; u32 pfn; int row_index; u32 cap_high; u32 cap_low; int bad_data_bit; int bad_ecc_bit; err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); if (!err_detect) return; fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n", err_detect); /* no more processing if not ECC bit errors */ if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) { ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); return; } syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC); /* Mask off appropriate bits of syndrome based on bus width */ bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) & DSC_DBW_MASK) ? 32 : 64; if (bus_width == 64) syndrome &= 0xff; else syndrome &= 0xffff; err_addr = make64( ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS), ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS)); pfn = err_addr >> PAGE_SHIFT; for (row_index = 0; row_index < mci->nr_csrows; row_index++) { csrow = mci->csrows[row_index]; if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page)) break; } cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI); cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO); /* * Analyze single-bit errors on 64-bit wide buses * TODO: Add support for 32-bit wide buses */ if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) { sbe_ecc_decode(cap_high, cap_low, syndrome, &bad_data_bit, &bad_ecc_bit); if (bad_data_bit != -1) fsl_mc_printk(mci, KERN_ERR, "Faulty Data bit: %d\n", bad_data_bit); if (bad_ecc_bit != -1) fsl_mc_printk(mci, KERN_ERR, "Faulty ECC bit: %d\n", bad_ecc_bit); fsl_mc_printk(mci, KERN_ERR, "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n", cap_high ^ (1 << (bad_data_bit - 32)), cap_low ^ (1 << bad_data_bit), syndrome ^ (1 << bad_ecc_bit)); } fsl_mc_printk(mci, KERN_ERR, "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n", cap_high, cap_low, syndrome); fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr); fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn); /* we are out of range */ if (row_index == mci->nr_csrows) fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n"); if (err_detect & DDR_EDE_SBE) edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, pfn, err_addr & ~PAGE_MASK, syndrome, row_index, 0, -1, mci->ctl_name, ""); if (err_detect & DDR_EDE_MBE) edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, pfn, err_addr & ~PAGE_MASK, syndrome, row_index, 0, -1, mci->ctl_name, ""); ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); } static irqreturn_t fsl_mc_isr(int irq, void *dev_id) { struct mem_ctl_info *mci = dev_id; struct fsl_mc_pdata *pdata = mci->pvt_info; u32 err_detect; err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); if (!err_detect) return IRQ_NONE; fsl_mc_check(mci); return IRQ_HANDLED; } static void fsl_ddr_init_csrows(struct mem_ctl_info *mci) { struct fsl_mc_pdata *pdata = mci->pvt_info; struct csrow_info *csrow; struct dimm_info *dimm; u32 sdram_ctl; u32 sdtype; enum mem_type mtype; u32 cs_bnds; int index; sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); sdtype = sdram_ctl & DSC_SDTYPE_MASK; if (sdram_ctl & DSC_RD_EN) { switch (sdtype) { case 0x02000000: mtype = MEM_RDDR; break; case 0x03000000: mtype = MEM_RDDR2; break; case 0x07000000: mtype = MEM_RDDR3; break; case 0x05000000: mtype = MEM_RDDR4; break; default: mtype = MEM_UNKNOWN; break; } } else { switch (sdtype) { case 0x02000000: mtype = MEM_DDR; break; case 0x03000000: mtype = MEM_DDR2; break; case 0x07000000: mtype = MEM_DDR3; break; case 0x05000000: mtype = MEM_DDR4; break; default: mtype = MEM_UNKNOWN; break; } } for (index = 0; index < mci->nr_csrows; index++) { u32 start; u32 end; csrow = mci->csrows[index]; dimm = csrow->channels[0]->dimm; cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 + (index * FSL_MC_CS_BNDS_OFS)); start = (cs_bnds & 0xffff0000) >> 16; end = (cs_bnds & 0x0000ffff); if (start == end) continue; /* not populated */ start <<= (24 - PAGE_SHIFT); end <<= (24 - PAGE_SHIFT); end |= (1 << (24 - PAGE_SHIFT)) - 1; csrow->first_page = start; csrow->last_page = end; dimm->nr_pages = end + 1 - start; dimm->grain = 8; dimm->mtype = mtype; dimm->dtype = DEV_UNKNOWN; if (sdram_ctl & DSC_X32_EN) dimm->dtype = DEV_X32; dimm->edac_mode = EDAC_SECDED; } } int fsl_mc_err_probe(struct platform_device *op) { struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct fsl_mc_pdata *pdata; struct resource r; u32 sdram_ctl; int res; if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL)) return -ENOMEM; layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = 4; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = 1; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers, sizeof(*pdata)); if (!mci) { devres_release_group(&op->dev, fsl_mc_err_probe); return -ENOMEM; } pdata = mci->pvt_info; pdata->name = "fsl_mc_err"; mci->pdev = &op->dev; pdata->edac_idx = edac_mc_idx++; dev_set_drvdata(mci->pdev, mci); mci->ctl_name = pdata->name; mci->dev_name = pdata->name; /* * Get the endianness of DDR controller registers. * Default is big endian. */ little_endian = of_property_read_bool(op->dev.of_node, "little-endian"); res = of_address_to_resource(op->dev.of_node, 0, &r); if (res) { pr_err("%s: Unable to get resource for MC err regs\n", __func__); goto err; } if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r), pdata->name)) { pr_err("%s: Error while requesting mem region\n", __func__); res = -EBUSY; goto err; } pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r)); if (!pdata->mc_vbase) { pr_err("%s: Unable to setup MC err regs\n", __func__); res = -ENOMEM; goto err; } sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); if (!(sdram_ctl & DSC_ECC_EN)) { /* no ECC */ pr_warn("%s: No ECC DIMMs discovered\n", __func__); res = -ENODEV; goto err; } edac_dbg(3, "init mci\n"); mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR | MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 | MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 | MEM_FLAG_DDR4 | MEM_FLAG_RDDR4; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; if (edac_op_state == EDAC_OPSTATE_POLL) mci->edac_check = fsl_mc_check; mci->ctl_page_to_phys = NULL; mci->scrub_mode = SCRUB_SW_SRC; fsl_ddr_init_csrows(mci); /* store the original error disable bits */ orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE); ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0); /* clear all error bits */ ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0); if (edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups)) { edac_dbg(3, "failed edac_mc_add_mc()\n"); goto err; } if (edac_op_state == EDAC_OPSTATE_INT) { ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, DDR_EIE_MBEE | DDR_EIE_SBEE); /* store the original error management threshold */ orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_SBE) & 0xff0000; /* set threshold to 1 error per interrupt */ ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000); /* register interrupts */ pdata->irq = platform_get_irq(op, 0); res = devm_request_irq(&op->dev, pdata->irq, fsl_mc_isr, IRQF_SHARED, "[EDAC] MC err", mci); if (res < 0) { pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n", __func__, pdata->irq); res = -ENODEV; goto err2; } pr_info(EDAC_MOD_STR " acquired irq %d for MC\n", pdata->irq); } devres_remove_group(&op->dev, fsl_mc_err_probe); edac_dbg(3, "success\n"); pr_info(EDAC_MOD_STR " MC err registered\n"); return 0; err2: edac_mc_del_mc(&op->dev); err: devres_release_group(&op->dev, fsl_mc_err_probe); edac_mc_free(mci); return res; } int fsl_mc_err_remove(struct platform_device *op) { struct mem_ctl_info *mci = dev_get_drvdata(&op->dev); struct fsl_mc_pdata *pdata = mci->pvt_info; edac_dbg(0, "\n"); if (edac_op_state == EDAC_OPSTATE_INT) { ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0); } ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, orig_ddr_err_disable); ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe); edac_mc_del_mc(&op->dev); edac_mc_free(mci); return 0; }