linux/arch/arm/kernel/hibernate.c
Linus Walleij a9ff696160 ARM: mm: Make virt_to_pfn() a static inline
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.

Doing this is a bit intrusive: virt_to_pfn() requires
PHYS_PFN_OFFSET and PAGE_SHIFT to be defined, and this is defined in
<asm/page.h>, so this must be included *before* <asm/memory.h>.

The use of macros were obscuring the unclear inclusion order here,
as the macros would eventually be resolved, but a static inline
like this cannot be compiled with unresolved macros.

The naive solution to include <asm/page.h> at the top of
<asm/memory.h> does not work, because <asm/memory.h> sometimes
includes <asm/page.h> at the end of itself, which would create a
confusing inclusion loop. So instead, take the approach to always
unconditionally include <asm/page.h> at the end of <asm/memory.h>

arch/arm uses <asm/memory.h> explicitly in a lot of places,
however it turns out that if we just unconditionally include
<asm/memory.h> into <asm/page.h> and switch all inclusions of
<asm/memory.h> to <asm/page.h> instead, we enforce the right
order and <asm/memory.h> will always have access to the
definitions.

Put an inclusion guard in place making it impossible to include
<asm/memory.h> explicitly.

Link: https://lore.kernel.org/linux-mm/20220701160004.2ffff4e5ab59a55499f4c736@linux-foundation.org/
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2023-05-29 11:27:08 +02:00

106 lines
2.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Hibernation support specific for ARM
*
* Derived from work on ARM hibernation support by:
*
* Ubuntu project, hibernation support for mach-dove
* Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
* Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
* https://lkml.org/lkml/2010/6/18/4
* https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
* https://patchwork.kernel.org/patch/96442/
*
* Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
*/
#include <linux/mm.h>
#include <linux/suspend.h>
#include <asm/system_misc.h>
#include <asm/idmap.h>
#include <asm/suspend.h>
#include <asm/page.h>
#include <asm/sections.h>
#include "reboot.h"
int pfn_is_nosave(unsigned long pfn)
{
unsigned long nosave_begin_pfn = virt_to_pfn(&__nosave_begin);
unsigned long nosave_end_pfn = virt_to_pfn(&__nosave_end - 1);
return (pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn);
}
void notrace save_processor_state(void)
{
WARN_ON(num_online_cpus() != 1);
local_fiq_disable();
}
void notrace restore_processor_state(void)
{
local_fiq_enable();
}
/*
* Snapshot kernel memory and reset the system.
*
* swsusp_save() is executed in the suspend finisher so that the CPU
* context pointer and memory are part of the saved image, which is
* required by the resume kernel image to restart execution from
* swsusp_arch_suspend().
*
* soft_restart is not technically needed, but is used to get success
* returned from cpu_suspend.
*
* When soft reboot completes, the hibernation snapshot is written out.
*/
static int notrace arch_save_image(unsigned long unused)
{
int ret;
ret = swsusp_save();
if (ret == 0)
_soft_restart(virt_to_idmap(cpu_resume), false);
return ret;
}
/*
* Save the current CPU state before suspend / poweroff.
*/
int notrace swsusp_arch_suspend(void)
{
return cpu_suspend(0, arch_save_image);
}
/*
* Restore page contents for physical pages that were in use during loading
* hibernation image. Switch to idmap_pgd so the physical page tables
* are overwritten with the same contents.
*/
static void notrace arch_restore_image(void *unused)
{
struct pbe *pbe;
cpu_switch_mm(idmap_pgd, &init_mm);
for (pbe = restore_pblist; pbe; pbe = pbe->next)
copy_page(pbe->orig_address, pbe->address);
_soft_restart(virt_to_idmap(cpu_resume), false);
}
static u64 resume_stack[PAGE_SIZE/2/sizeof(u64)] __nosavedata;
/*
* Resume from the hibernation image.
* Due to the kernel heap / data restore, stack contents change underneath
* and that would make function calls impossible; switch to a temporary
* stack within the nosave region to avoid that problem.
*/
int swsusp_arch_resume(void)
{
call_with_stack(arch_restore_image, 0,
resume_stack + ARRAY_SIZE(resume_stack));
return 0;
}