mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-16 01:54:00 +00:00
d072acda48
Currently FFI integer types are defined in libcore. This commit creates the `ffi` crate and asks bindgen to use that crate for FFI integer types instead of `core::ffi`. This commit is preparatory and no type changes are made in this commit yet. Signed-off-by: Gary Guo <gary@garyguo.net> Link: https://lore.kernel.org/r/20240913213041.395655-4-gary@garyguo.net [ Added `rustdoc`, `rusttest` and KUnit tests support. Rebased on top of `rust-next` (e.g. migrated more `core::ffi` cases). Reworded crate docs slightly and formatted. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
895 lines
29 KiB
Rust
895 lines
29 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! String representations.
|
|
|
|
use crate::alloc::{flags::*, AllocError, KVec};
|
|
use core::fmt::{self, Write};
|
|
use core::ops::{self, Deref, DerefMut, Index};
|
|
|
|
use crate::error::{code::*, Error};
|
|
|
|
/// Byte string without UTF-8 validity guarantee.
|
|
#[repr(transparent)]
|
|
pub struct BStr([u8]);
|
|
|
|
impl BStr {
|
|
/// Returns the length of this string.
|
|
#[inline]
|
|
pub const fn len(&self) -> usize {
|
|
self.0.len()
|
|
}
|
|
|
|
/// Returns `true` if the string is empty.
|
|
#[inline]
|
|
pub const fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Creates a [`BStr`] from a `[u8]`.
|
|
#[inline]
|
|
pub const fn from_bytes(bytes: &[u8]) -> &Self {
|
|
// SAFETY: `BStr` is transparent to `[u8]`.
|
|
unsafe { &*(bytes as *const [u8] as *const BStr) }
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for BStr {
|
|
/// Formats printable ASCII characters, escaping the rest.
|
|
///
|
|
/// ```
|
|
/// # use kernel::{fmt, b_str, str::{BStr, CString}};
|
|
/// let ascii = b_str!("Hello, BStr!");
|
|
/// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
|
|
///
|
|
/// let non_ascii = b_str!("🦀");
|
|
/// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
|
|
/// ```
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
for &b in &self.0 {
|
|
match b {
|
|
// Common escape codes.
|
|
b'\t' => f.write_str("\\t")?,
|
|
b'\n' => f.write_str("\\n")?,
|
|
b'\r' => f.write_str("\\r")?,
|
|
// Printable characters.
|
|
0x20..=0x7e => f.write_char(b as char)?,
|
|
_ => write!(f, "\\x{:02x}", b)?,
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for BStr {
|
|
/// Formats printable ASCII characters with a double quote on either end,
|
|
/// escaping the rest.
|
|
///
|
|
/// ```
|
|
/// # use kernel::{fmt, b_str, str::{BStr, CString}};
|
|
/// // Embedded double quotes are escaped.
|
|
/// let ascii = b_str!("Hello, \"BStr\"!");
|
|
/// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
|
|
///
|
|
/// let non_ascii = b_str!("😺");
|
|
/// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
|
|
/// ```
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.write_char('"')?;
|
|
for &b in &self.0 {
|
|
match b {
|
|
// Common escape codes.
|
|
b'\t' => f.write_str("\\t")?,
|
|
b'\n' => f.write_str("\\n")?,
|
|
b'\r' => f.write_str("\\r")?,
|
|
// String escape characters.
|
|
b'\"' => f.write_str("\\\"")?,
|
|
b'\\' => f.write_str("\\\\")?,
|
|
// Printable characters.
|
|
0x20..=0x7e => f.write_char(b as char)?,
|
|
_ => write!(f, "\\x{:02x}", b)?,
|
|
}
|
|
}
|
|
f.write_char('"')
|
|
}
|
|
}
|
|
|
|
impl Deref for BStr {
|
|
type Target = [u8];
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
/// Creates a new [`BStr`] from a string literal.
|
|
///
|
|
/// `b_str!` converts the supplied string literal to byte string, so non-ASCII
|
|
/// characters can be included.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::b_str;
|
|
/// # use kernel::str::BStr;
|
|
/// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! b_str {
|
|
($str:literal) => {{
|
|
const S: &'static str = $str;
|
|
const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
|
|
C
|
|
}};
|
|
}
|
|
|
|
/// Possible errors when using conversion functions in [`CStr`].
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum CStrConvertError {
|
|
/// Supplied bytes contain an interior `NUL`.
|
|
InteriorNul,
|
|
|
|
/// Supplied bytes are not terminated by `NUL`.
|
|
NotNulTerminated,
|
|
}
|
|
|
|
impl From<CStrConvertError> for Error {
|
|
#[inline]
|
|
fn from(_: CStrConvertError) -> Error {
|
|
EINVAL
|
|
}
|
|
}
|
|
|
|
/// A string that is guaranteed to have exactly one `NUL` byte, which is at the
|
|
/// end.
|
|
///
|
|
/// Used for interoperability with kernel APIs that take C strings.
|
|
#[repr(transparent)]
|
|
pub struct CStr([u8]);
|
|
|
|
impl CStr {
|
|
/// Returns the length of this string excluding `NUL`.
|
|
#[inline]
|
|
pub const fn len(&self) -> usize {
|
|
self.len_with_nul() - 1
|
|
}
|
|
|
|
/// Returns the length of this string with `NUL`.
|
|
#[inline]
|
|
pub const fn len_with_nul(&self) -> usize {
|
|
if self.0.is_empty() {
|
|
// SAFETY: This is one of the invariant of `CStr`.
|
|
// We add a `unreachable_unchecked` here to hint the optimizer that
|
|
// the value returned from this function is non-zero.
|
|
unsafe { core::hint::unreachable_unchecked() };
|
|
}
|
|
self.0.len()
|
|
}
|
|
|
|
/// Returns `true` if the string only includes `NUL`.
|
|
#[inline]
|
|
pub const fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Wraps a raw C string pointer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
|
|
/// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
|
|
/// must not be mutated.
|
|
#[inline]
|
|
pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
|
|
// SAFETY: The safety precondition guarantees `ptr` is a valid pointer
|
|
// to a `NUL`-terminated C string.
|
|
let len = unsafe { bindings::strlen(ptr) } + 1;
|
|
// SAFETY: Lifetime guaranteed by the safety precondition.
|
|
let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
|
|
// SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
|
|
// As we have added 1 to `len`, the last byte is known to be `NUL`.
|
|
unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
|
|
}
|
|
|
|
/// Creates a [`CStr`] from a `[u8]`.
|
|
///
|
|
/// The provided slice must be `NUL`-terminated, does not contain any
|
|
/// interior `NUL` bytes.
|
|
pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
|
|
if bytes.is_empty() {
|
|
return Err(CStrConvertError::NotNulTerminated);
|
|
}
|
|
if bytes[bytes.len() - 1] != 0 {
|
|
return Err(CStrConvertError::NotNulTerminated);
|
|
}
|
|
let mut i = 0;
|
|
// `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
|
|
// while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
|
|
while i + 1 < bytes.len() {
|
|
if bytes[i] == 0 {
|
|
return Err(CStrConvertError::InteriorNul);
|
|
}
|
|
i += 1;
|
|
}
|
|
// SAFETY: We just checked that all properties hold.
|
|
Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
|
|
}
|
|
|
|
/// Creates a [`CStr`] from a `[u8]` without performing any additional
|
|
/// checks.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// `bytes` *must* end with a `NUL` byte, and should only have a single
|
|
/// `NUL` byte (or the string will be truncated).
|
|
#[inline]
|
|
pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
|
|
// SAFETY: Properties of `bytes` guaranteed by the safety precondition.
|
|
unsafe { core::mem::transmute(bytes) }
|
|
}
|
|
|
|
/// Creates a mutable [`CStr`] from a `[u8]` without performing any
|
|
/// additional checks.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// `bytes` *must* end with a `NUL` byte, and should only have a single
|
|
/// `NUL` byte (or the string will be truncated).
|
|
#[inline]
|
|
pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
|
|
// SAFETY: Properties of `bytes` guaranteed by the safety precondition.
|
|
unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
|
|
}
|
|
|
|
/// Returns a C pointer to the string.
|
|
#[inline]
|
|
pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
|
|
self.0.as_ptr() as _
|
|
}
|
|
|
|
/// Convert the string to a byte slice without the trailing `NUL` byte.
|
|
#[inline]
|
|
pub fn as_bytes(&self) -> &[u8] {
|
|
&self.0[..self.len()]
|
|
}
|
|
|
|
/// Convert the string to a byte slice containing the trailing `NUL` byte.
|
|
#[inline]
|
|
pub const fn as_bytes_with_nul(&self) -> &[u8] {
|
|
&self.0
|
|
}
|
|
|
|
/// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
|
|
///
|
|
/// If the contents of the [`CStr`] are valid UTF-8 data, this
|
|
/// function will return the corresponding [`&str`] slice. Otherwise,
|
|
/// it will return an error with details of where UTF-8 validation failed.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::str::CStr;
|
|
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
|
|
/// assert_eq!(cstr.to_str(), Ok("foo"));
|
|
/// ```
|
|
#[inline]
|
|
pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
|
|
core::str::from_utf8(self.as_bytes())
|
|
}
|
|
|
|
/// Unsafely convert this [`CStr`] into a [`&str`], without checking for
|
|
/// valid UTF-8.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The contents must be valid UTF-8.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::c_str;
|
|
/// # use kernel::str::CStr;
|
|
/// let bar = c_str!("ツ");
|
|
/// // SAFETY: String literals are guaranteed to be valid UTF-8
|
|
/// // by the Rust compiler.
|
|
/// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
|
|
/// ```
|
|
#[inline]
|
|
pub unsafe fn as_str_unchecked(&self) -> &str {
|
|
// SAFETY: TODO.
|
|
unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
|
|
}
|
|
|
|
/// Convert this [`CStr`] into a [`CString`] by allocating memory and
|
|
/// copying over the string data.
|
|
pub fn to_cstring(&self) -> Result<CString, AllocError> {
|
|
CString::try_from(self)
|
|
}
|
|
|
|
/// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
|
|
///
|
|
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To return a new lowercased value without modifying the existing one, use
|
|
/// [`to_ascii_lowercase()`].
|
|
///
|
|
/// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
|
|
pub fn make_ascii_lowercase(&mut self) {
|
|
// INVARIANT: This doesn't introduce or remove NUL bytes in the C
|
|
// string.
|
|
self.0.make_ascii_lowercase();
|
|
}
|
|
|
|
/// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
|
|
///
|
|
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To return a new uppercased value without modifying the existing one, use
|
|
/// [`to_ascii_uppercase()`].
|
|
///
|
|
/// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
|
|
pub fn make_ascii_uppercase(&mut self) {
|
|
// INVARIANT: This doesn't introduce or remove NUL bytes in the C
|
|
// string.
|
|
self.0.make_ascii_uppercase();
|
|
}
|
|
|
|
/// Returns a copy of this [`CString`] where each character is mapped to its
|
|
/// ASCII lower case equivalent.
|
|
///
|
|
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To lowercase the value in-place, use [`make_ascii_lowercase`].
|
|
///
|
|
/// [`make_ascii_lowercase`]: str::make_ascii_lowercase
|
|
pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
|
|
let mut s = self.to_cstring()?;
|
|
|
|
s.make_ascii_lowercase();
|
|
|
|
Ok(s)
|
|
}
|
|
|
|
/// Returns a copy of this [`CString`] where each character is mapped to its
|
|
/// ASCII upper case equivalent.
|
|
///
|
|
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
|
|
/// but non-ASCII letters are unchanged.
|
|
///
|
|
/// To uppercase the value in-place, use [`make_ascii_uppercase`].
|
|
///
|
|
/// [`make_ascii_uppercase`]: str::make_ascii_uppercase
|
|
pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
|
|
let mut s = self.to_cstring()?;
|
|
|
|
s.make_ascii_uppercase();
|
|
|
|
Ok(s)
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for CStr {
|
|
/// Formats printable ASCII characters, escaping the rest.
|
|
///
|
|
/// ```
|
|
/// # use kernel::c_str;
|
|
/// # use kernel::fmt;
|
|
/// # use kernel::str::CStr;
|
|
/// # use kernel::str::CString;
|
|
/// let penguin = c_str!("🐧");
|
|
/// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
|
|
///
|
|
/// let ascii = c_str!("so \"cool\"");
|
|
/// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
|
|
/// ```
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
for &c in self.as_bytes() {
|
|
if (0x20..0x7f).contains(&c) {
|
|
// Printable character.
|
|
f.write_char(c as char)?;
|
|
} else {
|
|
write!(f, "\\x{:02x}", c)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for CStr {
|
|
/// Formats printable ASCII characters with a double quote on either end, escaping the rest.
|
|
///
|
|
/// ```
|
|
/// # use kernel::c_str;
|
|
/// # use kernel::fmt;
|
|
/// # use kernel::str::CStr;
|
|
/// # use kernel::str::CString;
|
|
/// let penguin = c_str!("🐧");
|
|
/// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
|
|
///
|
|
/// // Embedded double quotes are escaped.
|
|
/// let ascii = c_str!("so \"cool\"");
|
|
/// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
|
|
/// ```
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
f.write_str("\"")?;
|
|
for &c in self.as_bytes() {
|
|
match c {
|
|
// Printable characters.
|
|
b'\"' => f.write_str("\\\"")?,
|
|
0x20..=0x7e => f.write_char(c as char)?,
|
|
_ => write!(f, "\\x{:02x}", c)?,
|
|
}
|
|
}
|
|
f.write_str("\"")
|
|
}
|
|
}
|
|
|
|
impl AsRef<BStr> for CStr {
|
|
#[inline]
|
|
fn as_ref(&self) -> &BStr {
|
|
BStr::from_bytes(self.as_bytes())
|
|
}
|
|
}
|
|
|
|
impl Deref for CStr {
|
|
type Target = BStr;
|
|
|
|
#[inline]
|
|
fn deref(&self) -> &Self::Target {
|
|
self.as_ref()
|
|
}
|
|
}
|
|
|
|
impl Index<ops::RangeFrom<usize>> for CStr {
|
|
type Output = CStr;
|
|
|
|
#[inline]
|
|
fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
|
|
// Delegate bounds checking to slice.
|
|
// Assign to _ to mute clippy's unnecessary operation warning.
|
|
let _ = &self.as_bytes()[index.start..];
|
|
// SAFETY: We just checked the bounds.
|
|
unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
|
|
}
|
|
}
|
|
|
|
impl Index<ops::RangeFull> for CStr {
|
|
type Output = CStr;
|
|
|
|
#[inline]
|
|
fn index(&self, _index: ops::RangeFull) -> &Self::Output {
|
|
self
|
|
}
|
|
}
|
|
|
|
mod private {
|
|
use core::ops;
|
|
|
|
// Marker trait for index types that can be forward to `BStr`.
|
|
pub trait CStrIndex {}
|
|
|
|
impl CStrIndex for usize {}
|
|
impl CStrIndex for ops::Range<usize> {}
|
|
impl CStrIndex for ops::RangeInclusive<usize> {}
|
|
impl CStrIndex for ops::RangeToInclusive<usize> {}
|
|
}
|
|
|
|
impl<Idx> Index<Idx> for CStr
|
|
where
|
|
Idx: private::CStrIndex,
|
|
BStr: Index<Idx>,
|
|
{
|
|
type Output = <BStr as Index<Idx>>::Output;
|
|
|
|
#[inline]
|
|
fn index(&self, index: Idx) -> &Self::Output {
|
|
&self.as_ref()[index]
|
|
}
|
|
}
|
|
|
|
/// Creates a new [`CStr`] from a string literal.
|
|
///
|
|
/// The string literal should not contain any `NUL` bytes.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::c_str;
|
|
/// # use kernel::str::CStr;
|
|
/// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! c_str {
|
|
($str:expr) => {{
|
|
const S: &str = concat!($str, "\0");
|
|
const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
|
|
Ok(v) => v,
|
|
Err(_) => panic!("string contains interior NUL"),
|
|
};
|
|
C
|
|
}};
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
struct String(CString);
|
|
|
|
impl String {
|
|
fn from_fmt(args: fmt::Arguments<'_>) -> Self {
|
|
String(CString::try_from_fmt(args).unwrap())
|
|
}
|
|
}
|
|
|
|
impl Deref for String {
|
|
type Target = str;
|
|
|
|
fn deref(&self) -> &str {
|
|
self.0.to_str().unwrap()
|
|
}
|
|
}
|
|
|
|
macro_rules! format {
|
|
($($f:tt)*) => ({
|
|
&*String::from_fmt(kernel::fmt!($($f)*))
|
|
})
|
|
}
|
|
|
|
const ALL_ASCII_CHARS: &'static str =
|
|
"\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
|
|
\\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
|
|
!\"#$%&'()*+,-./0123456789:;<=>?@\
|
|
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
|
|
\\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
|
|
\\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
|
|
\\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
|
|
\\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
|
|
\\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
|
|
\\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
|
|
\\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
|
|
\\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
|
|
|
|
#[test]
|
|
fn test_cstr_to_str() {
|
|
let good_bytes = b"\xf0\x9f\xa6\x80\0";
|
|
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
|
|
let checked_str = checked_cstr.to_str().unwrap();
|
|
assert_eq!(checked_str, "🦀");
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_cstr_to_str_panic() {
|
|
let bad_bytes = b"\xc3\x28\0";
|
|
let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
|
|
checked_cstr.to_str().unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_cstr_as_str_unchecked() {
|
|
let good_bytes = b"\xf0\x9f\x90\xA7\0";
|
|
let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
|
|
let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
|
|
assert_eq!(unchecked_str, "🐧");
|
|
}
|
|
|
|
#[test]
|
|
fn test_cstr_display() {
|
|
let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
|
|
assert_eq!(format!("{}", hello_world), "hello, world!");
|
|
let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
|
|
assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
|
|
let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
|
|
assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
|
|
let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
|
|
assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
|
|
}
|
|
|
|
#[test]
|
|
fn test_cstr_display_all_bytes() {
|
|
let mut bytes: [u8; 256] = [0; 256];
|
|
// fill `bytes` with [1..=255] + [0]
|
|
for i in u8::MIN..=u8::MAX {
|
|
bytes[i as usize] = i.wrapping_add(1);
|
|
}
|
|
let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
|
|
assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cstr_debug() {
|
|
let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
|
|
assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
|
|
let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
|
|
assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
|
|
let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
|
|
assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
|
|
let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
|
|
assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
|
|
}
|
|
|
|
#[test]
|
|
fn test_bstr_display() {
|
|
let hello_world = BStr::from_bytes(b"hello, world!");
|
|
assert_eq!(format!("{}", hello_world), "hello, world!");
|
|
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
|
|
assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
|
|
let others = BStr::from_bytes(b"\x01");
|
|
assert_eq!(format!("{}", others), "\\x01");
|
|
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
|
|
assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
|
|
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
|
|
assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
|
|
}
|
|
|
|
#[test]
|
|
fn test_bstr_debug() {
|
|
let hello_world = BStr::from_bytes(b"hello, world!");
|
|
assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
|
|
let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
|
|
assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
|
|
let others = BStr::from_bytes(b"\x01");
|
|
assert_eq!(format!("{:?}", others), "\"\\x01\"");
|
|
let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
|
|
assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
|
|
let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
|
|
assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
|
|
}
|
|
}
|
|
|
|
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
|
|
///
|
|
/// It does not fail if callers write past the end of the buffer so that they can calculate the
|
|
/// size required to fit everything.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
|
|
/// is less than `end`.
|
|
pub(crate) struct RawFormatter {
|
|
// Use `usize` to use `saturating_*` functions.
|
|
beg: usize,
|
|
pos: usize,
|
|
end: usize,
|
|
}
|
|
|
|
impl RawFormatter {
|
|
/// Creates a new instance of [`RawFormatter`] with an empty buffer.
|
|
fn new() -> Self {
|
|
// INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
|
|
Self {
|
|
beg: 0,
|
|
pos: 0,
|
|
end: 0,
|
|
}
|
|
}
|
|
|
|
/// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
|
|
/// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
|
|
pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
|
|
// INVARIANT: The safety requirements guarantee the type invariants.
|
|
Self {
|
|
beg: pos as _,
|
|
pos: pos as _,
|
|
end: end as _,
|
|
}
|
|
}
|
|
|
|
/// Creates a new instance of [`RawFormatter`] with the given buffer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
|
|
/// for the lifetime of the returned [`RawFormatter`].
|
|
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
|
|
let pos = buf as usize;
|
|
// INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
|
|
// guarantees that the memory region is valid for writes.
|
|
Self {
|
|
pos,
|
|
beg: pos,
|
|
end: pos.saturating_add(len),
|
|
}
|
|
}
|
|
|
|
/// Returns the current insert position.
|
|
///
|
|
/// N.B. It may point to invalid memory.
|
|
pub(crate) fn pos(&self) -> *mut u8 {
|
|
self.pos as _
|
|
}
|
|
|
|
/// Returns the number of bytes written to the formatter.
|
|
pub(crate) fn bytes_written(&self) -> usize {
|
|
self.pos - self.beg
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for RawFormatter {
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
// `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
|
|
// don't want it to wrap around to 0.
|
|
let pos_new = self.pos.saturating_add(s.len());
|
|
|
|
// Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
|
|
let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
|
|
|
|
if len_to_copy > 0 {
|
|
// SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
|
|
// yet, so it is valid for write per the type invariants.
|
|
unsafe {
|
|
core::ptr::copy_nonoverlapping(
|
|
s.as_bytes().as_ptr(),
|
|
self.pos as *mut u8,
|
|
len_to_copy,
|
|
)
|
|
};
|
|
}
|
|
|
|
self.pos = pos_new;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Allows formatting of [`fmt::Arguments`] into a raw buffer.
|
|
///
|
|
/// Fails if callers attempt to write more than will fit in the buffer.
|
|
pub(crate) struct Formatter(RawFormatter);
|
|
|
|
impl Formatter {
|
|
/// Creates a new instance of [`Formatter`] with the given buffer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
|
|
/// for the lifetime of the returned [`Formatter`].
|
|
pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
|
|
// SAFETY: The safety requirements of this function satisfy those of the callee.
|
|
Self(unsafe { RawFormatter::from_buffer(buf, len) })
|
|
}
|
|
}
|
|
|
|
impl Deref for Formatter {
|
|
type Target = RawFormatter;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl fmt::Write for Formatter {
|
|
fn write_str(&mut self, s: &str) -> fmt::Result {
|
|
self.0.write_str(s)?;
|
|
|
|
// Fail the request if we go past the end of the buffer.
|
|
if self.0.pos > self.0.end {
|
|
Err(fmt::Error)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
|
|
///
|
|
/// Used for interoperability with kernel APIs that take C strings.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use kernel::{str::CString, fmt};
|
|
///
|
|
/// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
|
|
///
|
|
/// let tmp = "testing";
|
|
/// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
|
|
/// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
|
|
///
|
|
/// // This fails because it has an embedded `NUL` byte.
|
|
/// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
|
|
/// assert_eq!(s.is_ok(), false);
|
|
/// ```
|
|
pub struct CString {
|
|
buf: KVec<u8>,
|
|
}
|
|
|
|
impl CString {
|
|
/// Creates an instance of [`CString`] from the given formatted arguments.
|
|
pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
|
|
// Calculate the size needed (formatted string plus `NUL` terminator).
|
|
let mut f = RawFormatter::new();
|
|
f.write_fmt(args)?;
|
|
f.write_str("\0")?;
|
|
let size = f.bytes_written();
|
|
|
|
// Allocate a vector with the required number of bytes, and write to it.
|
|
let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
|
|
// SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
|
|
let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
|
|
f.write_fmt(args)?;
|
|
f.write_str("\0")?;
|
|
|
|
// SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
|
|
// `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
|
|
unsafe { buf.set_len(f.bytes_written()) };
|
|
|
|
// Check that there are no `NUL` bytes before the end.
|
|
// SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
|
|
// (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
|
|
// so `f.bytes_written() - 1` doesn't underflow.
|
|
let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
|
|
if !ptr.is_null() {
|
|
return Err(EINVAL);
|
|
}
|
|
|
|
// INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
|
|
// exist in the buffer.
|
|
Ok(Self { buf })
|
|
}
|
|
}
|
|
|
|
impl Deref for CString {
|
|
type Target = CStr;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
// SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
|
|
// other `NUL` bytes exist.
|
|
unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
|
|
}
|
|
}
|
|
|
|
impl DerefMut for CString {
|
|
fn deref_mut(&mut self) -> &mut Self::Target {
|
|
// SAFETY: A `CString` is always NUL-terminated and contains no other
|
|
// NUL bytes.
|
|
unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
|
|
}
|
|
}
|
|
|
|
impl<'a> TryFrom<&'a CStr> for CString {
|
|
type Error = AllocError;
|
|
|
|
fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
|
|
let mut buf = KVec::new();
|
|
|
|
buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
|
|
|
|
// INVARIANT: The `CStr` and `CString` types have the same invariants for
|
|
// the string data, and we copied it over without changes.
|
|
Ok(CString { buf })
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for CString {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Debug::fmt(&**self, f)
|
|
}
|
|
}
|
|
|
|
/// A convenience alias for [`core::format_args`].
|
|
#[macro_export]
|
|
macro_rules! fmt {
|
|
($($f:tt)*) => ( core::format_args!($($f)*) )
|
|
}
|