mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-04 04:04:19 +00:00
30a92c9e3d
Open vSwitch is originally intended to switch at layer 2, only dealing with
Ethernet frames. With the introduction of l3 tunnels support, it crossed
into the realm of needing to care a bit about some routing details when
making forwarding decisions. If an oversized packet would need to be
fragmented during this forwarding decision, there is a chance for pmtu
to get involved and generate a routing exception. This is gated by the
skbuff->pkt_type field.
When a flow is already loaded into the openvswitch module this field is
set up and transitioned properly as a packet moves from one port to
another. In the case that a packet execute is invoked after a flow is
newly installed this field is not properly initialized. This causes the
pmtud mechanism to omit sending the required exception messages across
the tunnel boundary and a second attempt needs to be made to make sure
that the routing exception is properly setup. To fix this, we set the
outgoing packet's pkt_type to PACKET_OUTGOING, since it can only get
to the openvswitch module via a port device or packet command.
Even for bridge ports as users, the pkt_type needs to be reset when
doing the transmit as the packet is truly outgoing and routing needs
to get involved post packet transformations, in the case of
VXLAN/GENEVE/udp-tunnel packets. In general, the pkt_type on output
gets ignored, since we go straight to the driver, but in the case of
tunnel ports they go through IP routing layer.
This issue is periodically encountered in complex setups, such as large
openshift deployments, where multiple sets of tunnel traversal occurs.
A way to recreate this is with the ovn-heater project that can setup
a networking environment which mimics such large deployments. We need
larger environments for this because we need to ensure that flow
misses occur. In these environment, without this patch, we can see:
./ovn_cluster.sh start
podman exec ovn-chassis-1 ip r a 170.168.0.5/32 dev eth1 mtu 1200
podman exec ovn-chassis-1 ip netns exec sw01p1 ip r flush cache
podman exec ovn-chassis-1 ip netns exec sw01p1 \
ping 21.0.0.3 -M do -s 1300 -c2
PING 21.0.0.3 (21.0.0.3) 1300(1328) bytes of data.
From 21.0.0.3 icmp_seq=2 Frag needed and DF set (mtu = 1142)
--- 21.0.0.3 ping statistics ---
...
Using tcpdump, we can also see the expected ICMP FRAG_NEEDED message is not
sent into the server.
With this patch, setting the pkt_type, we see the following:
podman exec ovn-chassis-1 ip netns exec sw01p1 \
ping 21.0.0.3 -M do -s 1300 -c2
PING 21.0.0.3 (21.0.0.3) 1300(1328) bytes of data.
From 21.0.0.3 icmp_seq=1 Frag needed and DF set (mtu = 1222)
ping: local error: message too long, mtu=1222
--- 21.0.0.3 ping statistics ---
...
In this case, the first ping request receives the FRAG_NEEDED message and
a local routing exception is created.
Tested-by: Jaime Caamano <jcaamano@redhat.com>
Reported-at: https://issues.redhat.com/browse/FDP-164
Fixes: 58264848a5
("openvswitch: Add vxlan tunneling support.")
Signed-off-by: Aaron Conole <aconole@redhat.com>
Acked-by: Eelco Chaudron <echaudro@redhat.com>
Link: https://lore.kernel.org/r/20240516200941.16152-1-aconole@redhat.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
1664 lines
41 KiB
C
1664 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2007-2017 Nicira, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/openvswitch.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <net/dst.h>
|
|
#include <net/gso.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ip6_fib.h>
|
|
#include <net/checksum.h>
|
|
#include <net/dsfield.h>
|
|
#include <net/mpls.h>
|
|
#include <net/sctp/checksum.h>
|
|
|
|
#include "datapath.h"
|
|
#include "drop.h"
|
|
#include "flow.h"
|
|
#include "conntrack.h"
|
|
#include "vport.h"
|
|
#include "flow_netlink.h"
|
|
#include "openvswitch_trace.h"
|
|
|
|
struct deferred_action {
|
|
struct sk_buff *skb;
|
|
const struct nlattr *actions;
|
|
int actions_len;
|
|
|
|
/* Store pkt_key clone when creating deferred action. */
|
|
struct sw_flow_key pkt_key;
|
|
};
|
|
|
|
#define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
|
|
struct ovs_frag_data {
|
|
unsigned long dst;
|
|
struct vport *vport;
|
|
struct ovs_skb_cb cb;
|
|
__be16 inner_protocol;
|
|
u16 network_offset; /* valid only for MPLS */
|
|
u16 vlan_tci;
|
|
__be16 vlan_proto;
|
|
unsigned int l2_len;
|
|
u8 mac_proto;
|
|
u8 l2_data[MAX_L2_LEN];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
|
|
|
|
#define DEFERRED_ACTION_FIFO_SIZE 10
|
|
#define OVS_RECURSION_LIMIT 5
|
|
#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
|
|
struct action_fifo {
|
|
int head;
|
|
int tail;
|
|
/* Deferred action fifo queue storage. */
|
|
struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
|
|
};
|
|
|
|
struct action_flow_keys {
|
|
struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
|
|
};
|
|
|
|
static struct action_fifo __percpu *action_fifos;
|
|
static struct action_flow_keys __percpu *flow_keys;
|
|
static DEFINE_PER_CPU(int, exec_actions_level);
|
|
|
|
/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
|
|
* space. Return NULL if out of key spaces.
|
|
*/
|
|
static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
|
|
{
|
|
struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
|
|
int level = this_cpu_read(exec_actions_level);
|
|
struct sw_flow_key *key = NULL;
|
|
|
|
if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
|
|
key = &keys->key[level - 1];
|
|
*key = *key_;
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
static void action_fifo_init(struct action_fifo *fifo)
|
|
{
|
|
fifo->head = 0;
|
|
fifo->tail = 0;
|
|
}
|
|
|
|
static bool action_fifo_is_empty(const struct action_fifo *fifo)
|
|
{
|
|
return (fifo->head == fifo->tail);
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
|
|
{
|
|
if (action_fifo_is_empty(fifo))
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->tail++];
|
|
}
|
|
|
|
static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
|
|
{
|
|
if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
|
|
return NULL;
|
|
|
|
return &fifo->fifo[fifo->head++];
|
|
}
|
|
|
|
/* Return true if fifo is not full */
|
|
static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
|
|
const struct sw_flow_key *key,
|
|
const struct nlattr *actions,
|
|
const int actions_len)
|
|
{
|
|
struct action_fifo *fifo;
|
|
struct deferred_action *da;
|
|
|
|
fifo = this_cpu_ptr(action_fifos);
|
|
da = action_fifo_put(fifo);
|
|
if (da) {
|
|
da->skb = skb;
|
|
da->actions = actions;
|
|
da->actions_len = actions_len;
|
|
da->pkt_key = *key;
|
|
}
|
|
|
|
return da;
|
|
}
|
|
|
|
static void invalidate_flow_key(struct sw_flow_key *key)
|
|
{
|
|
key->mac_proto |= SW_FLOW_KEY_INVALID;
|
|
}
|
|
|
|
static bool is_flow_key_valid(const struct sw_flow_key *key)
|
|
{
|
|
return !(key->mac_proto & SW_FLOW_KEY_INVALID);
|
|
}
|
|
|
|
static int clone_execute(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
u32 recirc_id,
|
|
const struct nlattr *actions, int len,
|
|
bool last, bool clone_flow_key);
|
|
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len);
|
|
|
|
static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
__be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
|
|
{
|
|
int err;
|
|
|
|
err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!mac_len)
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const __be16 ethertype)
|
|
{
|
|
int err;
|
|
|
|
err = skb_mpls_pop(skb, ethertype, skb->mac_len,
|
|
ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ethertype == htons(ETH_P_TEB))
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const __be32 *mpls_lse, const __be32 *mask)
|
|
{
|
|
struct mpls_shim_hdr *stack;
|
|
__be32 lse;
|
|
int err;
|
|
|
|
if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
|
|
return -ENOMEM;
|
|
|
|
stack = mpls_hdr(skb);
|
|
lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
|
|
err = skb_mpls_update_lse(skb, lse);
|
|
if (err)
|
|
return err;
|
|
|
|
flow_key->mpls.lse[0] = lse;
|
|
return 0;
|
|
}
|
|
|
|
static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = skb_vlan_pop(skb);
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = 0;
|
|
key->eth.vlan.tpid = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_vlan *vlan)
|
|
{
|
|
if (skb_vlan_tag_present(skb)) {
|
|
invalidate_flow_key(key);
|
|
} else {
|
|
key->eth.vlan.tci = vlan->vlan_tci;
|
|
key->eth.vlan.tpid = vlan->vlan_tpid;
|
|
}
|
|
return skb_vlan_push(skb, vlan->vlan_tpid,
|
|
ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
|
|
}
|
|
|
|
/* 'src' is already properly masked. */
|
|
static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
|
|
{
|
|
u16 *dst = (u16 *)dst_;
|
|
const u16 *src = (const u16 *)src_;
|
|
const u16 *mask = (const u16 *)mask_;
|
|
|
|
OVS_SET_MASKED(dst[0], src[0], mask[0]);
|
|
OVS_SET_MASKED(dst[1], src[1], mask[1]);
|
|
OVS_SET_MASKED(dst[2], src[2], mask[2]);
|
|
}
|
|
|
|
static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ethernet *key,
|
|
const struct ovs_key_ethernet *mask)
|
|
{
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, ETH_HLEN);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
|
|
mask->eth_src);
|
|
ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
|
|
mask->eth_dst);
|
|
|
|
skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
|
|
|
|
ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
|
|
ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
|
|
return 0;
|
|
}
|
|
|
|
/* pop_eth does not support VLAN packets as this action is never called
|
|
* for them.
|
|
*/
|
|
static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = skb_eth_pop(skb);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct ovs_action_push_eth *ethh)
|
|
{
|
|
int err;
|
|
|
|
err = skb_eth_push(skb, ethh->addresses.eth_dst,
|
|
ethh->addresses.eth_src);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack int push_nsh(struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *a)
|
|
{
|
|
u8 buffer[NSH_HDR_MAX_LEN];
|
|
struct nshhdr *nh = (struct nshhdr *)buffer;
|
|
int err;
|
|
|
|
err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
|
|
if (err)
|
|
return err;
|
|
|
|
err = nsh_push(skb, nh);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
err = nsh_pop(skb);
|
|
if (err)
|
|
return err;
|
|
|
|
/* safe right before invalidate_flow_key */
|
|
if (skb->protocol == htons(ETH_P_TEB))
|
|
key->mac_proto = MAC_PROTO_ETHERNET;
|
|
else
|
|
key->mac_proto = MAC_PROTO_NONE;
|
|
invalidate_flow_key(key);
|
|
return 0;
|
|
}
|
|
|
|
static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 addr, __be32 new_addr)
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (nh->frag_off & htons(IP_OFFSET))
|
|
return;
|
|
|
|
if (nh->protocol == IPPROTO_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (nh->protocol == IPPROTO_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace4(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
|
|
__be32 *addr, __be32 new_addr)
|
|
{
|
|
update_ip_l4_checksum(skb, nh, *addr, new_addr);
|
|
csum_replace4(&nh->check, *addr, new_addr);
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
*addr = new_addr;
|
|
}
|
|
|
|
static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4])
|
|
{
|
|
int transport_len = skb->len - skb_transport_offset(skb);
|
|
|
|
if (l4_proto == NEXTHDR_TCP) {
|
|
if (likely(transport_len >= sizeof(struct tcphdr)))
|
|
inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
|
|
addr, new_addr, true);
|
|
} else if (l4_proto == NEXTHDR_UDP) {
|
|
if (likely(transport_len >= sizeof(struct udphdr))) {
|
|
struct udphdr *uh = udp_hdr(skb);
|
|
|
|
if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
inet_proto_csum_replace16(&uh->check, skb,
|
|
addr, new_addr, true);
|
|
if (!uh->check)
|
|
uh->check = CSUM_MANGLED_0;
|
|
}
|
|
}
|
|
} else if (l4_proto == NEXTHDR_ICMP) {
|
|
if (likely(transport_len >= sizeof(struct icmp6hdr)))
|
|
inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
|
|
skb, addr, new_addr, true);
|
|
}
|
|
}
|
|
|
|
static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
|
|
const __be32 mask[4], __be32 masked[4])
|
|
{
|
|
masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
|
|
masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
|
|
masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
|
|
masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
|
|
}
|
|
|
|
static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
|
|
__be32 addr[4], const __be32 new_addr[4],
|
|
bool recalculate_csum)
|
|
{
|
|
if (recalculate_csum)
|
|
update_ipv6_checksum(skb, l4_proto, addr, new_addr);
|
|
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
memcpy(addr, new_addr, sizeof(__be32[4]));
|
|
}
|
|
|
|
static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
|
|
{
|
|
u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
|
|
|
|
ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
|
|
(__force __wsum)(ipv6_tclass << 12));
|
|
|
|
ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
|
|
}
|
|
|
|
static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
|
|
{
|
|
u32 ofl;
|
|
|
|
ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
|
|
fl = OVS_MASKED(ofl, fl, mask);
|
|
|
|
/* Bits 21-24 are always unmasked, so this retains their values. */
|
|
nh->flow_lbl[0] = (u8)(fl >> 16);
|
|
nh->flow_lbl[1] = (u8)(fl >> 8);
|
|
nh->flow_lbl[2] = (u8)fl;
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
|
|
}
|
|
|
|
static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
|
|
{
|
|
new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
|
|
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
|
|
(__force __wsum)(new_ttl << 8));
|
|
nh->hop_limit = new_ttl;
|
|
}
|
|
|
|
static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
|
|
u8 mask)
|
|
{
|
|
new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
|
|
|
|
csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
|
|
nh->ttl = new_ttl;
|
|
}
|
|
|
|
static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv4 *key,
|
|
const struct ovs_key_ipv4 *mask)
|
|
{
|
|
struct iphdr *nh;
|
|
__be32 new_addr;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct iphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ip_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (mask->ipv4_src) {
|
|
new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
|
|
|
|
if (unlikely(new_addr != nh->saddr)) {
|
|
set_ip_addr(skb, nh, &nh->saddr, new_addr);
|
|
flow_key->ipv4.addr.src = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_dst) {
|
|
new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
|
|
|
|
if (unlikely(new_addr != nh->daddr)) {
|
|
set_ip_addr(skb, nh, &nh->daddr, new_addr);
|
|
flow_key->ipv4.addr.dst = new_addr;
|
|
}
|
|
}
|
|
if (mask->ipv4_tos) {
|
|
ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
|
|
flow_key->ip.tos = nh->tos;
|
|
}
|
|
if (mask->ipv4_ttl) {
|
|
set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
|
|
flow_key->ip.ttl = nh->ttl;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool is_ipv6_mask_nonzero(const __be32 addr[4])
|
|
{
|
|
return !!(addr[0] | addr[1] | addr[2] | addr[3]);
|
|
}
|
|
|
|
static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_ipv6 *key,
|
|
const struct ovs_key_ipv6 *mask)
|
|
{
|
|
struct ipv6hdr *nh;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(struct ipv6hdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
/* Setting an IP addresses is typically only a side effect of
|
|
* matching on them in the current userspace implementation, so it
|
|
* makes sense to check if the value actually changed.
|
|
*/
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
|
|
__be32 *saddr = (__be32 *)&nh->saddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
|
|
|
|
if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
|
|
set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
|
|
true);
|
|
memcpy(&flow_key->ipv6.addr.src, masked,
|
|
sizeof(flow_key->ipv6.addr.src));
|
|
}
|
|
}
|
|
if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
|
|
unsigned int offset = 0;
|
|
int flags = IP6_FH_F_SKIP_RH;
|
|
bool recalc_csum = true;
|
|
__be32 *daddr = (__be32 *)&nh->daddr;
|
|
__be32 masked[4];
|
|
|
|
mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
|
|
|
|
if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
|
|
if (ipv6_ext_hdr(nh->nexthdr))
|
|
recalc_csum = (ipv6_find_hdr(skb, &offset,
|
|
NEXTHDR_ROUTING,
|
|
NULL, &flags)
|
|
!= NEXTHDR_ROUTING);
|
|
|
|
set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
|
|
recalc_csum);
|
|
memcpy(&flow_key->ipv6.addr.dst, masked,
|
|
sizeof(flow_key->ipv6.addr.dst));
|
|
}
|
|
}
|
|
if (mask->ipv6_tclass) {
|
|
set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
|
|
flow_key->ip.tos = ipv6_get_dsfield(nh);
|
|
}
|
|
if (mask->ipv6_label) {
|
|
set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
|
|
ntohl(mask->ipv6_label));
|
|
flow_key->ipv6.label =
|
|
*(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
|
|
}
|
|
if (mask->ipv6_hlimit) {
|
|
set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
|
|
flow_key->ip.ttl = nh->hop_limit;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
struct nshhdr *nh;
|
|
size_t length;
|
|
int err;
|
|
u8 flags;
|
|
u8 ttl;
|
|
int i;
|
|
|
|
struct ovs_key_nsh key;
|
|
struct ovs_key_nsh mask;
|
|
|
|
err = nsh_key_from_nlattr(a, &key, &mask);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Make sure the NSH base header is there */
|
|
if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
|
|
return -ENOMEM;
|
|
|
|
nh = nsh_hdr(skb);
|
|
length = nsh_hdr_len(nh);
|
|
|
|
/* Make sure the whole NSH header is there */
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
length);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = nsh_hdr(skb);
|
|
skb_postpull_rcsum(skb, nh, length);
|
|
flags = nsh_get_flags(nh);
|
|
flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
|
|
flow_key->nsh.base.flags = flags;
|
|
ttl = nsh_get_ttl(nh);
|
|
ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
|
|
flow_key->nsh.base.ttl = ttl;
|
|
nsh_set_flags_and_ttl(nh, flags, ttl);
|
|
nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
|
|
mask.base.path_hdr);
|
|
flow_key->nsh.base.path_hdr = nh->path_hdr;
|
|
switch (nh->mdtype) {
|
|
case NSH_M_TYPE1:
|
|
for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
|
|
nh->md1.context[i] =
|
|
OVS_MASKED(nh->md1.context[i], key.context[i],
|
|
mask.context[i]);
|
|
}
|
|
memcpy(flow_key->nsh.context, nh->md1.context,
|
|
sizeof(nh->md1.context));
|
|
break;
|
|
case NSH_M_TYPE2:
|
|
memset(flow_key->nsh.context, 0,
|
|
sizeof(flow_key->nsh.context));
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
skb_postpush_rcsum(skb, nh, length);
|
|
return 0;
|
|
}
|
|
|
|
/* Must follow skb_ensure_writable() since that can move the skb data. */
|
|
static void set_tp_port(struct sk_buff *skb, __be16 *port,
|
|
__be16 new_port, __sum16 *check)
|
|
{
|
|
ovs_ct_clear(skb, NULL);
|
|
inet_proto_csum_replace2(check, skb, *port, new_port, false);
|
|
*port = new_port;
|
|
}
|
|
|
|
static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_udp *key,
|
|
const struct ovs_key_udp *mask)
|
|
{
|
|
struct udphdr *uh;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct udphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
uh = udp_hdr(skb);
|
|
/* Either of the masks is non-zero, so do not bother checking them. */
|
|
src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
|
|
dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
|
|
|
|
if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
if (likely(src != uh->source)) {
|
|
set_tp_port(skb, &uh->source, src, &uh->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
if (likely(dst != uh->dest)) {
|
|
set_tp_port(skb, &uh->dest, dst, &uh->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
|
|
if (unlikely(!uh->check))
|
|
uh->check = CSUM_MANGLED_0;
|
|
} else {
|
|
uh->source = src;
|
|
uh->dest = dst;
|
|
flow_key->tp.src = src;
|
|
flow_key->tp.dst = dst;
|
|
ovs_ct_clear(skb, NULL);
|
|
}
|
|
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_tcp *key,
|
|
const struct ovs_key_tcp *mask)
|
|
{
|
|
struct tcphdr *th;
|
|
__be16 src, dst;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, skb_transport_offset(skb) +
|
|
sizeof(struct tcphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
th = tcp_hdr(skb);
|
|
src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
|
|
if (likely(src != th->source)) {
|
|
set_tp_port(skb, &th->source, src, &th->check);
|
|
flow_key->tp.src = src;
|
|
}
|
|
dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
|
|
if (likely(dst != th->dest)) {
|
|
set_tp_port(skb, &th->dest, dst, &th->check);
|
|
flow_key->tp.dst = dst;
|
|
}
|
|
skb_clear_hash(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
|
|
const struct ovs_key_sctp *key,
|
|
const struct ovs_key_sctp *mask)
|
|
{
|
|
unsigned int sctphoff = skb_transport_offset(skb);
|
|
struct sctphdr *sh;
|
|
__le32 old_correct_csum, new_csum, old_csum;
|
|
int err;
|
|
|
|
err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
sh = sctp_hdr(skb);
|
|
old_csum = sh->checksum;
|
|
old_correct_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
|
|
sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
|
|
|
|
new_csum = sctp_compute_cksum(skb, sctphoff);
|
|
|
|
/* Carry any checksum errors through. */
|
|
sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
|
|
|
|
skb_clear_hash(skb);
|
|
ovs_ct_clear(skb, NULL);
|
|
|
|
flow_key->tp.src = sh->source;
|
|
flow_key->tp.dst = sh->dest;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ovs_vport_output(struct net *net, struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
struct vport *vport = data->vport;
|
|
|
|
if (skb_cow_head(skb, data->l2_len) < 0) {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__skb_dst_copy(skb, data->dst);
|
|
*OVS_CB(skb) = data->cb;
|
|
skb->inner_protocol = data->inner_protocol;
|
|
if (data->vlan_tci & VLAN_CFI_MASK)
|
|
__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
|
|
else
|
|
__vlan_hwaccel_clear_tag(skb);
|
|
|
|
/* Reconstruct the MAC header. */
|
|
skb_push(skb, data->l2_len);
|
|
memcpy(skb->data, &data->l2_data, data->l2_len);
|
|
skb_postpush_rcsum(skb, skb->data, data->l2_len);
|
|
skb_reset_mac_header(skb);
|
|
|
|
if (eth_p_mpls(skb->protocol)) {
|
|
skb->inner_network_header = skb->network_header;
|
|
skb_set_network_header(skb, data->network_offset);
|
|
skb_reset_mac_len(skb);
|
|
}
|
|
|
|
ovs_vport_send(vport, skb, data->mac_proto);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int
|
|
ovs_dst_get_mtu(const struct dst_entry *dst)
|
|
{
|
|
return dst->dev->mtu;
|
|
}
|
|
|
|
static struct dst_ops ovs_dst_ops = {
|
|
.family = AF_UNSPEC,
|
|
.mtu = ovs_dst_get_mtu,
|
|
};
|
|
|
|
/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
|
|
* ovs_vport_output(), which is called once per fragmented packet.
|
|
*/
|
|
static void prepare_frag(struct vport *vport, struct sk_buff *skb,
|
|
u16 orig_network_offset, u8 mac_proto)
|
|
{
|
|
unsigned int hlen = skb_network_offset(skb);
|
|
struct ovs_frag_data *data;
|
|
|
|
data = this_cpu_ptr(&ovs_frag_data_storage);
|
|
data->dst = skb->_skb_refdst;
|
|
data->vport = vport;
|
|
data->cb = *OVS_CB(skb);
|
|
data->inner_protocol = skb->inner_protocol;
|
|
data->network_offset = orig_network_offset;
|
|
if (skb_vlan_tag_present(skb))
|
|
data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
|
|
else
|
|
data->vlan_tci = 0;
|
|
data->vlan_proto = skb->vlan_proto;
|
|
data->mac_proto = mac_proto;
|
|
data->l2_len = hlen;
|
|
memcpy(&data->l2_data, skb->data, hlen);
|
|
|
|
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
|
|
skb_pull(skb, hlen);
|
|
}
|
|
|
|
static void ovs_fragment(struct net *net, struct vport *vport,
|
|
struct sk_buff *skb, u16 mru,
|
|
struct sw_flow_key *key)
|
|
{
|
|
enum ovs_drop_reason reason;
|
|
u16 orig_network_offset = 0;
|
|
|
|
if (eth_p_mpls(skb->protocol)) {
|
|
orig_network_offset = skb_network_offset(skb);
|
|
skb->network_header = skb->inner_network_header;
|
|
}
|
|
|
|
if (skb_network_offset(skb) > MAX_L2_LEN) {
|
|
OVS_NLERR(1, "L2 header too long to fragment");
|
|
reason = OVS_DROP_FRAG_L2_TOO_LONG;
|
|
goto err;
|
|
}
|
|
|
|
if (key->eth.type == htons(ETH_P_IP)) {
|
|
struct rtable ovs_rt = { 0 };
|
|
unsigned long orig_dst;
|
|
|
|
prepare_frag(vport, skb, orig_network_offset,
|
|
ovs_key_mac_proto(key));
|
|
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_rt.dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_rt.dst);
|
|
IPCB(skb)->frag_max_size = mru;
|
|
|
|
ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else if (key->eth.type == htons(ETH_P_IPV6)) {
|
|
unsigned long orig_dst;
|
|
struct rt6_info ovs_rt;
|
|
|
|
prepare_frag(vport, skb, orig_network_offset,
|
|
ovs_key_mac_proto(key));
|
|
memset(&ovs_rt, 0, sizeof(ovs_rt));
|
|
dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
|
|
DST_OBSOLETE_NONE, DST_NOCOUNT);
|
|
ovs_rt.dst.dev = vport->dev;
|
|
|
|
orig_dst = skb->_skb_refdst;
|
|
skb_dst_set_noref(skb, &ovs_rt.dst);
|
|
IP6CB(skb)->frag_max_size = mru;
|
|
|
|
ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
|
|
refdst_drop(orig_dst);
|
|
} else {
|
|
WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
|
|
ovs_vport_name(vport), ntohs(key->eth.type), mru,
|
|
vport->dev->mtu);
|
|
reason = OVS_DROP_FRAG_INVALID_PROTO;
|
|
goto err;
|
|
}
|
|
|
|
return;
|
|
err:
|
|
ovs_kfree_skb_reason(skb, reason);
|
|
}
|
|
|
|
static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
|
|
struct sw_flow_key *key)
|
|
{
|
|
struct vport *vport = ovs_vport_rcu(dp, out_port);
|
|
|
|
if (likely(vport && netif_carrier_ok(vport->dev))) {
|
|
u16 mru = OVS_CB(skb)->mru;
|
|
u32 cutlen = OVS_CB(skb)->cutlen;
|
|
|
|
if (unlikely(cutlen > 0)) {
|
|
if (skb->len - cutlen > ovs_mac_header_len(key))
|
|
pskb_trim(skb, skb->len - cutlen);
|
|
else
|
|
pskb_trim(skb, ovs_mac_header_len(key));
|
|
}
|
|
|
|
/* Need to set the pkt_type to involve the routing layer. The
|
|
* packet movement through the OVS datapath doesn't generally
|
|
* use routing, but this is needed for tunnel cases.
|
|
*/
|
|
skb->pkt_type = PACKET_OUTGOING;
|
|
|
|
if (likely(!mru ||
|
|
(skb->len <= mru + vport->dev->hard_header_len))) {
|
|
ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
|
|
} else if (mru <= vport->dev->mtu) {
|
|
struct net *net = read_pnet(&dp->net);
|
|
|
|
ovs_fragment(net, vport, skb, mru, key);
|
|
} else {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
|
|
}
|
|
} else {
|
|
kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
|
|
}
|
|
}
|
|
|
|
static int output_userspace(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
const struct nlattr *actions, int actions_len,
|
|
uint32_t cutlen)
|
|
{
|
|
struct dp_upcall_info upcall;
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
memset(&upcall, 0, sizeof(upcall));
|
|
upcall.cmd = OVS_PACKET_CMD_ACTION;
|
|
upcall.mru = OVS_CB(skb)->mru;
|
|
|
|
for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
switch (nla_type(a)) {
|
|
case OVS_USERSPACE_ATTR_USERDATA:
|
|
upcall.userdata = a;
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_PID:
|
|
if (dp->user_features &
|
|
OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
|
|
upcall.portid =
|
|
ovs_dp_get_upcall_portid(dp,
|
|
smp_processor_id());
|
|
else
|
|
upcall.portid = nla_get_u32(a);
|
|
break;
|
|
|
|
case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
|
|
/* Get out tunnel info. */
|
|
struct vport *vport;
|
|
|
|
vport = ovs_vport_rcu(dp, nla_get_u32(a));
|
|
if (vport) {
|
|
int err;
|
|
|
|
err = dev_fill_metadata_dst(vport->dev, skb);
|
|
if (!err)
|
|
upcall.egress_tun_info = skb_tunnel_info(skb);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_USERSPACE_ATTR_ACTIONS: {
|
|
/* Include actions. */
|
|
upcall.actions = actions;
|
|
upcall.actions_len = actions_len;
|
|
break;
|
|
}
|
|
|
|
} /* End of switch. */
|
|
}
|
|
|
|
return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
|
|
}
|
|
|
|
static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
|
|
struct nlattr *actions = nla_data(attr);
|
|
|
|
if (nla_len(actions))
|
|
return clone_execute(dp, skb, key, 0, nla_data(actions),
|
|
nla_len(actions), true, false);
|
|
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
|
|
return 0;
|
|
}
|
|
|
|
/* When 'last' is true, sample() should always consume the 'skb'.
|
|
* Otherwise, sample() should keep 'skb' intact regardless what
|
|
* actions are executed within sample().
|
|
*/
|
|
static int sample(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
bool last)
|
|
{
|
|
struct nlattr *actions;
|
|
struct nlattr *sample_arg;
|
|
int rem = nla_len(attr);
|
|
const struct sample_arg *arg;
|
|
bool clone_flow_key;
|
|
|
|
/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
|
|
sample_arg = nla_data(attr);
|
|
arg = nla_data(sample_arg);
|
|
actions = nla_next(sample_arg, &rem);
|
|
|
|
if ((arg->probability != U32_MAX) &&
|
|
(!arg->probability || get_random_u32() > arg->probability)) {
|
|
if (last)
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
|
|
return 0;
|
|
}
|
|
|
|
clone_flow_key = !arg->exec;
|
|
return clone_execute(dp, skb, key, 0, actions, rem, last,
|
|
clone_flow_key);
|
|
}
|
|
|
|
/* When 'last' is true, clone() should always consume the 'skb'.
|
|
* Otherwise, clone() should keep 'skb' intact regardless what
|
|
* actions are executed within clone().
|
|
*/
|
|
static int clone(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, const struct nlattr *attr,
|
|
bool last)
|
|
{
|
|
struct nlattr *actions;
|
|
struct nlattr *clone_arg;
|
|
int rem = nla_len(attr);
|
|
bool dont_clone_flow_key;
|
|
|
|
/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
|
|
clone_arg = nla_data(attr);
|
|
dont_clone_flow_key = nla_get_u32(clone_arg);
|
|
actions = nla_next(clone_arg, &rem);
|
|
|
|
return clone_execute(dp, skb, key, 0, actions, rem, last,
|
|
!dont_clone_flow_key);
|
|
}
|
|
|
|
static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
|
|
const struct nlattr *attr)
|
|
{
|
|
struct ovs_action_hash *hash_act = nla_data(attr);
|
|
u32 hash = 0;
|
|
|
|
if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
|
|
/* OVS_HASH_ALG_L4 hasing type. */
|
|
hash = skb_get_hash(skb);
|
|
} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
|
|
/* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
|
|
* extend past an encapsulated header.
|
|
*/
|
|
hash = __skb_get_hash_symmetric(skb);
|
|
}
|
|
|
|
hash = jhash_1word(hash, hash_act->hash_basis);
|
|
if (!hash)
|
|
hash = 0x1;
|
|
|
|
key->ovs_flow_hash = hash;
|
|
}
|
|
|
|
static int execute_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
/* Only tunnel set execution is supported without a mask. */
|
|
if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
|
|
struct ovs_tunnel_info *tun = nla_data(a);
|
|
|
|
skb_dst_drop(skb);
|
|
dst_hold((struct dst_entry *)tun->tun_dst);
|
|
skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Mask is at the midpoint of the data. */
|
|
#define get_mask(a, type) ((const type)nla_data(a) + 1)
|
|
|
|
static int execute_masked_set_action(struct sk_buff *skb,
|
|
struct sw_flow_key *flow_key,
|
|
const struct nlattr *a)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (nla_type(a)) {
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
OVS_SET_MASKED(skb->priority, nla_get_u32(a),
|
|
*get_mask(a, u32 *));
|
|
flow_key->phy.priority = skb->priority;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
|
|
flow_key->phy.skb_mark = skb->mark;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TUNNEL_INFO:
|
|
/* Masked data not supported for tunnel. */
|
|
err = -EINVAL;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_ETHERNET:
|
|
err = set_eth_addr(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ethernet *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_NSH:
|
|
err = set_nsh(skb, flow_key, a);
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV4:
|
|
err = set_ipv4(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv4 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV6:
|
|
err = set_ipv6(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_ipv6 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TCP:
|
|
err = set_tcp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_tcp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_UDP:
|
|
err = set_udp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_udp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SCTP:
|
|
err = set_sctp(skb, flow_key, nla_data(a),
|
|
get_mask(a, struct ovs_key_sctp *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_MPLS:
|
|
err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
|
|
__be32 *));
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_CT_STATE:
|
|
case OVS_KEY_ATTR_CT_ZONE:
|
|
case OVS_KEY_ATTR_CT_MARK:
|
|
case OVS_KEY_ATTR_CT_LABELS:
|
|
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
|
|
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *a, bool last)
|
|
{
|
|
u32 recirc_id;
|
|
|
|
if (!is_flow_key_valid(key)) {
|
|
int err;
|
|
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
BUG_ON(!is_flow_key_valid(key));
|
|
|
|
recirc_id = nla_get_u32(a);
|
|
return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
|
|
}
|
|
|
|
static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, bool last)
|
|
{
|
|
struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
|
|
const struct nlattr *actions, *cpl_arg;
|
|
int len, max_len, rem = nla_len(attr);
|
|
const struct check_pkt_len_arg *arg;
|
|
bool clone_flow_key;
|
|
|
|
/* The first netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
|
|
*/
|
|
cpl_arg = nla_data(attr);
|
|
arg = nla_data(cpl_arg);
|
|
|
|
len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
|
|
max_len = arg->pkt_len;
|
|
|
|
if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
|
|
len <= max_len) {
|
|
/* Second netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
|
|
*/
|
|
actions = nla_next(cpl_arg, &rem);
|
|
clone_flow_key = !arg->exec_for_lesser_equal;
|
|
} else {
|
|
/* Third netlink attribute in 'attr' is always
|
|
* 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
|
|
*/
|
|
actions = nla_next(cpl_arg, &rem);
|
|
actions = nla_next(actions, &rem);
|
|
clone_flow_key = !arg->exec_for_greater;
|
|
}
|
|
|
|
return clone_execute(dp, skb, key, 0, nla_data(actions),
|
|
nla_len(actions), last, clone_flow_key);
|
|
}
|
|
|
|
static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
|
|
{
|
|
int err;
|
|
|
|
if (skb->protocol == htons(ETH_P_IPV6)) {
|
|
struct ipv6hdr *nh;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ipv6_hdr(skb);
|
|
|
|
if (nh->hop_limit <= 1)
|
|
return -EHOSTUNREACH;
|
|
|
|
key->ip.ttl = --nh->hop_limit;
|
|
} else if (skb->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *nh;
|
|
u8 old_ttl;
|
|
|
|
err = skb_ensure_writable(skb, skb_network_offset(skb) +
|
|
sizeof(*nh));
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
nh = ip_hdr(skb);
|
|
if (nh->ttl <= 1)
|
|
return -EHOSTUNREACH;
|
|
|
|
old_ttl = nh->ttl--;
|
|
csum_replace2(&nh->check, htons(old_ttl << 8),
|
|
htons(nh->ttl << 8));
|
|
key->ip.ttl = nh->ttl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key,
|
|
const struct nlattr *attr, int len)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
for (a = attr, rem = len; rem > 0;
|
|
a = nla_next(a, &rem)) {
|
|
int err = 0;
|
|
|
|
if (trace_ovs_do_execute_action_enabled())
|
|
trace_ovs_do_execute_action(dp, skb, key, a, rem);
|
|
|
|
/* Actions that rightfully have to consume the skb should do it
|
|
* and return directly.
|
|
*/
|
|
switch (nla_type(a)) {
|
|
case OVS_ACTION_ATTR_OUTPUT: {
|
|
int port = nla_get_u32(a);
|
|
struct sk_buff *clone;
|
|
|
|
/* Every output action needs a separate clone
|
|
* of 'skb', In case the output action is the
|
|
* last action, cloning can be avoided.
|
|
*/
|
|
if (nla_is_last(a, rem)) {
|
|
do_output(dp, skb, port, key);
|
|
/* 'skb' has been used for output.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
clone = skb_clone(skb, GFP_ATOMIC);
|
|
if (clone)
|
|
do_output(dp, clone, port, key);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_TRUNC: {
|
|
struct ovs_action_trunc *trunc = nla_data(a);
|
|
|
|
if (skb->len > trunc->max_len)
|
|
OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_USERSPACE:
|
|
output_userspace(dp, skb, key, a, attr,
|
|
len, OVS_CB(skb)->cutlen);
|
|
OVS_CB(skb)->cutlen = 0;
|
|
if (nla_is_last(a, rem)) {
|
|
consume_skb(skb);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_HASH:
|
|
execute_hash(skb, key, a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_MPLS: {
|
|
struct ovs_action_push_mpls *mpls = nla_data(a);
|
|
|
|
err = push_mpls(skb, key, mpls->mpls_lse,
|
|
mpls->mpls_ethertype, skb->mac_len);
|
|
break;
|
|
}
|
|
case OVS_ACTION_ATTR_ADD_MPLS: {
|
|
struct ovs_action_add_mpls *mpls = nla_data(a);
|
|
__u16 mac_len = 0;
|
|
|
|
if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
|
|
mac_len = skb->mac_len;
|
|
|
|
err = push_mpls(skb, key, mpls->mpls_lse,
|
|
mpls->mpls_ethertype, mac_len);
|
|
break;
|
|
}
|
|
case OVS_ACTION_ATTR_POP_MPLS:
|
|
err = pop_mpls(skb, key, nla_get_be16(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_VLAN:
|
|
err = push_vlan(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_VLAN:
|
|
err = pop_vlan(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_RECIRC: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = execute_recirc(dp, skb, key, a, last);
|
|
if (last) {
|
|
/* If this is the last action, the skb has
|
|
* been consumed or freed.
|
|
* Return immediately.
|
|
*/
|
|
return err;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = execute_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET_MASKED:
|
|
case OVS_ACTION_ATTR_SET_TO_MASKED:
|
|
err = execute_masked_set_action(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = sample(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_CT:
|
|
if (!is_flow_key_valid(key)) {
|
|
err = ovs_flow_key_update(skb, key);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
|
|
nla_data(a));
|
|
|
|
/* Hide stolen IP fragments from user space. */
|
|
if (err)
|
|
return err == -EINPROGRESS ? 0 : err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CT_CLEAR:
|
|
err = ovs_ct_clear(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_ETH:
|
|
err = push_eth(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_ETH:
|
|
err = pop_eth(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_NSH:
|
|
err = push_nsh(skb, key, nla_data(a));
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_POP_NSH:
|
|
err = pop_nsh(skb, key);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_METER:
|
|
if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_METER);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CLONE: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = clone(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
|
|
bool last = nla_is_last(a, rem);
|
|
|
|
err = execute_check_pkt_len(dp, skb, key, a, last);
|
|
if (last)
|
|
return err;
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_DEC_TTL:
|
|
err = execute_dec_ttl(skb, key);
|
|
if (err == -EHOSTUNREACH)
|
|
return dec_ttl_exception_handler(dp, skb,
|
|
key, a);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_DROP: {
|
|
enum ovs_drop_reason reason = nla_get_u32(a)
|
|
? OVS_DROP_EXPLICIT_WITH_ERROR
|
|
: OVS_DROP_EXPLICIT;
|
|
|
|
ovs_kfree_skb_reason(skb, reason);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (unlikely(err)) {
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
|
|
return 0;
|
|
}
|
|
|
|
/* Execute the actions on the clone of the packet. The effect of the
|
|
* execution does not affect the original 'skb' nor the original 'key'.
|
|
*
|
|
* The execution may be deferred in case the actions can not be executed
|
|
* immediately.
|
|
*/
|
|
static int clone_execute(struct datapath *dp, struct sk_buff *skb,
|
|
struct sw_flow_key *key, u32 recirc_id,
|
|
const struct nlattr *actions, int len,
|
|
bool last, bool clone_flow_key)
|
|
{
|
|
struct deferred_action *da;
|
|
struct sw_flow_key *clone;
|
|
|
|
skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
|
|
if (!skb) {
|
|
/* Out of memory, skip this action.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* When clone_flow_key is false, the 'key' will not be change
|
|
* by the actions, then the 'key' can be used directly.
|
|
* Otherwise, try to clone key from the next recursion level of
|
|
* 'flow_keys'. If clone is successful, execute the actions
|
|
* without deferring.
|
|
*/
|
|
clone = clone_flow_key ? clone_key(key) : key;
|
|
if (clone) {
|
|
int err = 0;
|
|
|
|
if (actions) { /* Sample action */
|
|
if (clone_flow_key)
|
|
__this_cpu_inc(exec_actions_level);
|
|
|
|
err = do_execute_actions(dp, skb, clone,
|
|
actions, len);
|
|
|
|
if (clone_flow_key)
|
|
__this_cpu_dec(exec_actions_level);
|
|
} else { /* Recirc action */
|
|
clone->recirc_id = recirc_id;
|
|
ovs_dp_process_packet(skb, clone);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Out of 'flow_keys' space. Defer actions */
|
|
da = add_deferred_actions(skb, key, actions, len);
|
|
if (da) {
|
|
if (!actions) { /* Recirc action */
|
|
key = &da->pkt_key;
|
|
key->recirc_id = recirc_id;
|
|
}
|
|
} else {
|
|
/* Out of per CPU action FIFO space. Drop the 'skb' and
|
|
* log an error.
|
|
*/
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
|
|
|
|
if (net_ratelimit()) {
|
|
if (actions) { /* Sample action */
|
|
pr_warn("%s: deferred action limit reached, drop sample action\n",
|
|
ovs_dp_name(dp));
|
|
} else { /* Recirc action */
|
|
pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
|
|
ovs_dp_name(dp), recirc_id);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void process_deferred_actions(struct datapath *dp)
|
|
{
|
|
struct action_fifo *fifo = this_cpu_ptr(action_fifos);
|
|
|
|
/* Do not touch the FIFO in case there is no deferred actions. */
|
|
if (action_fifo_is_empty(fifo))
|
|
return;
|
|
|
|
/* Finishing executing all deferred actions. */
|
|
do {
|
|
struct deferred_action *da = action_fifo_get(fifo);
|
|
struct sk_buff *skb = da->skb;
|
|
struct sw_flow_key *key = &da->pkt_key;
|
|
const struct nlattr *actions = da->actions;
|
|
int actions_len = da->actions_len;
|
|
|
|
if (actions)
|
|
do_execute_actions(dp, skb, key, actions, actions_len);
|
|
else
|
|
ovs_dp_process_packet(skb, key);
|
|
} while (!action_fifo_is_empty(fifo));
|
|
|
|
/* Reset FIFO for the next packet. */
|
|
action_fifo_init(fifo);
|
|
}
|
|
|
|
/* Execute a list of actions against 'skb'. */
|
|
int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
|
|
const struct sw_flow_actions *acts,
|
|
struct sw_flow_key *key)
|
|
{
|
|
int err, level;
|
|
|
|
level = __this_cpu_inc_return(exec_actions_level);
|
|
if (unlikely(level > OVS_RECURSION_LIMIT)) {
|
|
net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
|
|
ovs_dp_name(dp));
|
|
ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
|
|
err = -ENETDOWN;
|
|
goto out;
|
|
}
|
|
|
|
OVS_CB(skb)->acts_origlen = acts->orig_len;
|
|
err = do_execute_actions(dp, skb, key,
|
|
acts->actions, acts->actions_len);
|
|
|
|
if (level == 1)
|
|
process_deferred_actions(dp);
|
|
|
|
out:
|
|
__this_cpu_dec(exec_actions_level);
|
|
return err;
|
|
}
|
|
|
|
int action_fifos_init(void)
|
|
{
|
|
action_fifos = alloc_percpu(struct action_fifo);
|
|
if (!action_fifos)
|
|
return -ENOMEM;
|
|
|
|
flow_keys = alloc_percpu(struct action_flow_keys);
|
|
if (!flow_keys) {
|
|
free_percpu(action_fifos);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void action_fifos_exit(void)
|
|
{
|
|
free_percpu(action_fifos);
|
|
free_percpu(flow_keys);
|
|
}
|