mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 10:56:14 +00:00
246c03dd89
In preparation for separating responsibilities, break out the entropy count management part of crng_reseed() into its own function. No functional changes. Cc: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
1692 lines
46 KiB
C
1692 lines
46 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
|
|
/*
|
|
* Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
|
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
|
|
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
|
|
* rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Exported interfaces ---- output
|
|
* ===============================
|
|
*
|
|
* There are four exported interfaces; two for use within the kernel,
|
|
* and two for use from userspace.
|
|
*
|
|
* Exported interfaces ---- userspace output
|
|
* -----------------------------------------
|
|
*
|
|
* The userspace interfaces are two character devices /dev/random and
|
|
* /dev/urandom. /dev/random is suitable for use when very high
|
|
* quality randomness is desired (for example, for key generation or
|
|
* one-time pads), as it will only return a maximum of the number of
|
|
* bits of randomness (as estimated by the random number generator)
|
|
* contained in the entropy pool.
|
|
*
|
|
* The /dev/urandom device does not have this limit, and will return
|
|
* as many bytes as are requested. As more and more random bytes are
|
|
* requested without giving time for the entropy pool to recharge,
|
|
* this will result in random numbers that are merely cryptographically
|
|
* strong. For many applications, however, this is acceptable.
|
|
*
|
|
* Exported interfaces ---- kernel output
|
|
* --------------------------------------
|
|
*
|
|
* The primary kernel interfaces are:
|
|
*
|
|
* void get_random_bytes(void *buf, size_t nbytes);
|
|
* u32 get_random_u32()
|
|
* u64 get_random_u64()
|
|
* unsigned int get_random_int()
|
|
* unsigned long get_random_long()
|
|
*
|
|
* These interfaces will return the requested number of random bytes
|
|
* into the given buffer or as a return value. This is equivalent to a
|
|
* read from /dev/urandom. The get_random_{u32,u64,int,long}() family
|
|
* of functions may be higher performance for one-off random integers,
|
|
* because they do a bit of buffering.
|
|
*
|
|
* prandom_u32()
|
|
* -------------
|
|
*
|
|
* For even weaker applications, see the pseudorandom generator
|
|
* prandom_u32(), prandom_max(), and prandom_bytes(). If the random
|
|
* numbers aren't security-critical at all, these are *far* cheaper.
|
|
* Useful for self-tests, random error simulation, randomized backoffs,
|
|
* and any other application where you trust that nobody is trying to
|
|
* maliciously mess with you by guessing the "random" numbers.
|
|
*
|
|
* Exported interfaces ---- input
|
|
* ==============================
|
|
*
|
|
* The current exported interfaces for gathering environmental noise
|
|
* from the devices are:
|
|
*
|
|
* void add_device_randomness(const void *buf, size_t size);
|
|
* void add_input_randomness(unsigned int type, unsigned int code,
|
|
* unsigned int value);
|
|
* void add_interrupt_randomness(int irq);
|
|
* void add_disk_randomness(struct gendisk *disk);
|
|
* void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
* size_t entropy);
|
|
* void add_bootloader_randomness(const void *buf, size_t size);
|
|
*
|
|
* add_device_randomness() is for adding data to the random pool that
|
|
* is likely to differ between two devices (or possibly even per boot).
|
|
* This would be things like MAC addresses or serial numbers, or the
|
|
* read-out of the RTC. This does *not* add any actual entropy to the
|
|
* pool, but it initializes the pool to different values for devices
|
|
* that might otherwise be identical and have very little entropy
|
|
* available to them (particularly common in the embedded world).
|
|
*
|
|
* add_input_randomness() uses the input layer interrupt timing, as well as
|
|
* the event type information from the hardware.
|
|
*
|
|
* add_interrupt_randomness() uses the interrupt timing as random
|
|
* inputs to the entropy pool. Using the cycle counters and the irq source
|
|
* as inputs, it feeds the randomness roughly once a second.
|
|
*
|
|
* add_disk_randomness() uses what amounts to the seek time of block
|
|
* layer request events, on a per-disk_devt basis, as input to the
|
|
* entropy pool. Note that high-speed solid state drives with very low
|
|
* seek times do not make for good sources of entropy, as their seek
|
|
* times are usually fairly consistent.
|
|
*
|
|
* All of these routines try to estimate how many bits of randomness a
|
|
* particular randomness source. They do this by keeping track of the
|
|
* first and second order deltas of the event timings.
|
|
*
|
|
* add_hwgenerator_randomness() is for true hardware RNGs, and will credit
|
|
* entropy as specified by the caller. If the entropy pool is full it will
|
|
* block until more entropy is needed.
|
|
*
|
|
* add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
|
|
* add_device_randomness(), depending on whether or not the configuration
|
|
* option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
|
|
*
|
|
* Ensuring unpredictability at system startup
|
|
* ============================================
|
|
*
|
|
* When any operating system starts up, it will go through a sequence
|
|
* of actions that are fairly predictable by an adversary, especially
|
|
* if the start-up does not involve interaction with a human operator.
|
|
* This reduces the actual number of bits of unpredictability in the
|
|
* entropy pool below the value in entropy_count. In order to
|
|
* counteract this effect, it helps to carry information in the
|
|
* entropy pool across shut-downs and start-ups. To do this, put the
|
|
* following lines an appropriate script which is run during the boot
|
|
* sequence:
|
|
*
|
|
* echo "Initializing random number generator..."
|
|
* random_seed=/var/run/random-seed
|
|
* # Carry a random seed from start-up to start-up
|
|
* # Load and then save the whole entropy pool
|
|
* if [ -f $random_seed ]; then
|
|
* cat $random_seed >/dev/urandom
|
|
* else
|
|
* touch $random_seed
|
|
* fi
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* and the following lines in an appropriate script which is run as
|
|
* the system is shutdown:
|
|
*
|
|
* # Carry a random seed from shut-down to start-up
|
|
* # Save the whole entropy pool
|
|
* echo "Saving random seed..."
|
|
* random_seed=/var/run/random-seed
|
|
* touch $random_seed
|
|
* chmod 600 $random_seed
|
|
* dd if=/dev/urandom of=$random_seed count=1 bs=512
|
|
*
|
|
* For example, on most modern systems using the System V init
|
|
* scripts, such code fragments would be found in
|
|
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
|
|
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
|
|
*
|
|
* Effectively, these commands cause the contents of the entropy pool
|
|
* to be saved at shut-down time and reloaded into the entropy pool at
|
|
* start-up. (The 'dd' in the addition to the bootup script is to
|
|
* make sure that /etc/random-seed is different for every start-up,
|
|
* even if the system crashes without executing rc.0.) Even with
|
|
* complete knowledge of the start-up activities, predicting the state
|
|
* of the entropy pool requires knowledge of the previous history of
|
|
* the system.
|
|
*
|
|
* Configuring the /dev/random driver under Linux
|
|
* ==============================================
|
|
*
|
|
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
|
|
* the /dev/mem major number (#1). So if your system does not have
|
|
* /dev/random and /dev/urandom created already, they can be created
|
|
* by using the commands:
|
|
*
|
|
* mknod /dev/random c 1 8
|
|
* mknod /dev/urandom c 1 9
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/utsname.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/string.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/random.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/uuid.h>
|
|
#include <crypto/chacha.h>
|
|
#include <crypto/blake2s.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/io.h>
|
|
|
|
enum {
|
|
POOL_BITS = BLAKE2S_HASH_SIZE * 8,
|
|
POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
|
|
};
|
|
|
|
/*
|
|
* Static global variables
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
|
|
static struct fasync_struct *fasync;
|
|
|
|
static DEFINE_SPINLOCK(random_ready_list_lock);
|
|
static LIST_HEAD(random_ready_list);
|
|
|
|
/*
|
|
* crng_init = 0 --> Uninitialized
|
|
* 1 --> Initialized
|
|
* 2 --> Initialized from input_pool
|
|
*
|
|
* crng_init is protected by primary_crng->lock, and only increases
|
|
* its value (from 0->1->2).
|
|
*/
|
|
static int crng_init = 0;
|
|
#define crng_ready() (likely(crng_init > 1))
|
|
static int crng_init_cnt = 0;
|
|
static void process_random_ready_list(void);
|
|
static void _get_random_bytes(void *buf, size_t nbytes);
|
|
|
|
static struct ratelimit_state unseeded_warning =
|
|
RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
|
|
static struct ratelimit_state urandom_warning =
|
|
RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
|
|
|
|
static int ratelimit_disable __read_mostly;
|
|
|
|
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
|
|
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
|
|
|
|
/**********************************************************************
|
|
*
|
|
* OS independent entropy store. Here are the functions which handle
|
|
* storing entropy in an entropy pool.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static struct {
|
|
struct blake2s_state hash;
|
|
spinlock_t lock;
|
|
unsigned int entropy_count;
|
|
} input_pool = {
|
|
.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
|
|
BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
|
|
BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
|
|
.hash.outlen = BLAKE2S_HASH_SIZE,
|
|
.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
|
|
};
|
|
|
|
static void extract_entropy(void *buf, size_t nbytes);
|
|
static bool drain_entropy(void *buf, size_t nbytes);
|
|
|
|
static void crng_reseed(void);
|
|
|
|
/*
|
|
* This function adds bytes into the entropy "pool". It does not
|
|
* update the entropy estimate. The caller should call
|
|
* credit_entropy_bits if this is appropriate.
|
|
*/
|
|
static void _mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
blake2s_update(&input_pool.hash, in, nbytes);
|
|
}
|
|
|
|
static void mix_pool_bytes(const void *in, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(in, nbytes);
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
|
|
struct fast_pool {
|
|
union {
|
|
u32 pool32[4];
|
|
u64 pool64[2];
|
|
};
|
|
unsigned long last;
|
|
u16 reg_idx;
|
|
u8 count;
|
|
};
|
|
|
|
/*
|
|
* This is a fast mixing routine used by the interrupt randomness
|
|
* collector. It's hardcoded for an 128 bit pool and assumes that any
|
|
* locks that might be needed are taken by the caller.
|
|
*/
|
|
static void fast_mix(u32 pool[4])
|
|
{
|
|
u32 a = pool[0], b = pool[1];
|
|
u32 c = pool[2], d = pool[3];
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 6); d = rol32(d, 27);
|
|
d ^= a; b ^= c;
|
|
|
|
a += b; c += d;
|
|
b = rol32(b, 16); d = rol32(d, 14);
|
|
d ^= a; b ^= c;
|
|
|
|
pool[0] = a; pool[1] = b;
|
|
pool[2] = c; pool[3] = d;
|
|
}
|
|
|
|
static void process_random_ready_list(void)
|
|
{
|
|
unsigned long flags;
|
|
struct random_ready_callback *rdy, *tmp;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
|
|
struct module *owner = rdy->owner;
|
|
|
|
list_del_init(&rdy->list);
|
|
rdy->func(rdy);
|
|
module_put(owner);
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
}
|
|
|
|
static void credit_entropy_bits(size_t nbits)
|
|
{
|
|
unsigned int entropy_count, orig, add;
|
|
|
|
if (!nbits)
|
|
return;
|
|
|
|
add = min_t(size_t, nbits, POOL_BITS);
|
|
|
|
do {
|
|
orig = READ_ONCE(input_pool.entropy_count);
|
|
entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
|
|
} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
|
|
|
|
if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
|
|
crng_reseed();
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* CRNG using CHACHA20
|
|
*
|
|
*********************************************************************/
|
|
|
|
enum {
|
|
CRNG_RESEED_INTERVAL = 300 * HZ,
|
|
CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
|
|
};
|
|
|
|
static struct {
|
|
u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
|
|
unsigned long birth;
|
|
unsigned long generation;
|
|
spinlock_t lock;
|
|
} base_crng = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
|
|
};
|
|
|
|
struct crng {
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
unsigned long generation;
|
|
local_lock_t lock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct crng, crngs) = {
|
|
.generation = ULONG_MAX,
|
|
.lock = INIT_LOCAL_LOCK(crngs.lock),
|
|
};
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
|
|
|
|
/*
|
|
* crng_fast_load() can be called by code in the interrupt service
|
|
* path. So we can't afford to dilly-dally. Returns the number of
|
|
* bytes processed from cp.
|
|
*/
|
|
static size_t crng_fast_load(const void *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
const u8 *src = (const u8 *)cp;
|
|
size_t ret = 0;
|
|
|
|
if (!spin_trylock_irqsave(&base_crng.lock, flags))
|
|
return 0;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
return 0;
|
|
}
|
|
while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
|
|
base_crng.key[crng_init_cnt % sizeof(base_crng.key)] ^= *src;
|
|
src++; crng_init_cnt++; len--; ret++;
|
|
}
|
|
if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
|
|
++base_crng.generation;
|
|
crng_init = 1;
|
|
}
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
if (crng_init == 1)
|
|
pr_notice("fast init done\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* crng_slow_load() is called by add_device_randomness, which has two
|
|
* attributes. (1) We can't trust the buffer passed to it is
|
|
* guaranteed to be unpredictable (so it might not have any entropy at
|
|
* all), and (2) it doesn't have the performance constraints of
|
|
* crng_fast_load().
|
|
*
|
|
* So, we simply hash the contents in with the current key. Finally,
|
|
* we do *not* advance crng_init_cnt since buffer we may get may be
|
|
* something like a fixed DMI table (for example), which might very
|
|
* well be unique to the machine, but is otherwise unvarying.
|
|
*/
|
|
static void crng_slow_load(const void *cp, size_t len)
|
|
{
|
|
unsigned long flags;
|
|
struct blake2s_state hash;
|
|
|
|
blake2s_init(&hash, sizeof(base_crng.key));
|
|
|
|
if (!spin_trylock_irqsave(&base_crng.lock, flags))
|
|
return;
|
|
if (crng_init != 0) {
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
return;
|
|
}
|
|
|
|
blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
|
|
blake2s_update(&hash, cp, len);
|
|
blake2s_final(&hash, base_crng.key);
|
|
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
}
|
|
|
|
static void crng_reseed(void)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long next_gen;
|
|
u8 key[CHACHA_KEY_SIZE];
|
|
bool finalize_init = false;
|
|
|
|
/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
|
|
if (!drain_entropy(key, sizeof(key)))
|
|
return;
|
|
|
|
/*
|
|
* We copy the new key into the base_crng, overwriting the old one,
|
|
* and update the generation counter. We avoid hitting ULONG_MAX,
|
|
* because the per-cpu crngs are initialized to ULONG_MAX, so this
|
|
* forces new CPUs that come online to always initialize.
|
|
*/
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
memcpy(base_crng.key, key, sizeof(base_crng.key));
|
|
next_gen = base_crng.generation + 1;
|
|
if (next_gen == ULONG_MAX)
|
|
++next_gen;
|
|
WRITE_ONCE(base_crng.generation, next_gen);
|
|
WRITE_ONCE(base_crng.birth, jiffies);
|
|
if (crng_init < 2) {
|
|
crng_init = 2;
|
|
finalize_init = true;
|
|
}
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
memzero_explicit(key, sizeof(key));
|
|
if (finalize_init) {
|
|
process_random_ready_list();
|
|
wake_up_interruptible(&crng_init_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_IN);
|
|
pr_notice("crng init done\n");
|
|
if (unseeded_warning.missed) {
|
|
pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
|
|
unseeded_warning.missed);
|
|
unseeded_warning.missed = 0;
|
|
}
|
|
if (urandom_warning.missed) {
|
|
pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
|
|
urandom_warning.missed);
|
|
urandom_warning.missed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The general form here is based on a "fast key erasure RNG" from
|
|
* <https://blog.cr.yp.to/20170723-random.html>. It generates a ChaCha
|
|
* block using the provided key, and then immediately overwites that
|
|
* key with half the block. It returns the resultant ChaCha state to the
|
|
* user, along with the second half of the block containing 32 bytes of
|
|
* random data that may be used; random_data_len may not be greater than
|
|
* 32.
|
|
*/
|
|
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
|
|
u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
u8 first_block[CHACHA_BLOCK_SIZE];
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
chacha_init_consts(chacha_state);
|
|
memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
|
|
memset(&chacha_state[12], 0, sizeof(u32) * 4);
|
|
chacha20_block(chacha_state, first_block);
|
|
|
|
memcpy(key, first_block, CHACHA_KEY_SIZE);
|
|
memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
|
|
memzero_explicit(first_block, sizeof(first_block));
|
|
}
|
|
|
|
/*
|
|
* This function returns a ChaCha state that you may use for generating
|
|
* random data. It also returns up to 32 bytes on its own of random data
|
|
* that may be used; random_data_len may not be greater than 32.
|
|
*/
|
|
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
|
|
u8 *random_data, size_t random_data_len)
|
|
{
|
|
unsigned long flags;
|
|
struct crng *crng;
|
|
|
|
BUG_ON(random_data_len > 32);
|
|
|
|
/*
|
|
* For the fast path, we check whether we're ready, unlocked first, and
|
|
* then re-check once locked later. In the case where we're really not
|
|
* ready, we do fast key erasure with the base_crng directly, because
|
|
* this is what crng_{fast,slow}_load mutate during early init.
|
|
*/
|
|
if (unlikely(!crng_ready())) {
|
|
bool ready;
|
|
|
|
spin_lock_irqsave(&base_crng.lock, flags);
|
|
ready = crng_ready();
|
|
if (!ready)
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
random_data, random_data_len);
|
|
spin_unlock_irqrestore(&base_crng.lock, flags);
|
|
if (!ready)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the base_crng is more than 5 minutes old, we reseed, which
|
|
* in turn bumps the generation counter that we check below.
|
|
*/
|
|
if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL)))
|
|
crng_reseed();
|
|
|
|
local_lock_irqsave(&crngs.lock, flags);
|
|
crng = raw_cpu_ptr(&crngs);
|
|
|
|
/*
|
|
* If our per-cpu crng is older than the base_crng, then it means
|
|
* somebody reseeded the base_crng. In that case, we do fast key
|
|
* erasure on the base_crng, and use its output as the new key
|
|
* for our per-cpu crng. This brings us up to date with base_crng.
|
|
*/
|
|
if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
|
|
spin_lock(&base_crng.lock);
|
|
crng_fast_key_erasure(base_crng.key, chacha_state,
|
|
crng->key, sizeof(crng->key));
|
|
crng->generation = base_crng.generation;
|
|
spin_unlock(&base_crng.lock);
|
|
}
|
|
|
|
/*
|
|
* Finally, when we've made it this far, our per-cpu crng has an up
|
|
* to date key, and we can do fast key erasure with it to produce
|
|
* some random data and a ChaCha state for the caller. All other
|
|
* branches of this function are "unlikely", so most of the time we
|
|
* should wind up here immediately.
|
|
*/
|
|
crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
|
|
local_unlock_irqrestore(&crngs.lock, flags);
|
|
}
|
|
|
|
static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
|
|
{
|
|
bool large_request = nbytes > 256;
|
|
ssize_t ret = 0;
|
|
size_t len;
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 output[CHACHA_BLOCK_SIZE];
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, output, len);
|
|
|
|
if (copy_to_user(buf, output, len))
|
|
return -EFAULT;
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
|
|
while (nbytes) {
|
|
if (large_request && need_resched()) {
|
|
if (signal_pending(current))
|
|
break;
|
|
schedule();
|
|
}
|
|
|
|
chacha20_block(chacha_state, output);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
|
|
len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
|
|
if (copy_to_user(buf, output, len)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
nbytes -= len;
|
|
buf += len;
|
|
ret += len;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
memzero_explicit(output, sizeof(output));
|
|
return ret;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy input management
|
|
*
|
|
*********************************************************************/
|
|
|
|
/* There is one of these per entropy source */
|
|
struct timer_rand_state {
|
|
cycles_t last_time;
|
|
long last_delta, last_delta2;
|
|
};
|
|
|
|
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
|
|
|
|
/*
|
|
* Add device- or boot-specific data to the input pool to help
|
|
* initialize it.
|
|
*
|
|
* None of this adds any entropy; it is meant to avoid the problem of
|
|
* the entropy pool having similar initial state across largely
|
|
* identical devices.
|
|
*/
|
|
void add_device_randomness(const void *buf, size_t size)
|
|
{
|
|
unsigned long time = random_get_entropy() ^ jiffies;
|
|
unsigned long flags;
|
|
|
|
if (!crng_ready() && size)
|
|
crng_slow_load(buf, size);
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
_mix_pool_bytes(buf, size);
|
|
_mix_pool_bytes(&time, sizeof(time));
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(add_device_randomness);
|
|
|
|
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
|
|
|
|
/*
|
|
* This function adds entropy to the entropy "pool" by using timing
|
|
* delays. It uses the timer_rand_state structure to make an estimate
|
|
* of how many bits of entropy this call has added to the pool.
|
|
*
|
|
* The number "num" is also added to the pool - it should somehow describe
|
|
* the type of event which just happened. This is currently 0-255 for
|
|
* keyboard scan codes, and 256 upwards for interrupts.
|
|
*
|
|
*/
|
|
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
|
|
{
|
|
struct {
|
|
long jiffies;
|
|
unsigned int cycles;
|
|
unsigned int num;
|
|
} sample;
|
|
long delta, delta2, delta3;
|
|
|
|
sample.jiffies = jiffies;
|
|
sample.cycles = random_get_entropy();
|
|
sample.num = num;
|
|
mix_pool_bytes(&sample, sizeof(sample));
|
|
|
|
/*
|
|
* Calculate number of bits of randomness we probably added.
|
|
* We take into account the first, second and third-order deltas
|
|
* in order to make our estimate.
|
|
*/
|
|
delta = sample.jiffies - READ_ONCE(state->last_time);
|
|
WRITE_ONCE(state->last_time, sample.jiffies);
|
|
|
|
delta2 = delta - READ_ONCE(state->last_delta);
|
|
WRITE_ONCE(state->last_delta, delta);
|
|
|
|
delta3 = delta2 - READ_ONCE(state->last_delta2);
|
|
WRITE_ONCE(state->last_delta2, delta2);
|
|
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta2 < 0)
|
|
delta2 = -delta2;
|
|
if (delta3 < 0)
|
|
delta3 = -delta3;
|
|
if (delta > delta2)
|
|
delta = delta2;
|
|
if (delta > delta3)
|
|
delta = delta3;
|
|
|
|
/*
|
|
* delta is now minimum absolute delta.
|
|
* Round down by 1 bit on general principles,
|
|
* and limit entropy estimate to 12 bits.
|
|
*/
|
|
credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
|
|
}
|
|
|
|
void add_input_randomness(unsigned int type, unsigned int code,
|
|
unsigned int value)
|
|
{
|
|
static unsigned char last_value;
|
|
|
|
/* ignore autorepeat and the like */
|
|
if (value == last_value)
|
|
return;
|
|
|
|
last_value = value;
|
|
add_timer_randomness(&input_timer_state,
|
|
(type << 4) ^ code ^ (code >> 4) ^ value);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_input_randomness);
|
|
|
|
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
|
|
|
|
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
|
|
{
|
|
u32 *ptr = (u32 *)regs;
|
|
unsigned int idx;
|
|
|
|
if (regs == NULL)
|
|
return 0;
|
|
idx = READ_ONCE(f->reg_idx);
|
|
if (idx >= sizeof(struct pt_regs) / sizeof(u32))
|
|
idx = 0;
|
|
ptr += idx++;
|
|
WRITE_ONCE(f->reg_idx, idx);
|
|
return *ptr;
|
|
}
|
|
|
|
void add_interrupt_randomness(int irq)
|
|
{
|
|
struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
unsigned long now = jiffies;
|
|
cycles_t cycles = random_get_entropy();
|
|
|
|
if (cycles == 0)
|
|
cycles = get_reg(fast_pool, regs);
|
|
|
|
if (sizeof(cycles) == 8)
|
|
fast_pool->pool64[0] ^= cycles ^ rol64(now, 32) ^ irq;
|
|
else {
|
|
fast_pool->pool32[0] ^= cycles ^ irq;
|
|
fast_pool->pool32[1] ^= now;
|
|
}
|
|
|
|
if (sizeof(unsigned long) == 8)
|
|
fast_pool->pool64[1] ^= regs ? instruction_pointer(regs) : _RET_IP_;
|
|
else {
|
|
fast_pool->pool32[2] ^= regs ? instruction_pointer(regs) : _RET_IP_;
|
|
fast_pool->pool32[3] ^= get_reg(fast_pool, regs);
|
|
}
|
|
|
|
fast_mix(fast_pool->pool32);
|
|
++fast_pool->count;
|
|
|
|
if (unlikely(crng_init == 0)) {
|
|
if (fast_pool->count >= 64 &&
|
|
crng_fast_load(fast_pool->pool32, sizeof(fast_pool->pool32)) > 0) {
|
|
fast_pool->count = 0;
|
|
fast_pool->last = now;
|
|
if (spin_trylock(&input_pool.lock)) {
|
|
_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
|
|
spin_unlock(&input_pool.lock);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
|
|
return;
|
|
|
|
if (!spin_trylock(&input_pool.lock))
|
|
return;
|
|
|
|
fast_pool->last = now;
|
|
_mix_pool_bytes(&fast_pool->pool32, sizeof(fast_pool->pool32));
|
|
spin_unlock(&input_pool.lock);
|
|
|
|
fast_pool->count = 0;
|
|
|
|
/* award one bit for the contents of the fast pool */
|
|
credit_entropy_bits(1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void add_disk_randomness(struct gendisk *disk)
|
|
{
|
|
if (!disk || !disk->random)
|
|
return;
|
|
/* first major is 1, so we get >= 0x200 here */
|
|
add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_disk_randomness);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Entropy extraction routines
|
|
*
|
|
*********************************************************************/
|
|
|
|
/*
|
|
* This is an HKDF-like construction for using the hashed collected entropy
|
|
* as a PRF key, that's then expanded block-by-block.
|
|
*/
|
|
static void extract_entropy(void *buf, size_t nbytes)
|
|
{
|
|
unsigned long flags;
|
|
u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
|
|
struct {
|
|
unsigned long rdseed[32 / sizeof(long)];
|
|
size_t counter;
|
|
} block;
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
|
|
if (!arch_get_random_seed_long(&block.rdseed[i]) &&
|
|
!arch_get_random_long(&block.rdseed[i]))
|
|
block.rdseed[i] = random_get_entropy();
|
|
}
|
|
|
|
spin_lock_irqsave(&input_pool.lock, flags);
|
|
|
|
/* seed = HASHPRF(last_key, entropy_input) */
|
|
blake2s_final(&input_pool.hash, seed);
|
|
|
|
/* next_key = HASHPRF(seed, RDSEED || 0) */
|
|
block.counter = 0;
|
|
blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
|
|
blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
|
|
|
|
spin_unlock_irqrestore(&input_pool.lock, flags);
|
|
memzero_explicit(next_key, sizeof(next_key));
|
|
|
|
while (nbytes) {
|
|
i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
|
|
/* output = HASHPRF(seed, RDSEED || ++counter) */
|
|
++block.counter;
|
|
blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
|
|
nbytes -= i;
|
|
buf += i;
|
|
}
|
|
|
|
memzero_explicit(seed, sizeof(seed));
|
|
memzero_explicit(&block, sizeof(block));
|
|
}
|
|
|
|
/*
|
|
* First we make sure we have POOL_MIN_BITS of entropy in the pool, and then we
|
|
* set the entropy count to zero (but don't actually touch any data). Only then
|
|
* can we extract a new key with extract_entropy().
|
|
*/
|
|
static bool drain_entropy(void *buf, size_t nbytes)
|
|
{
|
|
unsigned int entropy_count;
|
|
do {
|
|
entropy_count = READ_ONCE(input_pool.entropy_count);
|
|
if (entropy_count < POOL_MIN_BITS)
|
|
return false;
|
|
} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
|
|
extract_entropy(buf, nbytes);
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
return true;
|
|
}
|
|
|
|
#define warn_unseeded_randomness(previous) \
|
|
_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
|
|
|
|
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
|
|
{
|
|
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
const bool print_once = false;
|
|
#else
|
|
static bool print_once __read_mostly;
|
|
#endif
|
|
|
|
if (print_once || crng_ready() ||
|
|
(previous && (caller == READ_ONCE(*previous))))
|
|
return;
|
|
WRITE_ONCE(*previous, caller);
|
|
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
|
|
print_once = true;
|
|
#endif
|
|
if (__ratelimit(&unseeded_warning))
|
|
printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
|
|
func_name, caller, crng_init);
|
|
}
|
|
|
|
/*
|
|
* This function is the exported kernel interface. It returns some
|
|
* number of good random numbers, suitable for key generation, seeding
|
|
* TCP sequence numbers, etc. It does not rely on the hardware random
|
|
* number generator. For random bytes direct from the hardware RNG
|
|
* (when available), use get_random_bytes_arch(). In order to ensure
|
|
* that the randomness provided by this function is okay, the function
|
|
* wait_for_random_bytes() should be called and return 0 at least once
|
|
* at any point prior.
|
|
*/
|
|
static void _get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
u32 chacha_state[CHACHA_STATE_WORDS];
|
|
u8 tmp[CHACHA_BLOCK_SIZE];
|
|
size_t len;
|
|
|
|
if (!nbytes)
|
|
return;
|
|
|
|
len = min_t(size_t, 32, nbytes);
|
|
crng_make_state(chacha_state, buf, len);
|
|
nbytes -= len;
|
|
buf += len;
|
|
|
|
while (nbytes) {
|
|
if (nbytes < CHACHA_BLOCK_SIZE) {
|
|
chacha20_block(chacha_state, tmp);
|
|
memcpy(buf, tmp, nbytes);
|
|
memzero_explicit(tmp, sizeof(tmp));
|
|
break;
|
|
}
|
|
|
|
chacha20_block(chacha_state, buf);
|
|
if (unlikely(chacha_state[12] == 0))
|
|
++chacha_state[13];
|
|
nbytes -= CHACHA_BLOCK_SIZE;
|
|
buf += CHACHA_BLOCK_SIZE;
|
|
}
|
|
|
|
memzero_explicit(chacha_state, sizeof(chacha_state));
|
|
}
|
|
|
|
void get_random_bytes(void *buf, size_t nbytes)
|
|
{
|
|
static void *previous;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
_get_random_bytes(buf, nbytes);
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes);
|
|
|
|
/*
|
|
* Each time the timer fires, we expect that we got an unpredictable
|
|
* jump in the cycle counter. Even if the timer is running on another
|
|
* CPU, the timer activity will be touching the stack of the CPU that is
|
|
* generating entropy..
|
|
*
|
|
* Note that we don't re-arm the timer in the timer itself - we are
|
|
* happy to be scheduled away, since that just makes the load more
|
|
* complex, but we do not want the timer to keep ticking unless the
|
|
* entropy loop is running.
|
|
*
|
|
* So the re-arming always happens in the entropy loop itself.
|
|
*/
|
|
static void entropy_timer(struct timer_list *t)
|
|
{
|
|
credit_entropy_bits(1);
|
|
}
|
|
|
|
/*
|
|
* If we have an actual cycle counter, see if we can
|
|
* generate enough entropy with timing noise
|
|
*/
|
|
static void try_to_generate_entropy(void)
|
|
{
|
|
struct {
|
|
unsigned long now;
|
|
struct timer_list timer;
|
|
} stack;
|
|
|
|
stack.now = random_get_entropy();
|
|
|
|
/* Slow counter - or none. Don't even bother */
|
|
if (stack.now == random_get_entropy())
|
|
return;
|
|
|
|
timer_setup_on_stack(&stack.timer, entropy_timer, 0);
|
|
while (!crng_ready()) {
|
|
if (!timer_pending(&stack.timer))
|
|
mod_timer(&stack.timer, jiffies + 1);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
schedule();
|
|
stack.now = random_get_entropy();
|
|
}
|
|
|
|
del_timer_sync(&stack.timer);
|
|
destroy_timer_on_stack(&stack.timer);
|
|
mix_pool_bytes(&stack.now, sizeof(stack.now));
|
|
}
|
|
|
|
/*
|
|
* Wait for the urandom pool to be seeded and thus guaranteed to supply
|
|
* cryptographically secure random numbers. This applies to: the /dev/urandom
|
|
* device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
|
|
* family of functions. Using any of these functions without first calling
|
|
* this function forfeits the guarantee of security.
|
|
*
|
|
* Returns: 0 if the urandom pool has been seeded.
|
|
* -ERESTARTSYS if the function was interrupted by a signal.
|
|
*/
|
|
int wait_for_random_bytes(void)
|
|
{
|
|
if (likely(crng_ready()))
|
|
return 0;
|
|
|
|
do {
|
|
int ret;
|
|
ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
|
|
if (ret)
|
|
return ret > 0 ? 0 : ret;
|
|
|
|
try_to_generate_entropy();
|
|
} while (!crng_ready());
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wait_for_random_bytes);
|
|
|
|
/*
|
|
* Returns whether or not the urandom pool has been seeded and thus guaranteed
|
|
* to supply cryptographically secure random numbers. This applies to: the
|
|
* /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
|
|
* ,u64,int,long} family of functions.
|
|
*
|
|
* Returns: true if the urandom pool has been seeded.
|
|
* false if the urandom pool has not been seeded.
|
|
*/
|
|
bool rng_is_initialized(void)
|
|
{
|
|
return crng_ready();
|
|
}
|
|
EXPORT_SYMBOL(rng_is_initialized);
|
|
|
|
/*
|
|
* Add a callback function that will be invoked when the nonblocking
|
|
* pool is initialised.
|
|
*
|
|
* returns: 0 if callback is successfully added
|
|
* -EALREADY if pool is already initialised (callback not called)
|
|
* -ENOENT if module for callback is not alive
|
|
*/
|
|
int add_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
struct module *owner;
|
|
unsigned long flags;
|
|
int err = -EALREADY;
|
|
|
|
if (crng_ready())
|
|
return err;
|
|
|
|
owner = rdy->owner;
|
|
if (!try_module_get(owner))
|
|
return -ENOENT;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (crng_ready())
|
|
goto out;
|
|
|
|
owner = NULL;
|
|
|
|
list_add(&rdy->list, &random_ready_list);
|
|
err = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(add_random_ready_callback);
|
|
|
|
/*
|
|
* Delete a previously registered readiness callback function.
|
|
*/
|
|
void del_random_ready_callback(struct random_ready_callback *rdy)
|
|
{
|
|
unsigned long flags;
|
|
struct module *owner = NULL;
|
|
|
|
spin_lock_irqsave(&random_ready_list_lock, flags);
|
|
if (!list_empty(&rdy->list)) {
|
|
list_del_init(&rdy->list);
|
|
owner = rdy->owner;
|
|
}
|
|
spin_unlock_irqrestore(&random_ready_list_lock, flags);
|
|
|
|
module_put(owner);
|
|
}
|
|
EXPORT_SYMBOL(del_random_ready_callback);
|
|
|
|
/*
|
|
* This function will use the architecture-specific hardware random
|
|
* number generator if it is available. It is not recommended for
|
|
* use. Use get_random_bytes() instead. It returns the number of
|
|
* bytes filled in.
|
|
*/
|
|
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
|
|
{
|
|
size_t left = nbytes;
|
|
u8 *p = buf;
|
|
|
|
while (left) {
|
|
unsigned long v;
|
|
size_t chunk = min_t(size_t, left, sizeof(unsigned long));
|
|
|
|
if (!arch_get_random_long(&v))
|
|
break;
|
|
|
|
memcpy(p, &v, chunk);
|
|
p += chunk;
|
|
left -= chunk;
|
|
}
|
|
|
|
return nbytes - left;
|
|
}
|
|
EXPORT_SYMBOL(get_random_bytes_arch);
|
|
|
|
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
|
|
static int __init parse_trust_cpu(char *arg)
|
|
{
|
|
return kstrtobool(arg, &trust_cpu);
|
|
}
|
|
early_param("random.trust_cpu", parse_trust_cpu);
|
|
|
|
/*
|
|
* Note that setup_arch() may call add_device_randomness()
|
|
* long before we get here. This allows seeding of the pools
|
|
* with some platform dependent data very early in the boot
|
|
* process. But it limits our options here. We must use
|
|
* statically allocated structures that already have all
|
|
* initializations complete at compile time. We should also
|
|
* take care not to overwrite the precious per platform data
|
|
* we were given.
|
|
*/
|
|
int __init rand_initialize(void)
|
|
{
|
|
size_t i;
|
|
ktime_t now = ktime_get_real();
|
|
bool arch_init = true;
|
|
unsigned long rv;
|
|
|
|
for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
|
|
if (!arch_get_random_seed_long_early(&rv) &&
|
|
!arch_get_random_long_early(&rv)) {
|
|
rv = random_get_entropy();
|
|
arch_init = false;
|
|
}
|
|
mix_pool_bytes(&rv, sizeof(rv));
|
|
}
|
|
mix_pool_bytes(&now, sizeof(now));
|
|
mix_pool_bytes(utsname(), sizeof(*(utsname())));
|
|
|
|
extract_entropy(base_crng.key, sizeof(base_crng.key));
|
|
++base_crng.generation;
|
|
|
|
if (arch_init && trust_cpu && crng_init < 2) {
|
|
crng_init = 2;
|
|
pr_notice("crng init done (trusting CPU's manufacturer)\n");
|
|
}
|
|
|
|
if (ratelimit_disable) {
|
|
urandom_warning.interval = 0;
|
|
unseeded_warning.interval = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
void rand_initialize_disk(struct gendisk *disk)
|
|
{
|
|
struct timer_rand_state *state;
|
|
|
|
/*
|
|
* If kzalloc returns null, we just won't use that entropy
|
|
* source.
|
|
*/
|
|
state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
|
|
if (state) {
|
|
state->last_time = INITIAL_JIFFIES;
|
|
disk->random = state;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
static int maxwarn = 10;
|
|
|
|
if (!crng_ready() && maxwarn > 0) {
|
|
maxwarn--;
|
|
if (__ratelimit(&urandom_warning))
|
|
pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
|
|
current->comm, nbytes);
|
|
}
|
|
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = wait_for_random_bytes();
|
|
if (ret != 0)
|
|
return ret;
|
|
return get_random_bytes_user(buf, nbytes);
|
|
}
|
|
|
|
static __poll_t random_poll(struct file *file, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
|
|
poll_wait(file, &crng_init_wait, wait);
|
|
poll_wait(file, &random_write_wait, wait);
|
|
mask = 0;
|
|
if (crng_ready())
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (input_pool.entropy_count < POOL_MIN_BITS)
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
return mask;
|
|
}
|
|
|
|
static int write_pool(const char __user *ubuf, size_t count)
|
|
{
|
|
size_t len;
|
|
int ret = 0;
|
|
u8 block[BLAKE2S_BLOCK_SIZE];
|
|
|
|
while (count) {
|
|
len = min(count, sizeof(block));
|
|
if (copy_from_user(block, ubuf, len)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
count -= len;
|
|
ubuf += len;
|
|
mix_pool_bytes(block, len);
|
|
cond_resched();
|
|
}
|
|
|
|
out:
|
|
memzero_explicit(block, sizeof(block));
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t random_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
int ret;
|
|
|
|
ret = write_pool(buffer, count);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (ssize_t)count;
|
|
}
|
|
|
|
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
|
{
|
|
int size, ent_count;
|
|
int __user *p = (int __user *)arg;
|
|
int retval;
|
|
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
/* inherently racy, no point locking */
|
|
if (put_user(input_pool.entropy_count, p))
|
|
return -EFAULT;
|
|
return 0;
|
|
case RNDADDTOENTCNT:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDADDENTROPY:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (get_user(ent_count, p++))
|
|
return -EFAULT;
|
|
if (ent_count < 0)
|
|
return -EINVAL;
|
|
if (get_user(size, p++))
|
|
return -EFAULT;
|
|
retval = write_pool((const char __user *)p, size);
|
|
if (retval < 0)
|
|
return retval;
|
|
credit_entropy_bits(ent_count);
|
|
return 0;
|
|
case RNDZAPENTCNT:
|
|
case RNDCLEARPOOL:
|
|
/*
|
|
* Clear the entropy pool counters. We no longer clear
|
|
* the entropy pool, as that's silly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (xchg(&input_pool.entropy_count, 0)) {
|
|
wake_up_interruptible(&random_write_wait);
|
|
kill_fasync(&fasync, SIGIO, POLL_OUT);
|
|
}
|
|
return 0;
|
|
case RNDRESEEDCRNG:
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (crng_init < 2)
|
|
return -ENODATA;
|
|
crng_reseed();
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int random_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
return fasync_helper(fd, filp, on, &fasync);
|
|
}
|
|
|
|
const struct file_operations random_fops = {
|
|
.read = random_read,
|
|
.write = random_write,
|
|
.poll = random_poll,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
const struct file_operations urandom_fops = {
|
|
.read = urandom_read,
|
|
.write = random_write,
|
|
.unlocked_ioctl = random_ioctl,
|
|
.compat_ioctl = compat_ptr_ioctl,
|
|
.fasync = random_fasync,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
|
|
flags)
|
|
{
|
|
if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Requesting insecure and blocking randomness at the same time makes
|
|
* no sense.
|
|
*/
|
|
if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
|
|
return -EINVAL;
|
|
|
|
if (count > INT_MAX)
|
|
count = INT_MAX;
|
|
|
|
if (!(flags & GRND_INSECURE) && !crng_ready()) {
|
|
int ret;
|
|
|
|
if (flags & GRND_NONBLOCK)
|
|
return -EAGAIN;
|
|
ret = wait_for_random_bytes();
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
return get_random_bytes_user(buf, count);
|
|
}
|
|
|
|
/********************************************************************
|
|
*
|
|
* Sysctl interface
|
|
*
|
|
********************************************************************/
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
#include <linux/sysctl.h>
|
|
|
|
static int random_min_urandom_seed = 60;
|
|
static int random_write_wakeup_bits = POOL_MIN_BITS;
|
|
static int sysctl_poolsize = POOL_BITS;
|
|
static char sysctl_bootid[16];
|
|
|
|
/*
|
|
* This function is used to return both the bootid UUID, and random
|
|
* UUID. The difference is in whether table->data is NULL; if it is,
|
|
* then a new UUID is generated and returned to the user.
|
|
*
|
|
* If the user accesses this via the proc interface, the UUID will be
|
|
* returned as an ASCII string in the standard UUID format; if via the
|
|
* sysctl system call, as 16 bytes of binary data.
|
|
*/
|
|
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
|
|
size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct ctl_table fake_table;
|
|
unsigned char buf[64], tmp_uuid[16], *uuid;
|
|
|
|
uuid = table->data;
|
|
if (!uuid) {
|
|
uuid = tmp_uuid;
|
|
generate_random_uuid(uuid);
|
|
} else {
|
|
static DEFINE_SPINLOCK(bootid_spinlock);
|
|
|
|
spin_lock(&bootid_spinlock);
|
|
if (!uuid[8])
|
|
generate_random_uuid(uuid);
|
|
spin_unlock(&bootid_spinlock);
|
|
}
|
|
|
|
sprintf(buf, "%pU", uuid);
|
|
|
|
fake_table.data = buf;
|
|
fake_table.maxlen = sizeof(buf);
|
|
|
|
return proc_dostring(&fake_table, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
static struct ctl_table random_table[] = {
|
|
{
|
|
.procname = "poolsize",
|
|
.data = &sysctl_poolsize,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "entropy_avail",
|
|
.data = &input_pool.entropy_count,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0444,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "write_wakeup_threshold",
|
|
.data = &random_write_wakeup_bits,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "urandom_min_reseed_secs",
|
|
.data = &random_min_urandom_seed,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "boot_id",
|
|
.data = &sysctl_bootid,
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{
|
|
.procname = "uuid",
|
|
.maxlen = 16,
|
|
.mode = 0444,
|
|
.proc_handler = proc_do_uuid,
|
|
},
|
|
{ }
|
|
};
|
|
|
|
/*
|
|
* rand_initialize() is called before sysctl_init(),
|
|
* so we cannot call register_sysctl_init() in rand_initialize()
|
|
*/
|
|
static int __init random_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("kernel/random", random_table);
|
|
return 0;
|
|
}
|
|
device_initcall(random_sysctls_init);
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
struct batched_entropy {
|
|
union {
|
|
/*
|
|
* We make this 1.5x a ChaCha block, so that we get the
|
|
* remaining 32 bytes from fast key erasure, plus one full
|
|
* block from the detached ChaCha state. We can increase
|
|
* the size of this later if needed so long as we keep the
|
|
* formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
|
|
*/
|
|
u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
|
|
u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
|
|
};
|
|
local_lock_t lock;
|
|
unsigned long generation;
|
|
unsigned int position;
|
|
};
|
|
|
|
/*
|
|
* Get a random word for internal kernel use only. The quality of the random
|
|
* number is good as /dev/urandom. In order to ensure that the randomness
|
|
* provided by this function is okay, the function wait_for_random_bytes()
|
|
* should be called and return 0 at least once at any point prior.
|
|
*/
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u64 get_random_u64(void)
|
|
{
|
|
u64 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u64.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u64);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u64[batch->position];
|
|
batch->entropy_u64[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u64);
|
|
|
|
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
|
|
.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
|
|
.position = UINT_MAX
|
|
};
|
|
|
|
u32 get_random_u32(void)
|
|
{
|
|
u32 ret;
|
|
unsigned long flags;
|
|
struct batched_entropy *batch;
|
|
static void *previous;
|
|
unsigned long next_gen;
|
|
|
|
warn_unseeded_randomness(&previous);
|
|
|
|
local_lock_irqsave(&batched_entropy_u32.lock, flags);
|
|
batch = raw_cpu_ptr(&batched_entropy_u32);
|
|
|
|
next_gen = READ_ONCE(base_crng.generation);
|
|
if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
|
|
next_gen != batch->generation) {
|
|
_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
|
|
batch->position = 0;
|
|
batch->generation = next_gen;
|
|
}
|
|
|
|
ret = batch->entropy_u32[batch->position];
|
|
batch->entropy_u32[batch->position] = 0;
|
|
++batch->position;
|
|
local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_random_u32);
|
|
|
|
/**
|
|
* randomize_page - Generate a random, page aligned address
|
|
* @start: The smallest acceptable address the caller will take.
|
|
* @range: The size of the area, starting at @start, within which the
|
|
* random address must fall.
|
|
*
|
|
* If @start + @range would overflow, @range is capped.
|
|
*
|
|
* NOTE: Historical use of randomize_range, which this replaces, presumed that
|
|
* @start was already page aligned. We now align it regardless.
|
|
*
|
|
* Return: A page aligned address within [start, start + range). On error,
|
|
* @start is returned.
|
|
*/
|
|
unsigned long randomize_page(unsigned long start, unsigned long range)
|
|
{
|
|
if (!PAGE_ALIGNED(start)) {
|
|
range -= PAGE_ALIGN(start) - start;
|
|
start = PAGE_ALIGN(start);
|
|
}
|
|
|
|
if (start > ULONG_MAX - range)
|
|
range = ULONG_MAX - start;
|
|
|
|
range >>= PAGE_SHIFT;
|
|
|
|
if (range == 0)
|
|
return start;
|
|
|
|
return start + (get_random_long() % range << PAGE_SHIFT);
|
|
}
|
|
|
|
/* Interface for in-kernel drivers of true hardware RNGs.
|
|
* Those devices may produce endless random bits and will be throttled
|
|
* when our pool is full.
|
|
*/
|
|
void add_hwgenerator_randomness(const void *buffer, size_t count,
|
|
size_t entropy)
|
|
{
|
|
if (unlikely(crng_init == 0)) {
|
|
size_t ret = crng_fast_load(buffer, count);
|
|
mix_pool_bytes(buffer, ret);
|
|
count -= ret;
|
|
buffer += ret;
|
|
if (!count || crng_init == 0)
|
|
return;
|
|
}
|
|
|
|
/* Throttle writing if we're above the trickle threshold.
|
|
* We'll be woken up again once below POOL_MIN_BITS, when
|
|
* the calling thread is about to terminate, or once
|
|
* CRNG_RESEED_INTERVAL has elapsed.
|
|
*/
|
|
wait_event_interruptible_timeout(random_write_wait,
|
|
!system_wq || kthread_should_stop() ||
|
|
input_pool.entropy_count < POOL_MIN_BITS,
|
|
CRNG_RESEED_INTERVAL);
|
|
mix_pool_bytes(buffer, count);
|
|
credit_entropy_bits(entropy);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
|
|
|
|
/* Handle random seed passed by bootloader.
|
|
* If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
|
|
* it would be regarded as device data.
|
|
* The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
|
|
*/
|
|
void add_bootloader_randomness(const void *buf, size_t size)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
|
|
add_hwgenerator_randomness(buf, size, size * 8);
|
|
else
|
|
add_device_randomness(buf, size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(add_bootloader_randomness);
|