mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-10 07:10:27 +00:00
08e50cf071
It seems that tipc_crypto_key_revoke() could be be invoked by wokequeue tipc_crypto_work_rx() under process context and timer/rx callback under softirq context, thus the lock acquisition on &tx->lock seems better use spin_lock_bh() to prevent possible deadlock. This flaw was found by an experimental static analysis tool I am developing for irq-related deadlock. tipc_crypto_work_rx() <workqueue> --> tipc_crypto_key_distr() --> tipc_bcast_xmit() --> tipc_bcbase_xmit() --> tipc_bearer_bc_xmit() --> tipc_crypto_xmit() --> tipc_ehdr_build() --> tipc_crypto_key_revoke() --> spin_lock(&tx->lock) <timer interrupt> --> tipc_disc_timeout() --> tipc_bearer_xmit_skb() --> tipc_crypto_xmit() --> tipc_ehdr_build() --> tipc_crypto_key_revoke() --> spin_lock(&tx->lock) <deadlock here> Signed-off-by: Chengfeng Ye <dg573847474@gmail.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Acked-by: Jon Maloy <jmaloy@redhat.com> Fixes: fc1b6d6de220 ("tipc: introduce TIPC encryption & authentication") Link: https://lore.kernel.org/r/20230927181414.59928-1-dg573847474@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2476 lines
66 KiB
C
2476 lines
66 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
|
|
*
|
|
* Copyright (c) 2019, Ericsson AB
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the names of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <crypto/aead.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/rng.h>
|
|
#include "crypto.h"
|
|
#include "msg.h"
|
|
#include "bcast.h"
|
|
|
|
#define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */
|
|
#define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */
|
|
#define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
|
|
#define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
|
|
|
|
#define TIPC_MAX_TFMS_DEF 10
|
|
#define TIPC_MAX_TFMS_LIM 1000
|
|
|
|
#define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */
|
|
|
|
/*
|
|
* TIPC Key ids
|
|
*/
|
|
enum {
|
|
KEY_MASTER = 0,
|
|
KEY_MIN = KEY_MASTER,
|
|
KEY_1 = 1,
|
|
KEY_2,
|
|
KEY_3,
|
|
KEY_MAX = KEY_3,
|
|
};
|
|
|
|
/*
|
|
* TIPC Crypto statistics
|
|
*/
|
|
enum {
|
|
STAT_OK,
|
|
STAT_NOK,
|
|
STAT_ASYNC,
|
|
STAT_ASYNC_OK,
|
|
STAT_ASYNC_NOK,
|
|
STAT_BADKEYS, /* tx only */
|
|
STAT_BADMSGS = STAT_BADKEYS, /* rx only */
|
|
STAT_NOKEYS,
|
|
STAT_SWITCHES,
|
|
|
|
MAX_STATS,
|
|
};
|
|
|
|
/* TIPC crypto statistics' header */
|
|
static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
|
|
"async_nok", "badmsgs", "nokeys",
|
|
"switches"};
|
|
|
|
/* Max TFMs number per key */
|
|
int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
|
|
/* Key exchange switch, default: on */
|
|
int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
|
|
|
|
/*
|
|
* struct tipc_key - TIPC keys' status indicator
|
|
*
|
|
* 7 6 5 4 3 2 1 0
|
|
* +-----+-----+-----+-----+-----+-----+-----+-----+
|
|
* key: | (reserved)|passive idx| active idx|pending idx|
|
|
* +-----+-----+-----+-----+-----+-----+-----+-----+
|
|
*/
|
|
struct tipc_key {
|
|
#define KEY_BITS (2)
|
|
#define KEY_MASK ((1 << KEY_BITS) - 1)
|
|
union {
|
|
struct {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
u8 pending:2,
|
|
active:2,
|
|
passive:2, /* rx only */
|
|
reserved:2;
|
|
#elif defined(__BIG_ENDIAN_BITFIELD)
|
|
u8 reserved:2,
|
|
passive:2, /* rx only */
|
|
active:2,
|
|
pending:2;
|
|
#else
|
|
#error "Please fix <asm/byteorder.h>"
|
|
#endif
|
|
} __packed;
|
|
u8 keys;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* struct tipc_tfm - TIPC TFM structure to form a list of TFMs
|
|
* @tfm: cipher handle/key
|
|
* @list: linked list of TFMs
|
|
*/
|
|
struct tipc_tfm {
|
|
struct crypto_aead *tfm;
|
|
struct list_head list;
|
|
};
|
|
|
|
/**
|
|
* struct tipc_aead - TIPC AEAD key structure
|
|
* @tfm_entry: per-cpu pointer to one entry in TFM list
|
|
* @crypto: TIPC crypto owns this key
|
|
* @cloned: reference to the source key in case cloning
|
|
* @users: the number of the key users (TX/RX)
|
|
* @salt: the key's SALT value
|
|
* @authsize: authentication tag size (max = 16)
|
|
* @mode: crypto mode is applied to the key
|
|
* @hint: a hint for user key
|
|
* @rcu: struct rcu_head
|
|
* @key: the aead key
|
|
* @gen: the key's generation
|
|
* @seqno: the key seqno (cluster scope)
|
|
* @refcnt: the key reference counter
|
|
*/
|
|
struct tipc_aead {
|
|
#define TIPC_AEAD_HINT_LEN (5)
|
|
struct tipc_tfm * __percpu *tfm_entry;
|
|
struct tipc_crypto *crypto;
|
|
struct tipc_aead *cloned;
|
|
atomic_t users;
|
|
u32 salt;
|
|
u8 authsize;
|
|
u8 mode;
|
|
char hint[2 * TIPC_AEAD_HINT_LEN + 1];
|
|
struct rcu_head rcu;
|
|
struct tipc_aead_key *key;
|
|
u16 gen;
|
|
|
|
atomic64_t seqno ____cacheline_aligned;
|
|
refcount_t refcnt ____cacheline_aligned;
|
|
|
|
} ____cacheline_aligned;
|
|
|
|
/**
|
|
* struct tipc_crypto_stats - TIPC Crypto statistics
|
|
* @stat: array of crypto statistics
|
|
*/
|
|
struct tipc_crypto_stats {
|
|
unsigned int stat[MAX_STATS];
|
|
};
|
|
|
|
/**
|
|
* struct tipc_crypto - TIPC TX/RX crypto structure
|
|
* @net: struct net
|
|
* @node: TIPC node (RX)
|
|
* @aead: array of pointers to AEAD keys for encryption/decryption
|
|
* @peer_rx_active: replicated peer RX active key index
|
|
* @key_gen: TX/RX key generation
|
|
* @key: the key states
|
|
* @skey_mode: session key's mode
|
|
* @skey: received session key
|
|
* @wq: common workqueue on TX crypto
|
|
* @work: delayed work sched for TX/RX
|
|
* @key_distr: key distributing state
|
|
* @rekeying_intv: rekeying interval (in minutes)
|
|
* @stats: the crypto statistics
|
|
* @name: the crypto name
|
|
* @sndnxt: the per-peer sndnxt (TX)
|
|
* @timer1: general timer 1 (jiffies)
|
|
* @timer2: general timer 2 (jiffies)
|
|
* @working: the crypto is working or not
|
|
* @key_master: flag indicates if master key exists
|
|
* @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
|
|
* @nokey: no key indication
|
|
* @flags: combined flags field
|
|
* @lock: tipc_key lock
|
|
*/
|
|
struct tipc_crypto {
|
|
struct net *net;
|
|
struct tipc_node *node;
|
|
struct tipc_aead __rcu *aead[KEY_MAX + 1];
|
|
atomic_t peer_rx_active;
|
|
u16 key_gen;
|
|
struct tipc_key key;
|
|
u8 skey_mode;
|
|
struct tipc_aead_key *skey;
|
|
struct workqueue_struct *wq;
|
|
struct delayed_work work;
|
|
#define KEY_DISTR_SCHED 1
|
|
#define KEY_DISTR_COMPL 2
|
|
atomic_t key_distr;
|
|
u32 rekeying_intv;
|
|
|
|
struct tipc_crypto_stats __percpu *stats;
|
|
char name[48];
|
|
|
|
atomic64_t sndnxt ____cacheline_aligned;
|
|
unsigned long timer1;
|
|
unsigned long timer2;
|
|
union {
|
|
struct {
|
|
u8 working:1;
|
|
u8 key_master:1;
|
|
u8 legacy_user:1;
|
|
u8 nokey: 1;
|
|
};
|
|
u8 flags;
|
|
};
|
|
spinlock_t lock; /* crypto lock */
|
|
|
|
} ____cacheline_aligned;
|
|
|
|
/* struct tipc_crypto_tx_ctx - TX context for callbacks */
|
|
struct tipc_crypto_tx_ctx {
|
|
struct tipc_aead *aead;
|
|
struct tipc_bearer *bearer;
|
|
struct tipc_media_addr dst;
|
|
};
|
|
|
|
/* struct tipc_crypto_rx_ctx - RX context for callbacks */
|
|
struct tipc_crypto_rx_ctx {
|
|
struct tipc_aead *aead;
|
|
struct tipc_bearer *bearer;
|
|
};
|
|
|
|
static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
|
|
static inline void tipc_aead_put(struct tipc_aead *aead);
|
|
static void tipc_aead_free(struct rcu_head *rp);
|
|
static int tipc_aead_users(struct tipc_aead __rcu *aead);
|
|
static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
|
|
static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
|
|
static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
|
|
static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
|
|
static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
|
|
u8 mode);
|
|
static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
|
|
static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
|
|
unsigned int crypto_ctx_size,
|
|
u8 **iv, struct aead_request **req,
|
|
struct scatterlist **sg, int nsg);
|
|
static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
|
|
struct tipc_bearer *b,
|
|
struct tipc_media_addr *dst,
|
|
struct tipc_node *__dnode);
|
|
static void tipc_aead_encrypt_done(void *data, int err);
|
|
static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
|
|
struct sk_buff *skb, struct tipc_bearer *b);
|
|
static void tipc_aead_decrypt_done(void *data, int err);
|
|
static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
|
|
static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
|
|
u8 tx_key, struct sk_buff *skb,
|
|
struct tipc_crypto *__rx);
|
|
static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
|
|
u8 new_passive,
|
|
u8 new_active,
|
|
u8 new_pending);
|
|
static int tipc_crypto_key_attach(struct tipc_crypto *c,
|
|
struct tipc_aead *aead, u8 pos,
|
|
bool master_key);
|
|
static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
|
|
static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
|
|
struct tipc_crypto *rx,
|
|
struct sk_buff *skb,
|
|
u8 tx_key);
|
|
static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
|
|
static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
|
|
static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
|
|
struct tipc_bearer *b,
|
|
struct tipc_media_addr *dst,
|
|
struct tipc_node *__dnode, u8 type);
|
|
static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
|
|
struct tipc_bearer *b,
|
|
struct sk_buff **skb, int err);
|
|
static void tipc_crypto_do_cmd(struct net *net, int cmd);
|
|
static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
|
|
static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
|
|
char *buf);
|
|
static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
|
|
u16 gen, u8 mode, u32 dnode);
|
|
static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
|
|
static void tipc_crypto_work_tx(struct work_struct *work);
|
|
static void tipc_crypto_work_rx(struct work_struct *work);
|
|
static int tipc_aead_key_generate(struct tipc_aead_key *skey);
|
|
|
|
#define is_tx(crypto) (!(crypto)->node)
|
|
#define is_rx(crypto) (!is_tx(crypto))
|
|
|
|
#define key_next(cur) ((cur) % KEY_MAX + 1)
|
|
|
|
#define tipc_aead_rcu_ptr(rcu_ptr, lock) \
|
|
rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
|
|
|
|
#define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
|
|
do { \
|
|
struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \
|
|
lockdep_is_held(lock)); \
|
|
rcu_assign_pointer((rcu_ptr), (ptr)); \
|
|
tipc_aead_put(__tmp); \
|
|
} while (0)
|
|
|
|
#define tipc_crypto_key_detach(rcu_ptr, lock) \
|
|
tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
|
|
|
|
/**
|
|
* tipc_aead_key_validate - Validate a AEAD user key
|
|
* @ukey: pointer to user key data
|
|
* @info: netlink info pointer
|
|
*/
|
|
int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
|
|
{
|
|
int keylen;
|
|
|
|
/* Check if algorithm exists */
|
|
if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
|
|
GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Currently, we only support the "gcm(aes)" cipher algorithm */
|
|
if (strcmp(ukey->alg_name, "gcm(aes)")) {
|
|
GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* Check if key size is correct */
|
|
keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
|
|
if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
|
|
keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
|
|
keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
|
|
GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_key_generate - Generate new session key
|
|
* @skey: input/output key with new content
|
|
*
|
|
* Return: 0 in case of success, otherwise < 0
|
|
*/
|
|
static int tipc_aead_key_generate(struct tipc_aead_key *skey)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Fill the key's content with a random value via RNG cipher */
|
|
rc = crypto_get_default_rng();
|
|
if (likely(!rc)) {
|
|
rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
|
|
skey->keylen);
|
|
crypto_put_default_rng();
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
|
|
{
|
|
struct tipc_aead *tmp;
|
|
|
|
rcu_read_lock();
|
|
tmp = rcu_dereference(aead);
|
|
if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
|
|
tmp = NULL;
|
|
rcu_read_unlock();
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static inline void tipc_aead_put(struct tipc_aead *aead)
|
|
{
|
|
if (aead && refcount_dec_and_test(&aead->refcnt))
|
|
call_rcu(&aead->rcu, tipc_aead_free);
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_free - Release AEAD key incl. all the TFMs in the list
|
|
* @rp: rcu head pointer
|
|
*/
|
|
static void tipc_aead_free(struct rcu_head *rp)
|
|
{
|
|
struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
|
|
struct tipc_tfm *tfm_entry, *head, *tmp;
|
|
|
|
if (aead->cloned) {
|
|
tipc_aead_put(aead->cloned);
|
|
} else {
|
|
head = *get_cpu_ptr(aead->tfm_entry);
|
|
put_cpu_ptr(aead->tfm_entry);
|
|
list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
|
|
crypto_free_aead(tfm_entry->tfm);
|
|
list_del(&tfm_entry->list);
|
|
kfree(tfm_entry);
|
|
}
|
|
/* Free the head */
|
|
crypto_free_aead(head->tfm);
|
|
list_del(&head->list);
|
|
kfree(head);
|
|
}
|
|
free_percpu(aead->tfm_entry);
|
|
kfree_sensitive(aead->key);
|
|
kfree(aead);
|
|
}
|
|
|
|
static int tipc_aead_users(struct tipc_aead __rcu *aead)
|
|
{
|
|
struct tipc_aead *tmp;
|
|
int users = 0;
|
|
|
|
rcu_read_lock();
|
|
tmp = rcu_dereference(aead);
|
|
if (tmp)
|
|
users = atomic_read(&tmp->users);
|
|
rcu_read_unlock();
|
|
|
|
return users;
|
|
}
|
|
|
|
static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
|
|
{
|
|
struct tipc_aead *tmp;
|
|
|
|
rcu_read_lock();
|
|
tmp = rcu_dereference(aead);
|
|
if (tmp)
|
|
atomic_add_unless(&tmp->users, 1, lim);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
|
|
{
|
|
struct tipc_aead *tmp;
|
|
|
|
rcu_read_lock();
|
|
tmp = rcu_dereference(aead);
|
|
if (tmp)
|
|
atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
|
|
{
|
|
struct tipc_aead *tmp;
|
|
int cur;
|
|
|
|
rcu_read_lock();
|
|
tmp = rcu_dereference(aead);
|
|
if (tmp) {
|
|
do {
|
|
cur = atomic_read(&tmp->users);
|
|
if (cur == val)
|
|
break;
|
|
} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
|
|
* @aead: the AEAD key pointer
|
|
*/
|
|
static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
|
|
{
|
|
struct tipc_tfm **tfm_entry;
|
|
struct crypto_aead *tfm;
|
|
|
|
tfm_entry = get_cpu_ptr(aead->tfm_entry);
|
|
*tfm_entry = list_next_entry(*tfm_entry, list);
|
|
tfm = (*tfm_entry)->tfm;
|
|
put_cpu_ptr(tfm_entry);
|
|
|
|
return tfm;
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_init - Initiate TIPC AEAD
|
|
* @aead: returned new TIPC AEAD key handle pointer
|
|
* @ukey: pointer to user key data
|
|
* @mode: the key mode
|
|
*
|
|
* Allocate a (list of) new cipher transformation (TFM) with the specific user
|
|
* key data if valid. The number of the allocated TFMs can be set via the sysfs
|
|
* "net/tipc/max_tfms" first.
|
|
* Also, all the other AEAD data are also initialized.
|
|
*
|
|
* Return: 0 if the initiation is successful, otherwise: < 0
|
|
*/
|
|
static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
|
|
u8 mode)
|
|
{
|
|
struct tipc_tfm *tfm_entry, *head;
|
|
struct crypto_aead *tfm;
|
|
struct tipc_aead *tmp;
|
|
int keylen, err, cpu;
|
|
int tfm_cnt = 0;
|
|
|
|
if (unlikely(*aead))
|
|
return -EEXIST;
|
|
|
|
/* Allocate a new AEAD */
|
|
tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
|
|
if (unlikely(!tmp))
|
|
return -ENOMEM;
|
|
|
|
/* The key consists of two parts: [AES-KEY][SALT] */
|
|
keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
|
|
|
|
/* Allocate per-cpu TFM entry pointer */
|
|
tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
|
|
if (!tmp->tfm_entry) {
|
|
kfree_sensitive(tmp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Make a list of TFMs with the user key data */
|
|
do {
|
|
tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
err = PTR_ERR(tfm);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(!tfm_cnt &&
|
|
crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
|
|
crypto_free_aead(tfm);
|
|
err = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
|
|
err |= crypto_aead_setkey(tfm, ukey->key, keylen);
|
|
if (unlikely(err)) {
|
|
crypto_free_aead(tfm);
|
|
break;
|
|
}
|
|
|
|
tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
|
|
if (unlikely(!tfm_entry)) {
|
|
crypto_free_aead(tfm);
|
|
err = -ENOMEM;
|
|
break;
|
|
}
|
|
INIT_LIST_HEAD(&tfm_entry->list);
|
|
tfm_entry->tfm = tfm;
|
|
|
|
/* First entry? */
|
|
if (!tfm_cnt) {
|
|
head = tfm_entry;
|
|
for_each_possible_cpu(cpu) {
|
|
*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
|
|
}
|
|
} else {
|
|
list_add_tail(&tfm_entry->list, &head->list);
|
|
}
|
|
|
|
} while (++tfm_cnt < sysctl_tipc_max_tfms);
|
|
|
|
/* Not any TFM is allocated? */
|
|
if (!tfm_cnt) {
|
|
free_percpu(tmp->tfm_entry);
|
|
kfree_sensitive(tmp);
|
|
return err;
|
|
}
|
|
|
|
/* Form a hex string of some last bytes as the key's hint */
|
|
bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
|
|
TIPC_AEAD_HINT_LEN);
|
|
|
|
/* Initialize the other data */
|
|
tmp->mode = mode;
|
|
tmp->cloned = NULL;
|
|
tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
|
|
tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
|
|
if (!tmp->key) {
|
|
tipc_aead_free(&tmp->rcu);
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
|
|
atomic_set(&tmp->users, 0);
|
|
atomic64_set(&tmp->seqno, 0);
|
|
refcount_set(&tmp->refcnt, 1);
|
|
|
|
*aead = tmp;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_clone - Clone a TIPC AEAD key
|
|
* @dst: dest key for the cloning
|
|
* @src: source key to clone from
|
|
*
|
|
* Make a "copy" of the source AEAD key data to the dest, the TFMs list is
|
|
* common for the keys.
|
|
* A reference to the source is hold in the "cloned" pointer for the later
|
|
* freeing purposes.
|
|
*
|
|
* Note: this must be done in cluster-key mode only!
|
|
* Return: 0 in case of success, otherwise < 0
|
|
*/
|
|
static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
|
|
{
|
|
struct tipc_aead *aead;
|
|
int cpu;
|
|
|
|
if (!src)
|
|
return -ENOKEY;
|
|
|
|
if (src->mode != CLUSTER_KEY)
|
|
return -EINVAL;
|
|
|
|
if (unlikely(*dst))
|
|
return -EEXIST;
|
|
|
|
aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
|
|
if (unlikely(!aead))
|
|
return -ENOMEM;
|
|
|
|
aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
|
|
if (unlikely(!aead->tfm_entry)) {
|
|
kfree_sensitive(aead);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
*per_cpu_ptr(aead->tfm_entry, cpu) =
|
|
*per_cpu_ptr(src->tfm_entry, cpu);
|
|
}
|
|
|
|
memcpy(aead->hint, src->hint, sizeof(src->hint));
|
|
aead->mode = src->mode;
|
|
aead->salt = src->salt;
|
|
aead->authsize = src->authsize;
|
|
atomic_set(&aead->users, 0);
|
|
atomic64_set(&aead->seqno, 0);
|
|
refcount_set(&aead->refcnt, 1);
|
|
|
|
WARN_ON(!refcount_inc_not_zero(&src->refcnt));
|
|
aead->cloned = src;
|
|
|
|
*dst = aead;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_mem_alloc - Allocate memory for AEAD request operations
|
|
* @tfm: cipher handle to be registered with the request
|
|
* @crypto_ctx_size: size of crypto context for callback
|
|
* @iv: returned pointer to IV data
|
|
* @req: returned pointer to AEAD request data
|
|
* @sg: returned pointer to SG lists
|
|
* @nsg: number of SG lists to be allocated
|
|
*
|
|
* Allocate memory to store the crypto context data, AEAD request, IV and SG
|
|
* lists, the memory layout is as follows:
|
|
* crypto_ctx || iv || aead_req || sg[]
|
|
*
|
|
* Return: the pointer to the memory areas in case of success, otherwise NULL
|
|
*/
|
|
static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
|
|
unsigned int crypto_ctx_size,
|
|
u8 **iv, struct aead_request **req,
|
|
struct scatterlist **sg, int nsg)
|
|
{
|
|
unsigned int iv_size, req_size;
|
|
unsigned int len;
|
|
u8 *mem;
|
|
|
|
iv_size = crypto_aead_ivsize(tfm);
|
|
req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
|
|
|
|
len = crypto_ctx_size;
|
|
len += iv_size;
|
|
len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
|
|
len = ALIGN(len, crypto_tfm_ctx_alignment());
|
|
len += req_size;
|
|
len = ALIGN(len, __alignof__(struct scatterlist));
|
|
len += nsg * sizeof(**sg);
|
|
|
|
mem = kmalloc(len, GFP_ATOMIC);
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
|
|
crypto_aead_alignmask(tfm) + 1);
|
|
*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
|
|
crypto_tfm_ctx_alignment());
|
|
*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
|
|
__alignof__(struct scatterlist));
|
|
|
|
return (void *)mem;
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_encrypt - Encrypt a message
|
|
* @aead: TIPC AEAD key for the message encryption
|
|
* @skb: the input/output skb
|
|
* @b: TIPC bearer where the message will be delivered after the encryption
|
|
* @dst: the destination media address
|
|
* @__dnode: TIPC dest node if "known"
|
|
*
|
|
* Return:
|
|
* * 0 : if the encryption has completed
|
|
* * -EINPROGRESS/-EBUSY : if a callback will be performed
|
|
* * < 0 : the encryption has failed
|
|
*/
|
|
static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
|
|
struct tipc_bearer *b,
|
|
struct tipc_media_addr *dst,
|
|
struct tipc_node *__dnode)
|
|
{
|
|
struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
|
|
struct tipc_crypto_tx_ctx *tx_ctx;
|
|
struct aead_request *req;
|
|
struct sk_buff *trailer;
|
|
struct scatterlist *sg;
|
|
struct tipc_ehdr *ehdr;
|
|
int ehsz, len, tailen, nsg, rc;
|
|
void *ctx;
|
|
u32 salt;
|
|
u8 *iv;
|
|
|
|
/* Make sure message len at least 4-byte aligned */
|
|
len = ALIGN(skb->len, 4);
|
|
tailen = len - skb->len + aead->authsize;
|
|
|
|
/* Expand skb tail for authentication tag:
|
|
* As for simplicity, we'd have made sure skb having enough tailroom
|
|
* for authentication tag @skb allocation. Even when skb is nonlinear
|
|
* but there is no frag_list, it should be still fine!
|
|
* Otherwise, we must cow it to be a writable buffer with the tailroom.
|
|
*/
|
|
SKB_LINEAR_ASSERT(skb);
|
|
if (tailen > skb_tailroom(skb)) {
|
|
pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
|
|
skb_tailroom(skb), tailen);
|
|
}
|
|
|
|
nsg = skb_cow_data(skb, tailen, &trailer);
|
|
if (unlikely(nsg < 0)) {
|
|
pr_err("TX: skb_cow_data() returned %d\n", nsg);
|
|
return nsg;
|
|
}
|
|
|
|
pskb_put(skb, trailer, tailen);
|
|
|
|
/* Allocate memory for the AEAD operation */
|
|
ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
|
|
if (unlikely(!ctx))
|
|
return -ENOMEM;
|
|
TIPC_SKB_CB(skb)->crypto_ctx = ctx;
|
|
|
|
/* Map skb to the sg lists */
|
|
sg_init_table(sg, nsg);
|
|
rc = skb_to_sgvec(skb, sg, 0, skb->len);
|
|
if (unlikely(rc < 0)) {
|
|
pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
|
|
goto exit;
|
|
}
|
|
|
|
/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
|
|
* In case we're in cluster-key mode, SALT is varied by xor-ing with
|
|
* the source address (or w0 of id), otherwise with the dest address
|
|
* if dest is known.
|
|
*/
|
|
ehdr = (struct tipc_ehdr *)skb->data;
|
|
salt = aead->salt;
|
|
if (aead->mode == CLUSTER_KEY)
|
|
salt ^= __be32_to_cpu(ehdr->addr);
|
|
else if (__dnode)
|
|
salt ^= tipc_node_get_addr(__dnode);
|
|
memcpy(iv, &salt, 4);
|
|
memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
|
|
|
|
/* Prepare request */
|
|
ehsz = tipc_ehdr_size(ehdr);
|
|
aead_request_set_tfm(req, tfm);
|
|
aead_request_set_ad(req, ehsz);
|
|
aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
|
|
|
|
/* Set callback function & data */
|
|
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tipc_aead_encrypt_done, skb);
|
|
tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
|
|
tx_ctx->aead = aead;
|
|
tx_ctx->bearer = b;
|
|
memcpy(&tx_ctx->dst, dst, sizeof(*dst));
|
|
|
|
/* Hold bearer */
|
|
if (unlikely(!tipc_bearer_hold(b))) {
|
|
rc = -ENODEV;
|
|
goto exit;
|
|
}
|
|
|
|
/* Now, do encrypt */
|
|
rc = crypto_aead_encrypt(req);
|
|
if (rc == -EINPROGRESS || rc == -EBUSY)
|
|
return rc;
|
|
|
|
tipc_bearer_put(b);
|
|
|
|
exit:
|
|
kfree(ctx);
|
|
TIPC_SKB_CB(skb)->crypto_ctx = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static void tipc_aead_encrypt_done(void *data, int err)
|
|
{
|
|
struct sk_buff *skb = data;
|
|
struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
|
|
struct tipc_bearer *b = tx_ctx->bearer;
|
|
struct tipc_aead *aead = tx_ctx->aead;
|
|
struct tipc_crypto *tx = aead->crypto;
|
|
struct net *net = tx->net;
|
|
|
|
switch (err) {
|
|
case 0:
|
|
this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
|
|
rcu_read_lock();
|
|
if (likely(test_bit(0, &b->up)))
|
|
b->media->send_msg(net, skb, b, &tx_ctx->dst);
|
|
else
|
|
kfree_skb(skb);
|
|
rcu_read_unlock();
|
|
break;
|
|
case -EINPROGRESS:
|
|
return;
|
|
default:
|
|
this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
|
|
kfree_skb(skb);
|
|
break;
|
|
}
|
|
|
|
kfree(tx_ctx);
|
|
tipc_bearer_put(b);
|
|
tipc_aead_put(aead);
|
|
}
|
|
|
|
/**
|
|
* tipc_aead_decrypt - Decrypt an encrypted message
|
|
* @net: struct net
|
|
* @aead: TIPC AEAD for the message decryption
|
|
* @skb: the input/output skb
|
|
* @b: TIPC bearer where the message has been received
|
|
*
|
|
* Return:
|
|
* * 0 : if the decryption has completed
|
|
* * -EINPROGRESS/-EBUSY : if a callback will be performed
|
|
* * < 0 : the decryption has failed
|
|
*/
|
|
static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
|
|
struct sk_buff *skb, struct tipc_bearer *b)
|
|
{
|
|
struct tipc_crypto_rx_ctx *rx_ctx;
|
|
struct aead_request *req;
|
|
struct crypto_aead *tfm;
|
|
struct sk_buff *unused;
|
|
struct scatterlist *sg;
|
|
struct tipc_ehdr *ehdr;
|
|
int ehsz, nsg, rc;
|
|
void *ctx;
|
|
u32 salt;
|
|
u8 *iv;
|
|
|
|
if (unlikely(!aead))
|
|
return -ENOKEY;
|
|
|
|
nsg = skb_cow_data(skb, 0, &unused);
|
|
if (unlikely(nsg < 0)) {
|
|
pr_err("RX: skb_cow_data() returned %d\n", nsg);
|
|
return nsg;
|
|
}
|
|
|
|
/* Allocate memory for the AEAD operation */
|
|
tfm = tipc_aead_tfm_next(aead);
|
|
ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
|
|
if (unlikely(!ctx))
|
|
return -ENOMEM;
|
|
TIPC_SKB_CB(skb)->crypto_ctx = ctx;
|
|
|
|
/* Map skb to the sg lists */
|
|
sg_init_table(sg, nsg);
|
|
rc = skb_to_sgvec(skb, sg, 0, skb->len);
|
|
if (unlikely(rc < 0)) {
|
|
pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
|
|
goto exit;
|
|
}
|
|
|
|
/* Reconstruct IV: */
|
|
ehdr = (struct tipc_ehdr *)skb->data;
|
|
salt = aead->salt;
|
|
if (aead->mode == CLUSTER_KEY)
|
|
salt ^= __be32_to_cpu(ehdr->addr);
|
|
else if (ehdr->destined)
|
|
salt ^= tipc_own_addr(net);
|
|
memcpy(iv, &salt, 4);
|
|
memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
|
|
|
|
/* Prepare request */
|
|
ehsz = tipc_ehdr_size(ehdr);
|
|
aead_request_set_tfm(req, tfm);
|
|
aead_request_set_ad(req, ehsz);
|
|
aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
|
|
|
|
/* Set callback function & data */
|
|
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
tipc_aead_decrypt_done, skb);
|
|
rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
|
|
rx_ctx->aead = aead;
|
|
rx_ctx->bearer = b;
|
|
|
|
/* Hold bearer */
|
|
if (unlikely(!tipc_bearer_hold(b))) {
|
|
rc = -ENODEV;
|
|
goto exit;
|
|
}
|
|
|
|
/* Now, do decrypt */
|
|
rc = crypto_aead_decrypt(req);
|
|
if (rc == -EINPROGRESS || rc == -EBUSY)
|
|
return rc;
|
|
|
|
tipc_bearer_put(b);
|
|
|
|
exit:
|
|
kfree(ctx);
|
|
TIPC_SKB_CB(skb)->crypto_ctx = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static void tipc_aead_decrypt_done(void *data, int err)
|
|
{
|
|
struct sk_buff *skb = data;
|
|
struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
|
|
struct tipc_bearer *b = rx_ctx->bearer;
|
|
struct tipc_aead *aead = rx_ctx->aead;
|
|
struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
|
|
struct net *net = aead->crypto->net;
|
|
|
|
switch (err) {
|
|
case 0:
|
|
this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
|
|
break;
|
|
case -EINPROGRESS:
|
|
return;
|
|
default:
|
|
this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
|
|
break;
|
|
}
|
|
|
|
kfree(rx_ctx);
|
|
tipc_crypto_rcv_complete(net, aead, b, &skb, err);
|
|
if (likely(skb)) {
|
|
if (likely(test_bit(0, &b->up)))
|
|
tipc_rcv(net, skb, b);
|
|
else
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
tipc_bearer_put(b);
|
|
}
|
|
|
|
static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
|
|
{
|
|
return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
|
|
}
|
|
|
|
/**
|
|
* tipc_ehdr_validate - Validate an encryption message
|
|
* @skb: the message buffer
|
|
*
|
|
* Return: "true" if this is a valid encryption message, otherwise "false"
|
|
*/
|
|
bool tipc_ehdr_validate(struct sk_buff *skb)
|
|
{
|
|
struct tipc_ehdr *ehdr;
|
|
int ehsz;
|
|
|
|
if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
|
|
return false;
|
|
|
|
ehdr = (struct tipc_ehdr *)skb->data;
|
|
if (unlikely(ehdr->version != TIPC_EVERSION))
|
|
return false;
|
|
ehsz = tipc_ehdr_size(ehdr);
|
|
if (unlikely(!pskb_may_pull(skb, ehsz)))
|
|
return false;
|
|
if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* tipc_ehdr_build - Build TIPC encryption message header
|
|
* @net: struct net
|
|
* @aead: TX AEAD key to be used for the message encryption
|
|
* @tx_key: key id used for the message encryption
|
|
* @skb: input/output message skb
|
|
* @__rx: RX crypto handle if dest is "known"
|
|
*
|
|
* Return: the header size if the building is successful, otherwise < 0
|
|
*/
|
|
static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
|
|
u8 tx_key, struct sk_buff *skb,
|
|
struct tipc_crypto *__rx)
|
|
{
|
|
struct tipc_msg *hdr = buf_msg(skb);
|
|
struct tipc_ehdr *ehdr;
|
|
u32 user = msg_user(hdr);
|
|
u64 seqno;
|
|
int ehsz;
|
|
|
|
/* Make room for encryption header */
|
|
ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
|
|
WARN_ON(skb_headroom(skb) < ehsz);
|
|
ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
|
|
|
|
/* Obtain a seqno first:
|
|
* Use the key seqno (= cluster wise) if dest is unknown or we're in
|
|
* cluster key mode, otherwise it's better for a per-peer seqno!
|
|
*/
|
|
if (!__rx || aead->mode == CLUSTER_KEY)
|
|
seqno = atomic64_inc_return(&aead->seqno);
|
|
else
|
|
seqno = atomic64_inc_return(&__rx->sndnxt);
|
|
|
|
/* Revoke the key if seqno is wrapped around */
|
|
if (unlikely(!seqno))
|
|
return tipc_crypto_key_revoke(net, tx_key);
|
|
|
|
/* Word 1-2 */
|
|
ehdr->seqno = cpu_to_be64(seqno);
|
|
|
|
/* Words 0, 3- */
|
|
ehdr->version = TIPC_EVERSION;
|
|
ehdr->user = 0;
|
|
ehdr->keepalive = 0;
|
|
ehdr->tx_key = tx_key;
|
|
ehdr->destined = (__rx) ? 1 : 0;
|
|
ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
|
|
ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
|
|
ehdr->master_key = aead->crypto->key_master;
|
|
ehdr->reserved_1 = 0;
|
|
ehdr->reserved_2 = 0;
|
|
|
|
switch (user) {
|
|
case LINK_CONFIG:
|
|
ehdr->user = LINK_CONFIG;
|
|
memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
|
|
break;
|
|
default:
|
|
if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
|
|
ehdr->user = LINK_PROTOCOL;
|
|
ehdr->keepalive = msg_is_keepalive(hdr);
|
|
}
|
|
ehdr->addr = hdr->hdr[3];
|
|
break;
|
|
}
|
|
|
|
return ehsz;
|
|
}
|
|
|
|
static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
|
|
u8 new_passive,
|
|
u8 new_active,
|
|
u8 new_pending)
|
|
{
|
|
struct tipc_key old = c->key;
|
|
char buf[32];
|
|
|
|
c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
|
|
((new_active & KEY_MASK) << (KEY_BITS)) |
|
|
((new_pending & KEY_MASK));
|
|
|
|
pr_debug("%s: key changing %s ::%pS\n", c->name,
|
|
tipc_key_change_dump(old, c->key, buf),
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_init - Initiate a new user / AEAD key
|
|
* @c: TIPC crypto to which new key is attached
|
|
* @ukey: the user key
|
|
* @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
|
|
* @master_key: specify this is a cluster master key
|
|
*
|
|
* A new TIPC AEAD key will be allocated and initiated with the specified user
|
|
* key, then attached to the TIPC crypto.
|
|
*
|
|
* Return: new key id in case of success, otherwise: < 0
|
|
*/
|
|
int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
|
|
u8 mode, bool master_key)
|
|
{
|
|
struct tipc_aead *aead = NULL;
|
|
int rc = 0;
|
|
|
|
/* Initiate with the new user key */
|
|
rc = tipc_aead_init(&aead, ukey, mode);
|
|
|
|
/* Attach it to the crypto */
|
|
if (likely(!rc)) {
|
|
rc = tipc_crypto_key_attach(c, aead, 0, master_key);
|
|
if (rc < 0)
|
|
tipc_aead_free(&aead->rcu);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
|
|
* @c: TIPC crypto to which the new AEAD key is attached
|
|
* @aead: the new AEAD key pointer
|
|
* @pos: desired slot in the crypto key array, = 0 if any!
|
|
* @master_key: specify this is a cluster master key
|
|
*
|
|
* Return: new key id in case of success, otherwise: -EBUSY
|
|
*/
|
|
static int tipc_crypto_key_attach(struct tipc_crypto *c,
|
|
struct tipc_aead *aead, u8 pos,
|
|
bool master_key)
|
|
{
|
|
struct tipc_key key;
|
|
int rc = -EBUSY;
|
|
u8 new_key;
|
|
|
|
spin_lock_bh(&c->lock);
|
|
key = c->key;
|
|
if (master_key) {
|
|
new_key = KEY_MASTER;
|
|
goto attach;
|
|
}
|
|
if (key.active && key.passive)
|
|
goto exit;
|
|
if (key.pending) {
|
|
if (tipc_aead_users(c->aead[key.pending]) > 0)
|
|
goto exit;
|
|
/* if (pos): ok with replacing, will be aligned when needed */
|
|
/* Replace it */
|
|
new_key = key.pending;
|
|
} else {
|
|
if (pos) {
|
|
if (key.active && pos != key_next(key.active)) {
|
|
key.passive = pos;
|
|
new_key = pos;
|
|
goto attach;
|
|
} else if (!key.active && !key.passive) {
|
|
key.pending = pos;
|
|
new_key = pos;
|
|
goto attach;
|
|
}
|
|
}
|
|
key.pending = key_next(key.active ?: key.passive);
|
|
new_key = key.pending;
|
|
}
|
|
|
|
attach:
|
|
aead->crypto = c;
|
|
aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
|
|
tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
|
|
if (likely(c->key.keys != key.keys))
|
|
tipc_crypto_key_set_state(c, key.passive, key.active,
|
|
key.pending);
|
|
c->working = 1;
|
|
c->nokey = 0;
|
|
c->key_master |= master_key;
|
|
rc = new_key;
|
|
|
|
exit:
|
|
spin_unlock_bh(&c->lock);
|
|
return rc;
|
|
}
|
|
|
|
void tipc_crypto_key_flush(struct tipc_crypto *c)
|
|
{
|
|
struct tipc_crypto *tx, *rx;
|
|
int k;
|
|
|
|
spin_lock_bh(&c->lock);
|
|
if (is_rx(c)) {
|
|
/* Try to cancel pending work */
|
|
rx = c;
|
|
tx = tipc_net(rx->net)->crypto_tx;
|
|
if (cancel_delayed_work(&rx->work)) {
|
|
kfree(rx->skey);
|
|
rx->skey = NULL;
|
|
atomic_xchg(&rx->key_distr, 0);
|
|
tipc_node_put(rx->node);
|
|
}
|
|
/* RX stopping => decrease TX key users if any */
|
|
k = atomic_xchg(&rx->peer_rx_active, 0);
|
|
if (k) {
|
|
tipc_aead_users_dec(tx->aead[k], 0);
|
|
/* Mark the point TX key users changed */
|
|
tx->timer1 = jiffies;
|
|
}
|
|
}
|
|
|
|
c->flags = 0;
|
|
tipc_crypto_key_set_state(c, 0, 0, 0);
|
|
for (k = KEY_MIN; k <= KEY_MAX; k++)
|
|
tipc_crypto_key_detach(c->aead[k], &c->lock);
|
|
atomic64_set(&c->sndnxt, 0);
|
|
spin_unlock_bh(&c->lock);
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_try_align - Align RX keys if possible
|
|
* @rx: RX crypto handle
|
|
* @new_pending: new pending slot if aligned (= TX key from peer)
|
|
*
|
|
* Peer has used an unknown key slot, this only happens when peer has left and
|
|
* rejoned, or we are newcomer.
|
|
* That means, there must be no active key but a pending key at unaligned slot.
|
|
* If so, we try to move the pending key to the new slot.
|
|
* Note: A potential passive key can exist, it will be shifted correspondingly!
|
|
*
|
|
* Return: "true" if key is successfully aligned, otherwise "false"
|
|
*/
|
|
static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
|
|
{
|
|
struct tipc_aead *tmp1, *tmp2 = NULL;
|
|
struct tipc_key key;
|
|
bool aligned = false;
|
|
u8 new_passive = 0;
|
|
int x;
|
|
|
|
spin_lock(&rx->lock);
|
|
key = rx->key;
|
|
if (key.pending == new_pending) {
|
|
aligned = true;
|
|
goto exit;
|
|
}
|
|
if (key.active)
|
|
goto exit;
|
|
if (!key.pending)
|
|
goto exit;
|
|
if (tipc_aead_users(rx->aead[key.pending]) > 0)
|
|
goto exit;
|
|
|
|
/* Try to "isolate" this pending key first */
|
|
tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
|
|
if (!refcount_dec_if_one(&tmp1->refcnt))
|
|
goto exit;
|
|
rcu_assign_pointer(rx->aead[key.pending], NULL);
|
|
|
|
/* Move passive key if any */
|
|
if (key.passive) {
|
|
tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
|
|
x = (key.passive - key.pending + new_pending) % KEY_MAX;
|
|
new_passive = (x <= 0) ? x + KEY_MAX : x;
|
|
}
|
|
|
|
/* Re-allocate the key(s) */
|
|
tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
|
|
rcu_assign_pointer(rx->aead[new_pending], tmp1);
|
|
if (new_passive)
|
|
rcu_assign_pointer(rx->aead[new_passive], tmp2);
|
|
refcount_set(&tmp1->refcnt, 1);
|
|
aligned = true;
|
|
pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
|
|
new_pending);
|
|
|
|
exit:
|
|
spin_unlock(&rx->lock);
|
|
return aligned;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_pick_tx - Pick one TX key for message decryption
|
|
* @tx: TX crypto handle
|
|
* @rx: RX crypto handle (can be NULL)
|
|
* @skb: the message skb which will be decrypted later
|
|
* @tx_key: peer TX key id
|
|
*
|
|
* This function looks up the existing TX keys and pick one which is suitable
|
|
* for the message decryption, that must be a cluster key and not used before
|
|
* on the same message (i.e. recursive).
|
|
*
|
|
* Return: the TX AEAD key handle in case of success, otherwise NULL
|
|
*/
|
|
static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
|
|
struct tipc_crypto *rx,
|
|
struct sk_buff *skb,
|
|
u8 tx_key)
|
|
{
|
|
struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
|
|
struct tipc_aead *aead = NULL;
|
|
struct tipc_key key = tx->key;
|
|
u8 k, i = 0;
|
|
|
|
/* Initialize data if not yet */
|
|
if (!skb_cb->tx_clone_deferred) {
|
|
skb_cb->tx_clone_deferred = 1;
|
|
memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
|
|
}
|
|
|
|
skb_cb->tx_clone_ctx.rx = rx;
|
|
if (++skb_cb->tx_clone_ctx.recurs > 2)
|
|
return NULL;
|
|
|
|
/* Pick one TX key */
|
|
spin_lock(&tx->lock);
|
|
if (tx_key == KEY_MASTER) {
|
|
aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
|
|
goto done;
|
|
}
|
|
do {
|
|
k = (i == 0) ? key.pending :
|
|
((i == 1) ? key.active : key.passive);
|
|
if (!k)
|
|
continue;
|
|
aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
|
|
if (!aead)
|
|
continue;
|
|
if (aead->mode != CLUSTER_KEY ||
|
|
aead == skb_cb->tx_clone_ctx.last) {
|
|
aead = NULL;
|
|
continue;
|
|
}
|
|
/* Ok, found one cluster key */
|
|
skb_cb->tx_clone_ctx.last = aead;
|
|
WARN_ON(skb->next);
|
|
skb->next = skb_clone(skb, GFP_ATOMIC);
|
|
if (unlikely(!skb->next))
|
|
pr_warn("Failed to clone skb for next round if any\n");
|
|
break;
|
|
} while (++i < 3);
|
|
|
|
done:
|
|
if (likely(aead))
|
|
WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
|
|
spin_unlock(&tx->lock);
|
|
|
|
return aead;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_synch: Synch own key data according to peer key status
|
|
* @rx: RX crypto handle
|
|
* @skb: TIPCv2 message buffer (incl. the ehdr from peer)
|
|
*
|
|
* This function updates the peer node related data as the peer RX active key
|
|
* has changed, so the number of TX keys' users on this node are increased and
|
|
* decreased correspondingly.
|
|
*
|
|
* It also considers if peer has no key, then we need to make own master key
|
|
* (if any) taking over i.e. starting grace period and also trigger key
|
|
* distributing process.
|
|
*
|
|
* The "per-peer" sndnxt is also reset when the peer key has switched.
|
|
*/
|
|
static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
|
|
{
|
|
struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
|
|
struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
|
|
struct tipc_msg *hdr = buf_msg(skb);
|
|
u32 self = tipc_own_addr(rx->net);
|
|
u8 cur, new;
|
|
unsigned long delay;
|
|
|
|
/* Update RX 'key_master' flag according to peer, also mark "legacy" if
|
|
* a peer has no master key.
|
|
*/
|
|
rx->key_master = ehdr->master_key;
|
|
if (!rx->key_master)
|
|
tx->legacy_user = 1;
|
|
|
|
/* For later cases, apply only if message is destined to this node */
|
|
if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
|
|
return;
|
|
|
|
/* Case 1: Peer has no keys, let's make master key take over */
|
|
if (ehdr->rx_nokey) {
|
|
/* Set or extend grace period */
|
|
tx->timer2 = jiffies;
|
|
/* Schedule key distributing for the peer if not yet */
|
|
if (tx->key.keys &&
|
|
!atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
|
|
get_random_bytes(&delay, 2);
|
|
delay %= 5;
|
|
delay = msecs_to_jiffies(500 * ++delay);
|
|
if (queue_delayed_work(tx->wq, &rx->work, delay))
|
|
tipc_node_get(rx->node);
|
|
}
|
|
} else {
|
|
/* Cancel a pending key distributing if any */
|
|
atomic_xchg(&rx->key_distr, 0);
|
|
}
|
|
|
|
/* Case 2: Peer RX active key has changed, let's update own TX users */
|
|
cur = atomic_read(&rx->peer_rx_active);
|
|
new = ehdr->rx_key_active;
|
|
if (tx->key.keys &&
|
|
cur != new &&
|
|
atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
|
|
if (new)
|
|
tipc_aead_users_inc(tx->aead[new], INT_MAX);
|
|
if (cur)
|
|
tipc_aead_users_dec(tx->aead[cur], 0);
|
|
|
|
atomic64_set(&rx->sndnxt, 0);
|
|
/* Mark the point TX key users changed */
|
|
tx->timer1 = jiffies;
|
|
|
|
pr_debug("%s: key users changed %d-- %d++, peer %s\n",
|
|
tx->name, cur, new, rx->name);
|
|
}
|
|
}
|
|
|
|
static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
|
|
{
|
|
struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
|
|
struct tipc_key key;
|
|
|
|
spin_lock_bh(&tx->lock);
|
|
key = tx->key;
|
|
WARN_ON(!key.active || tx_key != key.active);
|
|
|
|
/* Free the active key */
|
|
tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
|
|
tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
|
|
spin_unlock_bh(&tx->lock);
|
|
|
|
pr_warn("%s: key is revoked\n", tx->name);
|
|
return -EKEYREVOKED;
|
|
}
|
|
|
|
int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
|
|
struct tipc_node *node)
|
|
{
|
|
struct tipc_crypto *c;
|
|
|
|
if (*crypto)
|
|
return -EEXIST;
|
|
|
|
/* Allocate crypto */
|
|
c = kzalloc(sizeof(*c), GFP_ATOMIC);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate workqueue on TX */
|
|
if (!node) {
|
|
c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
|
|
if (!c->wq) {
|
|
kfree(c);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Allocate statistic structure */
|
|
c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
|
|
if (!c->stats) {
|
|
if (c->wq)
|
|
destroy_workqueue(c->wq);
|
|
kfree_sensitive(c);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
c->flags = 0;
|
|
c->net = net;
|
|
c->node = node;
|
|
get_random_bytes(&c->key_gen, 2);
|
|
tipc_crypto_key_set_state(c, 0, 0, 0);
|
|
atomic_set(&c->key_distr, 0);
|
|
atomic_set(&c->peer_rx_active, 0);
|
|
atomic64_set(&c->sndnxt, 0);
|
|
c->timer1 = jiffies;
|
|
c->timer2 = jiffies;
|
|
c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
|
|
spin_lock_init(&c->lock);
|
|
scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
|
|
(is_rx(c)) ? tipc_node_get_id_str(c->node) :
|
|
tipc_own_id_string(c->net));
|
|
|
|
if (is_rx(c))
|
|
INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
|
|
else
|
|
INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
|
|
|
|
*crypto = c;
|
|
return 0;
|
|
}
|
|
|
|
void tipc_crypto_stop(struct tipc_crypto **crypto)
|
|
{
|
|
struct tipc_crypto *c = *crypto;
|
|
u8 k;
|
|
|
|
if (!c)
|
|
return;
|
|
|
|
/* Flush any queued works & destroy wq */
|
|
if (is_tx(c)) {
|
|
c->rekeying_intv = 0;
|
|
cancel_delayed_work_sync(&c->work);
|
|
destroy_workqueue(c->wq);
|
|
}
|
|
|
|
/* Release AEAD keys */
|
|
rcu_read_lock();
|
|
for (k = KEY_MIN; k <= KEY_MAX; k++)
|
|
tipc_aead_put(rcu_dereference(c->aead[k]));
|
|
rcu_read_unlock();
|
|
pr_debug("%s: has been stopped\n", c->name);
|
|
|
|
/* Free this crypto statistics */
|
|
free_percpu(c->stats);
|
|
|
|
*crypto = NULL;
|
|
kfree_sensitive(c);
|
|
}
|
|
|
|
void tipc_crypto_timeout(struct tipc_crypto *rx)
|
|
{
|
|
struct tipc_net *tn = tipc_net(rx->net);
|
|
struct tipc_crypto *tx = tn->crypto_tx;
|
|
struct tipc_key key;
|
|
int cmd;
|
|
|
|
/* TX pending: taking all users & stable -> active */
|
|
spin_lock(&tx->lock);
|
|
key = tx->key;
|
|
if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
|
|
goto s1;
|
|
if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
|
|
goto s1;
|
|
if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
|
|
goto s1;
|
|
|
|
tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
|
|
if (key.active)
|
|
tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
|
|
this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
|
|
pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
|
|
|
|
s1:
|
|
spin_unlock(&tx->lock);
|
|
|
|
/* RX pending: having user -> active */
|
|
spin_lock(&rx->lock);
|
|
key = rx->key;
|
|
if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
|
|
goto s2;
|
|
|
|
if (key.active)
|
|
key.passive = key.active;
|
|
key.active = key.pending;
|
|
rx->timer2 = jiffies;
|
|
tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
|
|
this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
|
|
pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
|
|
goto s5;
|
|
|
|
s2:
|
|
/* RX pending: not working -> remove */
|
|
if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
|
|
goto s3;
|
|
|
|
tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
|
|
tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
|
|
pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
|
|
goto s5;
|
|
|
|
s3:
|
|
/* RX active: timed out or no user -> pending */
|
|
if (!key.active)
|
|
goto s4;
|
|
if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
|
|
tipc_aead_users(rx->aead[key.active]) > 0)
|
|
goto s4;
|
|
|
|
if (key.pending)
|
|
key.passive = key.active;
|
|
else
|
|
key.pending = key.active;
|
|
rx->timer2 = jiffies;
|
|
tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
|
|
tipc_aead_users_set(rx->aead[key.pending], 0);
|
|
pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
|
|
goto s5;
|
|
|
|
s4:
|
|
/* RX passive: outdated or not working -> free */
|
|
if (!key.passive)
|
|
goto s5;
|
|
if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
|
|
tipc_aead_users(rx->aead[key.passive]) > -10)
|
|
goto s5;
|
|
|
|
tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
|
|
tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
|
|
pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
|
|
|
|
s5:
|
|
spin_unlock(&rx->lock);
|
|
|
|
/* Relax it here, the flag will be set again if it really is, but only
|
|
* when we are not in grace period for safety!
|
|
*/
|
|
if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
|
|
tx->legacy_user = 0;
|
|
|
|
/* Limit max_tfms & do debug commands if needed */
|
|
if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
|
|
return;
|
|
|
|
cmd = sysctl_tipc_max_tfms;
|
|
sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
|
|
tipc_crypto_do_cmd(rx->net, cmd);
|
|
}
|
|
|
|
static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
|
|
struct tipc_bearer *b,
|
|
struct tipc_media_addr *dst,
|
|
struct tipc_node *__dnode, u8 type)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = skb_clone(_skb, GFP_ATOMIC);
|
|
if (skb) {
|
|
TIPC_SKB_CB(skb)->xmit_type = type;
|
|
tipc_crypto_xmit(net, &skb, b, dst, __dnode);
|
|
if (skb)
|
|
b->media->send_msg(net, skb, b, dst);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_xmit - Build & encrypt TIPC message for xmit
|
|
* @net: struct net
|
|
* @skb: input/output message skb pointer
|
|
* @b: bearer used for xmit later
|
|
* @dst: destination media address
|
|
* @__dnode: destination node for reference if any
|
|
*
|
|
* First, build an encryption message header on the top of the message, then
|
|
* encrypt the original TIPC message by using the pending, master or active
|
|
* key with this preference order.
|
|
* If the encryption is successful, the encrypted skb is returned directly or
|
|
* via the callback.
|
|
* Otherwise, the skb is freed!
|
|
*
|
|
* Return:
|
|
* * 0 : the encryption has succeeded (or no encryption)
|
|
* * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
|
|
* * -ENOKEK : the encryption has failed due to no key
|
|
* * -EKEYREVOKED : the encryption has failed due to key revoked
|
|
* * -ENOMEM : the encryption has failed due to no memory
|
|
* * < 0 : the encryption has failed due to other reasons
|
|
*/
|
|
int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
|
|
struct tipc_bearer *b, struct tipc_media_addr *dst,
|
|
struct tipc_node *__dnode)
|
|
{
|
|
struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
|
|
struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
|
|
struct tipc_crypto_stats __percpu *stats = tx->stats;
|
|
struct tipc_msg *hdr = buf_msg(*skb);
|
|
struct tipc_key key = tx->key;
|
|
struct tipc_aead *aead = NULL;
|
|
u32 user = msg_user(hdr);
|
|
u32 type = msg_type(hdr);
|
|
int rc = -ENOKEY;
|
|
u8 tx_key = 0;
|
|
|
|
/* No encryption? */
|
|
if (!tx->working)
|
|
return 0;
|
|
|
|
/* Pending key if peer has active on it or probing time */
|
|
if (unlikely(key.pending)) {
|
|
tx_key = key.pending;
|
|
if (!tx->key_master && !key.active)
|
|
goto encrypt;
|
|
if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
|
|
goto encrypt;
|
|
if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
|
|
pr_debug("%s: probing for key[%d]\n", tx->name,
|
|
key.pending);
|
|
goto encrypt;
|
|
}
|
|
if (user == LINK_CONFIG || user == LINK_PROTOCOL)
|
|
tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
|
|
SKB_PROBING);
|
|
}
|
|
|
|
/* Master key if this is a *vital* message or in grace period */
|
|
if (tx->key_master) {
|
|
tx_key = KEY_MASTER;
|
|
if (!key.active)
|
|
goto encrypt;
|
|
if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
|
|
pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
|
|
user, type);
|
|
goto encrypt;
|
|
}
|
|
if (user == LINK_CONFIG ||
|
|
(user == LINK_PROTOCOL && type == RESET_MSG) ||
|
|
(user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
|
|
time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
|
|
if (__rx && __rx->key_master &&
|
|
!atomic_read(&__rx->peer_rx_active))
|
|
goto encrypt;
|
|
if (!__rx) {
|
|
if (likely(!tx->legacy_user))
|
|
goto encrypt;
|
|
tipc_crypto_clone_msg(net, *skb, b, dst,
|
|
__dnode, SKB_GRACING);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Else, use the active key if any */
|
|
if (likely(key.active)) {
|
|
tx_key = key.active;
|
|
goto encrypt;
|
|
}
|
|
|
|
goto exit;
|
|
|
|
encrypt:
|
|
aead = tipc_aead_get(tx->aead[tx_key]);
|
|
if (unlikely(!aead))
|
|
goto exit;
|
|
rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
|
|
if (likely(rc > 0))
|
|
rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
|
|
|
|
exit:
|
|
switch (rc) {
|
|
case 0:
|
|
this_cpu_inc(stats->stat[STAT_OK]);
|
|
break;
|
|
case -EINPROGRESS:
|
|
case -EBUSY:
|
|
this_cpu_inc(stats->stat[STAT_ASYNC]);
|
|
*skb = NULL;
|
|
return rc;
|
|
default:
|
|
this_cpu_inc(stats->stat[STAT_NOK]);
|
|
if (rc == -ENOKEY)
|
|
this_cpu_inc(stats->stat[STAT_NOKEYS]);
|
|
else if (rc == -EKEYREVOKED)
|
|
this_cpu_inc(stats->stat[STAT_BADKEYS]);
|
|
kfree_skb(*skb);
|
|
*skb = NULL;
|
|
break;
|
|
}
|
|
|
|
tipc_aead_put(aead);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
|
|
* @net: struct net
|
|
* @rx: RX crypto handle
|
|
* @skb: input/output message skb pointer
|
|
* @b: bearer where the message has been received
|
|
*
|
|
* If the decryption is successful, the decrypted skb is returned directly or
|
|
* as the callback, the encryption header and auth tag will be trimed out
|
|
* before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
|
|
* Otherwise, the skb will be freed!
|
|
* Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
|
|
* cluster key(s) can be taken for decryption (- recursive).
|
|
*
|
|
* Return:
|
|
* * 0 : the decryption has successfully completed
|
|
* * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
|
|
* * -ENOKEY : the decryption has failed due to no key
|
|
* * -EBADMSG : the decryption has failed due to bad message
|
|
* * -ENOMEM : the decryption has failed due to no memory
|
|
* * < 0 : the decryption has failed due to other reasons
|
|
*/
|
|
int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
|
|
struct sk_buff **skb, struct tipc_bearer *b)
|
|
{
|
|
struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
|
|
struct tipc_crypto_stats __percpu *stats;
|
|
struct tipc_aead *aead = NULL;
|
|
struct tipc_key key;
|
|
int rc = -ENOKEY;
|
|
u8 tx_key, n;
|
|
|
|
tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
|
|
|
|
/* New peer?
|
|
* Let's try with TX key (i.e. cluster mode) & verify the skb first!
|
|
*/
|
|
if (unlikely(!rx || tx_key == KEY_MASTER))
|
|
goto pick_tx;
|
|
|
|
/* Pick RX key according to TX key if any */
|
|
key = rx->key;
|
|
if (tx_key == key.active || tx_key == key.pending ||
|
|
tx_key == key.passive)
|
|
goto decrypt;
|
|
|
|
/* Unknown key, let's try to align RX key(s) */
|
|
if (tipc_crypto_key_try_align(rx, tx_key))
|
|
goto decrypt;
|
|
|
|
pick_tx:
|
|
/* No key suitable? Try to pick one from TX... */
|
|
aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
|
|
if (aead)
|
|
goto decrypt;
|
|
goto exit;
|
|
|
|
decrypt:
|
|
rcu_read_lock();
|
|
if (!aead)
|
|
aead = tipc_aead_get(rx->aead[tx_key]);
|
|
rc = tipc_aead_decrypt(net, aead, *skb, b);
|
|
rcu_read_unlock();
|
|
|
|
exit:
|
|
stats = ((rx) ?: tx)->stats;
|
|
switch (rc) {
|
|
case 0:
|
|
this_cpu_inc(stats->stat[STAT_OK]);
|
|
break;
|
|
case -EINPROGRESS:
|
|
case -EBUSY:
|
|
this_cpu_inc(stats->stat[STAT_ASYNC]);
|
|
*skb = NULL;
|
|
return rc;
|
|
default:
|
|
this_cpu_inc(stats->stat[STAT_NOK]);
|
|
if (rc == -ENOKEY) {
|
|
kfree_skb(*skb);
|
|
*skb = NULL;
|
|
if (rx) {
|
|
/* Mark rx->nokey only if we dont have a
|
|
* pending received session key, nor a newer
|
|
* one i.e. in the next slot.
|
|
*/
|
|
n = key_next(tx_key);
|
|
rx->nokey = !(rx->skey ||
|
|
rcu_access_pointer(rx->aead[n]));
|
|
pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
|
|
rx->name, rx->nokey,
|
|
tx_key, rx->key.keys);
|
|
tipc_node_put(rx->node);
|
|
}
|
|
this_cpu_inc(stats->stat[STAT_NOKEYS]);
|
|
return rc;
|
|
} else if (rc == -EBADMSG) {
|
|
this_cpu_inc(stats->stat[STAT_BADMSGS]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
tipc_crypto_rcv_complete(net, aead, b, skb, rc);
|
|
return rc;
|
|
}
|
|
|
|
static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
|
|
struct tipc_bearer *b,
|
|
struct sk_buff **skb, int err)
|
|
{
|
|
struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
|
|
struct tipc_crypto *rx = aead->crypto;
|
|
struct tipc_aead *tmp = NULL;
|
|
struct tipc_ehdr *ehdr;
|
|
struct tipc_node *n;
|
|
|
|
/* Is this completed by TX? */
|
|
if (unlikely(is_tx(aead->crypto))) {
|
|
rx = skb_cb->tx_clone_ctx.rx;
|
|
pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
|
|
(rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
|
|
(*skb)->next, skb_cb->flags);
|
|
pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
|
|
skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
|
|
aead->crypto->aead[1], aead->crypto->aead[2],
|
|
aead->crypto->aead[3]);
|
|
if (unlikely(err)) {
|
|
if (err == -EBADMSG && (*skb)->next)
|
|
tipc_rcv(net, (*skb)->next, b);
|
|
goto free_skb;
|
|
}
|
|
|
|
if (likely((*skb)->next)) {
|
|
kfree_skb((*skb)->next);
|
|
(*skb)->next = NULL;
|
|
}
|
|
ehdr = (struct tipc_ehdr *)(*skb)->data;
|
|
if (!rx) {
|
|
WARN_ON(ehdr->user != LINK_CONFIG);
|
|
n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
|
|
true);
|
|
rx = tipc_node_crypto_rx(n);
|
|
if (unlikely(!rx))
|
|
goto free_skb;
|
|
}
|
|
|
|
/* Ignore cloning if it was TX master key */
|
|
if (ehdr->tx_key == KEY_MASTER)
|
|
goto rcv;
|
|
if (tipc_aead_clone(&tmp, aead) < 0)
|
|
goto rcv;
|
|
WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
|
|
if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
|
|
tipc_aead_free(&tmp->rcu);
|
|
goto rcv;
|
|
}
|
|
tipc_aead_put(aead);
|
|
aead = tmp;
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
|
|
goto free_skb;
|
|
}
|
|
|
|
/* Set the RX key's user */
|
|
tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
|
|
|
|
/* Mark this point, RX works */
|
|
rx->timer1 = jiffies;
|
|
|
|
rcv:
|
|
/* Remove ehdr & auth. tag prior to tipc_rcv() */
|
|
ehdr = (struct tipc_ehdr *)(*skb)->data;
|
|
|
|
/* Mark this point, RX passive still works */
|
|
if (rx->key.passive && ehdr->tx_key == rx->key.passive)
|
|
rx->timer2 = jiffies;
|
|
|
|
skb_reset_network_header(*skb);
|
|
skb_pull(*skb, tipc_ehdr_size(ehdr));
|
|
if (pskb_trim(*skb, (*skb)->len - aead->authsize))
|
|
goto free_skb;
|
|
|
|
/* Validate TIPCv2 message */
|
|
if (unlikely(!tipc_msg_validate(skb))) {
|
|
pr_err_ratelimited("Packet dropped after decryption!\n");
|
|
goto free_skb;
|
|
}
|
|
|
|
/* Ok, everything's fine, try to synch own keys according to peers' */
|
|
tipc_crypto_key_synch(rx, *skb);
|
|
|
|
/* Re-fetch skb cb as skb might be changed in tipc_msg_validate */
|
|
skb_cb = TIPC_SKB_CB(*skb);
|
|
|
|
/* Mark skb decrypted */
|
|
skb_cb->decrypted = 1;
|
|
|
|
/* Clear clone cxt if any */
|
|
if (likely(!skb_cb->tx_clone_deferred))
|
|
goto exit;
|
|
skb_cb->tx_clone_deferred = 0;
|
|
memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
|
|
goto exit;
|
|
|
|
free_skb:
|
|
kfree_skb(*skb);
|
|
*skb = NULL;
|
|
|
|
exit:
|
|
tipc_aead_put(aead);
|
|
if (rx)
|
|
tipc_node_put(rx->node);
|
|
}
|
|
|
|
static void tipc_crypto_do_cmd(struct net *net, int cmd)
|
|
{
|
|
struct tipc_net *tn = tipc_net(net);
|
|
struct tipc_crypto *tx = tn->crypto_tx, *rx;
|
|
struct list_head *p;
|
|
unsigned int stat;
|
|
int i, j, cpu;
|
|
char buf[200];
|
|
|
|
/* Currently only one command is supported */
|
|
switch (cmd) {
|
|
case 0xfff1:
|
|
goto print_stats;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
print_stats:
|
|
/* Print a header */
|
|
pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
|
|
|
|
/* Print key status */
|
|
pr_info("Key status:\n");
|
|
pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
|
|
tipc_crypto_key_dump(tx, buf));
|
|
|
|
rcu_read_lock();
|
|
for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
|
|
rx = tipc_node_crypto_rx_by_list(p);
|
|
pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
|
|
tipc_crypto_key_dump(rx, buf));
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/* Print crypto statistics */
|
|
for (i = 0, j = 0; i < MAX_STATS; i++)
|
|
j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
|
|
pr_info("Counter %s", buf);
|
|
|
|
memset(buf, '-', 115);
|
|
buf[115] = '\0';
|
|
pr_info("%s\n", buf);
|
|
|
|
j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
|
|
for_each_possible_cpu(cpu) {
|
|
for (i = 0; i < MAX_STATS; i++) {
|
|
stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
|
|
j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
|
|
}
|
|
pr_info("%s", buf);
|
|
j = scnprintf(buf, 200, "%12s", " ");
|
|
}
|
|
|
|
rcu_read_lock();
|
|
for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
|
|
rx = tipc_node_crypto_rx_by_list(p);
|
|
j = scnprintf(buf, 200, "RX(%7.7s) ",
|
|
tipc_node_get_id_str(rx->node));
|
|
for_each_possible_cpu(cpu) {
|
|
for (i = 0; i < MAX_STATS; i++) {
|
|
stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
|
|
j += scnprintf(buf + j, 200 - j, "|%11d ",
|
|
stat);
|
|
}
|
|
pr_info("%s", buf);
|
|
j = scnprintf(buf, 200, "%12s", " ");
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
pr_info("\n======================== Done ========================\n");
|
|
}
|
|
|
|
static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
|
|
{
|
|
struct tipc_key key = c->key;
|
|
struct tipc_aead *aead;
|
|
int k, i = 0;
|
|
char *s;
|
|
|
|
for (k = KEY_MIN; k <= KEY_MAX; k++) {
|
|
if (k == KEY_MASTER) {
|
|
if (is_rx(c))
|
|
continue;
|
|
if (time_before(jiffies,
|
|
c->timer2 + TIPC_TX_GRACE_PERIOD))
|
|
s = "ACT";
|
|
else
|
|
s = "PAS";
|
|
} else {
|
|
if (k == key.passive)
|
|
s = "PAS";
|
|
else if (k == key.active)
|
|
s = "ACT";
|
|
else if (k == key.pending)
|
|
s = "PEN";
|
|
else
|
|
s = "-";
|
|
}
|
|
i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
|
|
|
|
rcu_read_lock();
|
|
aead = rcu_dereference(c->aead[k]);
|
|
if (aead)
|
|
i += scnprintf(buf + i, 200 - i,
|
|
"{\"0x...%s\", \"%s\"}/%d:%d",
|
|
aead->hint,
|
|
(aead->mode == CLUSTER_KEY) ? "c" : "p",
|
|
atomic_read(&aead->users),
|
|
refcount_read(&aead->refcnt));
|
|
rcu_read_unlock();
|
|
i += scnprintf(buf + i, 200 - i, "\n");
|
|
}
|
|
|
|
if (is_rx(c))
|
|
i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
|
|
atomic_read(&c->peer_rx_active));
|
|
|
|
return buf;
|
|
}
|
|
|
|
static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
|
|
char *buf)
|
|
{
|
|
struct tipc_key *key = &old;
|
|
int k, i = 0;
|
|
char *s;
|
|
|
|
/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
|
|
again:
|
|
i += scnprintf(buf + i, 32 - i, "[");
|
|
for (k = KEY_1; k <= KEY_3; k++) {
|
|
if (k == key->passive)
|
|
s = "pas";
|
|
else if (k == key->active)
|
|
s = "act";
|
|
else if (k == key->pending)
|
|
s = "pen";
|
|
else
|
|
s = "-";
|
|
i += scnprintf(buf + i, 32 - i,
|
|
(k != KEY_3) ? "%s " : "%s", s);
|
|
}
|
|
if (key != &new) {
|
|
i += scnprintf(buf + i, 32 - i, "] -> ");
|
|
key = &new;
|
|
goto again;
|
|
}
|
|
i += scnprintf(buf + i, 32 - i, "]");
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
|
|
* @net: the struct net
|
|
* @skb: the receiving message buffer
|
|
*/
|
|
void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
|
|
{
|
|
struct tipc_crypto *rx;
|
|
struct tipc_msg *hdr;
|
|
|
|
if (unlikely(skb_linearize(skb)))
|
|
goto exit;
|
|
|
|
hdr = buf_msg(skb);
|
|
rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
|
|
if (unlikely(!rx))
|
|
goto exit;
|
|
|
|
switch (msg_type(hdr)) {
|
|
case KEY_DISTR_MSG:
|
|
if (tipc_crypto_key_rcv(rx, hdr))
|
|
goto exit;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
tipc_node_put(rx->node);
|
|
|
|
exit:
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_distr - Distribute a TX key
|
|
* @tx: the TX crypto
|
|
* @key: the key's index
|
|
* @dest: the destination tipc node, = NULL if distributing to all nodes
|
|
*
|
|
* Return: 0 in case of success, otherwise < 0
|
|
*/
|
|
int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
|
|
struct tipc_node *dest)
|
|
{
|
|
struct tipc_aead *aead;
|
|
u32 dnode = tipc_node_get_addr(dest);
|
|
int rc = -ENOKEY;
|
|
|
|
if (!sysctl_tipc_key_exchange_enabled)
|
|
return 0;
|
|
|
|
if (key) {
|
|
rcu_read_lock();
|
|
aead = tipc_aead_get(tx->aead[key]);
|
|
if (likely(aead)) {
|
|
rc = tipc_crypto_key_xmit(tx->net, aead->key,
|
|
aead->gen, aead->mode,
|
|
dnode);
|
|
tipc_aead_put(aead);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_xmit - Send a session key
|
|
* @net: the struct net
|
|
* @skey: the session key to be sent
|
|
* @gen: the key's generation
|
|
* @mode: the key's mode
|
|
* @dnode: the destination node address, = 0 if broadcasting to all nodes
|
|
*
|
|
* The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
|
|
* as its data section, then xmit-ed through the uc/bc link.
|
|
*
|
|
* Return: 0 in case of success, otherwise < 0
|
|
*/
|
|
static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
|
|
u16 gen, u8 mode, u32 dnode)
|
|
{
|
|
struct sk_buff_head pkts;
|
|
struct tipc_msg *hdr;
|
|
struct sk_buff *skb;
|
|
u16 size, cong_link_cnt;
|
|
u8 *data;
|
|
int rc;
|
|
|
|
size = tipc_aead_key_size(skey);
|
|
skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
hdr = buf_msg(skb);
|
|
tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
|
|
INT_H_SIZE, dnode);
|
|
msg_set_size(hdr, INT_H_SIZE + size);
|
|
msg_set_key_gen(hdr, gen);
|
|
msg_set_key_mode(hdr, mode);
|
|
|
|
data = msg_data(hdr);
|
|
*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
|
|
memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
|
|
memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
|
|
skey->keylen);
|
|
|
|
__skb_queue_head_init(&pkts);
|
|
__skb_queue_tail(&pkts, skb);
|
|
if (dnode)
|
|
rc = tipc_node_xmit(net, &pkts, dnode, 0);
|
|
else
|
|
rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_key_rcv - Receive a session key
|
|
* @rx: the RX crypto
|
|
* @hdr: the TIPC v2 message incl. the receiving session key in its data
|
|
*
|
|
* This function retrieves the session key in the message from peer, then
|
|
* schedules a RX work to attach the key to the corresponding RX crypto.
|
|
*
|
|
* Return: "true" if the key has been scheduled for attaching, otherwise
|
|
* "false".
|
|
*/
|
|
static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
|
|
{
|
|
struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
|
|
struct tipc_aead_key *skey = NULL;
|
|
u16 key_gen = msg_key_gen(hdr);
|
|
u32 size = msg_data_sz(hdr);
|
|
u8 *data = msg_data(hdr);
|
|
unsigned int keylen;
|
|
|
|
/* Verify whether the size can exist in the packet */
|
|
if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
|
|
pr_debug("%s: message data size is too small\n", rx->name);
|
|
goto exit;
|
|
}
|
|
|
|
keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
|
|
|
|
/* Verify the supplied size values */
|
|
if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
|
|
keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
|
|
pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
|
|
goto exit;
|
|
}
|
|
|
|
spin_lock(&rx->lock);
|
|
if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
|
|
pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
|
|
rx->skey, key_gen, rx->key_gen);
|
|
goto exit_unlock;
|
|
}
|
|
|
|
/* Allocate memory for the key */
|
|
skey = kmalloc(size, GFP_ATOMIC);
|
|
if (unlikely(!skey)) {
|
|
pr_err("%s: unable to allocate memory for skey\n", rx->name);
|
|
goto exit_unlock;
|
|
}
|
|
|
|
/* Copy key from msg data */
|
|
skey->keylen = keylen;
|
|
memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
|
|
memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
|
|
skey->keylen);
|
|
|
|
rx->key_gen = key_gen;
|
|
rx->skey_mode = msg_key_mode(hdr);
|
|
rx->skey = skey;
|
|
rx->nokey = 0;
|
|
mb(); /* for nokey flag */
|
|
|
|
exit_unlock:
|
|
spin_unlock(&rx->lock);
|
|
|
|
exit:
|
|
/* Schedule the key attaching on this crypto */
|
|
if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_work_rx - Scheduled RX works handler
|
|
* @work: the struct RX work
|
|
*
|
|
* The function processes the previous scheduled works i.e. distributing TX key
|
|
* or attaching a received session key on RX crypto.
|
|
*/
|
|
static void tipc_crypto_work_rx(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
|
|
struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
|
|
unsigned long delay = msecs_to_jiffies(5000);
|
|
bool resched = false;
|
|
u8 key;
|
|
int rc;
|
|
|
|
/* Case 1: Distribute TX key to peer if scheduled */
|
|
if (atomic_cmpxchg(&rx->key_distr,
|
|
KEY_DISTR_SCHED,
|
|
KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
|
|
/* Always pick the newest one for distributing */
|
|
key = tx->key.pending ?: tx->key.active;
|
|
rc = tipc_crypto_key_distr(tx, key, rx->node);
|
|
if (unlikely(rc))
|
|
pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
|
|
tx->name, key, tipc_node_get_id_str(rx->node),
|
|
rc);
|
|
|
|
/* Sched for key_distr releasing */
|
|
resched = true;
|
|
} else {
|
|
atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
|
|
}
|
|
|
|
/* Case 2: Attach a pending received session key from peer if any */
|
|
if (rx->skey) {
|
|
rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
|
|
if (unlikely(rc < 0))
|
|
pr_warn("%s: unable to attach received skey, err %d\n",
|
|
rx->name, rc);
|
|
switch (rc) {
|
|
case -EBUSY:
|
|
case -ENOMEM:
|
|
/* Resched the key attaching */
|
|
resched = true;
|
|
break;
|
|
default:
|
|
synchronize_rcu();
|
|
kfree(rx->skey);
|
|
rx->skey = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
|
|
return;
|
|
|
|
tipc_node_put(rx->node);
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
|
|
* @tx: TX crypto
|
|
* @changed: if the rekeying needs to be rescheduled with new interval
|
|
* @new_intv: new rekeying interval (when "changed" = true)
|
|
*/
|
|
void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
|
|
u32 new_intv)
|
|
{
|
|
unsigned long delay;
|
|
bool now = false;
|
|
|
|
if (changed) {
|
|
if (new_intv == TIPC_REKEYING_NOW)
|
|
now = true;
|
|
else
|
|
tx->rekeying_intv = new_intv;
|
|
cancel_delayed_work_sync(&tx->work);
|
|
}
|
|
|
|
if (tx->rekeying_intv || now) {
|
|
delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
|
|
queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tipc_crypto_work_tx - Scheduled TX works handler
|
|
* @work: the struct TX work
|
|
*
|
|
* The function processes the previous scheduled work, i.e. key rekeying, by
|
|
* generating a new session key based on current one, then attaching it to the
|
|
* TX crypto and finally distributing it to peers. It also re-schedules the
|
|
* rekeying if needed.
|
|
*/
|
|
static void tipc_crypto_work_tx(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
|
|
struct tipc_aead_key *skey = NULL;
|
|
struct tipc_key key = tx->key;
|
|
struct tipc_aead *aead;
|
|
int rc = -ENOMEM;
|
|
|
|
if (unlikely(key.pending))
|
|
goto resched;
|
|
|
|
/* Take current key as a template */
|
|
rcu_read_lock();
|
|
aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
|
|
if (unlikely(!aead)) {
|
|
rcu_read_unlock();
|
|
/* At least one key should exist for securing */
|
|
return;
|
|
}
|
|
|
|
/* Lets duplicate it first */
|
|
skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
|
|
rcu_read_unlock();
|
|
|
|
/* Now, generate new key, initiate & distribute it */
|
|
if (likely(skey)) {
|
|
rc = tipc_aead_key_generate(skey) ?:
|
|
tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
|
|
if (likely(rc > 0))
|
|
rc = tipc_crypto_key_distr(tx, rc, NULL);
|
|
kfree_sensitive(skey);
|
|
}
|
|
|
|
if (unlikely(rc))
|
|
pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
|
|
|
|
resched:
|
|
/* Re-schedule rekeying if any */
|
|
tipc_crypto_rekeying_sched(tx, false, 0);
|
|
}
|