mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 13:53:24 +00:00
fbb1d4b381
I'm doing some thread necromancy of https://lore.kernel.org/lkml/202007081624.82FA0CC1EA@keescook/ x86, arm64, and arm32 adjusted their READ_IMPLIES_EXEC logic to better align with the safer defaults and the interactions with other mappings, which I illustrated with this comment on x86: /* * An executable for which elf_read_implies_exec() returns TRUE will * have the READ_IMPLIES_EXEC personality flag set automatically. * * The decision process for determining the results are: * * CPU: | lacks NX* | has NX, ia32 | has NX, x86_64 | * ELF: | | | | * ---------------------|------------|------------------|----------------| * missing PT_GNU_STACK | exec-all | exec-all | exec-none | * PT_GNU_STACK == RWX | exec-stack | exec-stack | exec-stack | * PT_GNU_STACK == RW | exec-none | exec-none | exec-none | * * exec-all : all PROT_READ user mappings are executable, except when * backed by files on a noexec-filesystem. * exec-none : only PROT_EXEC user mappings are executable. * exec-stack: only the stack and PROT_EXEC user mappings are * executable. * * *this column has no architectural effect: NX markings are ignored by * hardware, but may have behavioral effects when "wants X" collides with * "cannot be X" constraints in memory permission flags, as in * https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com * */ For MIPS, the "lacks NX" above is the "!cpu_has_rixi" check. On x86, we decided that the READ_IMPLIES_EXEC flag needed to reflect the expectations, not the architectural behavior due to bad interactions as noted above, as always returning "1" on non-NX hardware breaks some mappings. The other part of the issue is "what does the MIPS toolchain do for PT_GNU_STACK?" The answer seems to be "by default, include PT_GNU_STACK, but mark it executable" (likely due to concerns over non-NX hardware): $ mipsel-linux-gnu-gcc -o hello_world hello_world.c $ llvm-readelf -lW hellow_world | grep GNU_STACK GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x10 Given that older hardware doesn't support non-executable memory, it seems safe to make the "PT_GNU_STACK is absent" logic mean "assume non-executable", but this might break very old software running on modern MIPS. This situation matches the ia32-on-x86_64 logic x86 uses (which assumes needing READ_IMPLIES_EXEC in that situation). But modern toolchains on modern MIPS hardware should follow a safer default (assume NX stack). A follow-up to this change would be to switch the MIPS toolchain to emit a non-executable PT_GNU_STACK, as this seems to be unneeded. Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: Xuefeng Li <lixuefeng@loongson.cn> Cc: Juxin Gao <gaojuxin@loongson.cn> Cc: linux-mips@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
338 lines
9.3 KiB
C
338 lines
9.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2014 Imagination Technologies
|
|
* Author: Paul Burton <paul.burton@mips.com>
|
|
*/
|
|
|
|
#include <linux/binfmts.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/cpu-features.h>
|
|
#include <asm/cpu-info.h>
|
|
|
|
#ifdef CONFIG_MIPS_FP_SUPPORT
|
|
|
|
/* Whether to accept legacy-NaN and 2008-NaN user binaries. */
|
|
bool mips_use_nan_legacy;
|
|
bool mips_use_nan_2008;
|
|
|
|
/* FPU modes */
|
|
enum {
|
|
FP_FRE,
|
|
FP_FR0,
|
|
FP_FR1,
|
|
};
|
|
|
|
/**
|
|
* struct mode_req - ABI FPU mode requirements
|
|
* @single: The program being loaded needs an FPU but it will only issue
|
|
* single precision instructions meaning that it can execute in
|
|
* either FR0 or FR1.
|
|
* @soft: The soft(-float) requirement means that the program being
|
|
* loaded needs has no FPU dependency at all (i.e. it has no
|
|
* FPU instructions).
|
|
* @fr1: The program being loaded depends on FPU being in FR=1 mode.
|
|
* @frdefault: The program being loaded depends on the default FPU mode.
|
|
* That is FR0 for O32 and FR1 for N32/N64.
|
|
* @fre: The program being loaded depends on FPU with FRE=1. This mode is
|
|
* a bridge which uses FR=1 whilst still being able to maintain
|
|
* full compatibility with pre-existing code using the O32 FP32
|
|
* ABI.
|
|
*
|
|
* More information about the FP ABIs can be found here:
|
|
*
|
|
* https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
|
|
*
|
|
*/
|
|
|
|
struct mode_req {
|
|
bool single;
|
|
bool soft;
|
|
bool fr1;
|
|
bool frdefault;
|
|
bool fre;
|
|
};
|
|
|
|
static const struct mode_req fpu_reqs[] = {
|
|
[MIPS_ABI_FP_ANY] = { true, true, true, true, true },
|
|
[MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true },
|
|
[MIPS_ABI_FP_SINGLE] = { true, false, false, false, false },
|
|
[MIPS_ABI_FP_SOFT] = { false, true, false, false, false },
|
|
[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
|
|
[MIPS_ABI_FP_XX] = { false, false, true, true, true },
|
|
[MIPS_ABI_FP_64] = { false, false, true, false, false },
|
|
[MIPS_ABI_FP_64A] = { false, false, true, false, true }
|
|
};
|
|
|
|
/*
|
|
* Mode requirements when .MIPS.abiflags is not present in the ELF.
|
|
* Not present means that everything is acceptable except FR1.
|
|
*/
|
|
static struct mode_req none_req = { true, true, false, true, true };
|
|
|
|
int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
|
|
bool is_interp, struct arch_elf_state *state)
|
|
{
|
|
union {
|
|
struct elf32_hdr e32;
|
|
struct elf64_hdr e64;
|
|
} *ehdr = _ehdr;
|
|
struct elf32_phdr *phdr32 = _phdr;
|
|
struct elf64_phdr *phdr64 = _phdr;
|
|
struct mips_elf_abiflags_v0 abiflags;
|
|
bool elf32;
|
|
u32 flags;
|
|
int ret;
|
|
loff_t pos;
|
|
|
|
elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
|
|
flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
|
|
|
|
/* Let's see if this is an O32 ELF */
|
|
if (elf32) {
|
|
if (flags & EF_MIPS_FP64) {
|
|
/*
|
|
* Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
|
|
* later if needed
|
|
*/
|
|
if (is_interp)
|
|
state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
|
|
else
|
|
state->fp_abi = MIPS_ABI_FP_OLD_64;
|
|
}
|
|
if (phdr32->p_type != PT_MIPS_ABIFLAGS)
|
|
return 0;
|
|
|
|
if (phdr32->p_filesz < sizeof(abiflags))
|
|
return -EINVAL;
|
|
pos = phdr32->p_offset;
|
|
} else {
|
|
if (phdr64->p_type != PT_MIPS_ABIFLAGS)
|
|
return 0;
|
|
if (phdr64->p_filesz < sizeof(abiflags))
|
|
return -EINVAL;
|
|
pos = phdr64->p_offset;
|
|
}
|
|
|
|
ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret != sizeof(abiflags))
|
|
return -EIO;
|
|
|
|
/* Record the required FP ABIs for use by mips_check_elf */
|
|
if (is_interp)
|
|
state->interp_fp_abi = abiflags.fp_abi;
|
|
else
|
|
state->fp_abi = abiflags.fp_abi;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
|
|
struct arch_elf_state *state)
|
|
{
|
|
union {
|
|
struct elf32_hdr e32;
|
|
struct elf64_hdr e64;
|
|
} *ehdr = _ehdr;
|
|
union {
|
|
struct elf32_hdr e32;
|
|
struct elf64_hdr e64;
|
|
} *iehdr = _interp_ehdr;
|
|
struct mode_req prog_req, interp_req;
|
|
int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
|
|
bool elf32;
|
|
u32 flags;
|
|
|
|
elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
|
|
flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
|
|
|
|
/*
|
|
* Determine the NaN personality, reject the binary if not allowed.
|
|
* Also ensure that any interpreter matches the executable.
|
|
*/
|
|
if (flags & EF_MIPS_NAN2008) {
|
|
if (mips_use_nan_2008)
|
|
state->nan_2008 = 1;
|
|
else
|
|
return -ENOEXEC;
|
|
} else {
|
|
if (mips_use_nan_legacy)
|
|
state->nan_2008 = 0;
|
|
else
|
|
return -ENOEXEC;
|
|
}
|
|
if (has_interpreter) {
|
|
bool ielf32;
|
|
u32 iflags;
|
|
|
|
ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
|
|
iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
|
|
|
|
if ((flags ^ iflags) & EF_MIPS_NAN2008)
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
|
|
return 0;
|
|
|
|
fp_abi = state->fp_abi;
|
|
|
|
if (has_interpreter) {
|
|
interp_fp_abi = state->interp_fp_abi;
|
|
|
|
abi0 = min(fp_abi, interp_fp_abi);
|
|
abi1 = max(fp_abi, interp_fp_abi);
|
|
} else {
|
|
abi0 = abi1 = fp_abi;
|
|
}
|
|
|
|
if (elf32 && !(flags & EF_MIPS_ABI2)) {
|
|
/* Default to a mode capable of running code expecting FR=0 */
|
|
state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
|
|
|
|
/* Allow all ABIs we know about */
|
|
max_abi = MIPS_ABI_FP_64A;
|
|
} else {
|
|
/* MIPS64 code always uses FR=1, thus the default is easy */
|
|
state->overall_fp_mode = FP_FR1;
|
|
|
|
/* Disallow access to the various FPXX & FP64 ABIs */
|
|
max_abi = MIPS_ABI_FP_SOFT;
|
|
}
|
|
|
|
if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
|
|
(abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
|
|
return -ELIBBAD;
|
|
|
|
/* It's time to determine the FPU mode requirements */
|
|
prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
|
|
interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
|
|
|
|
/*
|
|
* Check whether the program's and interp's ABIs have a matching FPU
|
|
* mode requirement.
|
|
*/
|
|
prog_req.single = interp_req.single && prog_req.single;
|
|
prog_req.soft = interp_req.soft && prog_req.soft;
|
|
prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
|
|
prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
|
|
prog_req.fre = interp_req.fre && prog_req.fre;
|
|
|
|
/*
|
|
* Determine the desired FPU mode
|
|
*
|
|
* Decision making:
|
|
*
|
|
* - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
|
|
* means that we have a combination of program and interpreter
|
|
* that inherently require the hybrid FP mode.
|
|
* - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
|
|
* fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
|
|
* instructions so we don't care about the mode. We will simply use
|
|
* the one preferred by the hardware. In fpxx case, that ABI can
|
|
* handle both FR=1 and FR=0, so, again, we simply choose the one
|
|
* preferred by the hardware. Next, if we only use single-precision
|
|
* FPU instructions, and the default ABI FPU mode is not good
|
|
* (ie single + any ABI combination), we set again the FPU mode to the
|
|
* one is preferred by the hardware. Next, if we know that the code
|
|
* will only use single-precision instructions, shown by single being
|
|
* true but frdefault being false, then we again set the FPU mode to
|
|
* the one that is preferred by the hardware.
|
|
* - We want FP_FR1 if that's the only matching mode and the default one
|
|
* is not good.
|
|
* - Return with -ELIBADD if we can't find a matching FPU mode.
|
|
*/
|
|
if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
|
|
state->overall_fp_mode = FP_FRE;
|
|
else if ((prog_req.fr1 && prog_req.frdefault) ||
|
|
(prog_req.single && !prog_req.frdefault))
|
|
/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
|
|
state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
|
|
cpu_has_mips_r2_r6) ?
|
|
FP_FR1 : FP_FR0;
|
|
else if (prog_req.fr1)
|
|
state->overall_fp_mode = FP_FR1;
|
|
else if (!prog_req.fre && !prog_req.frdefault &&
|
|
!prog_req.fr1 && !prog_req.single && !prog_req.soft)
|
|
return -ELIBBAD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void set_thread_fp_mode(int hybrid, int regs32)
|
|
{
|
|
if (hybrid)
|
|
set_thread_flag(TIF_HYBRID_FPREGS);
|
|
else
|
|
clear_thread_flag(TIF_HYBRID_FPREGS);
|
|
if (regs32)
|
|
set_thread_flag(TIF_32BIT_FPREGS);
|
|
else
|
|
clear_thread_flag(TIF_32BIT_FPREGS);
|
|
}
|
|
|
|
void mips_set_personality_fp(struct arch_elf_state *state)
|
|
{
|
|
/*
|
|
* This function is only ever called for O32 ELFs so we should
|
|
* not be worried about N32/N64 binaries.
|
|
*/
|
|
|
|
if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
|
|
return;
|
|
|
|
switch (state->overall_fp_mode) {
|
|
case FP_FRE:
|
|
set_thread_fp_mode(1, 0);
|
|
break;
|
|
case FP_FR0:
|
|
set_thread_fp_mode(0, 1);
|
|
break;
|
|
case FP_FR1:
|
|
set_thread_fp_mode(0, 0);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
|
|
* in FCSR according to the ELF NaN personality.
|
|
*/
|
|
void mips_set_personality_nan(struct arch_elf_state *state)
|
|
{
|
|
struct cpuinfo_mips *c = &boot_cpu_data;
|
|
struct task_struct *t = current;
|
|
|
|
t->thread.fpu.fcr31 = c->fpu_csr31;
|
|
switch (state->nan_2008) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
|
|
t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
|
|
if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
|
|
t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_MIPS_FP_SUPPORT */
|
|
|
|
int mips_elf_read_implies_exec(void *elf_ex, int exstack)
|
|
{
|
|
/*
|
|
* Set READ_IMPLIES_EXEC only on non-NX systems that
|
|
* do not request a specific state via PT_GNU_STACK.
|
|
*/
|
|
return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
|
|
}
|
|
EXPORT_SYMBOL(mips_elf_read_implies_exec);
|