mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 10:56:14 +00:00
33b75c1d88
Introduce instrument_copy_from_user_before() and instrument_copy_from_user_after() hooks to be invoked before and after the call to copy_from_user(). KASAN and KCSAN will be only using instrument_copy_from_user_before(), but for KMSAN we'll need to insert code after copy_from_user(). Link: https://lkml.kernel.org/r/20220915150417.722975-4-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1895 lines
46 KiB
C
1895 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <crypto/hash.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bvec.h>
|
|
#include <linux/fault-inject-usercopy.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/compat.h>
|
|
#include <net/checksum.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/instrumented.h>
|
|
|
|
#define PIPE_PARANOIA /* for now */
|
|
|
|
/* covers ubuf and kbuf alike */
|
|
#define iterate_buf(i, n, base, len, off, __p, STEP) { \
|
|
size_t __maybe_unused off = 0; \
|
|
len = n; \
|
|
base = __p + i->iov_offset; \
|
|
len -= (STEP); \
|
|
i->iov_offset += len; \
|
|
n = len; \
|
|
}
|
|
|
|
/* covers iovec and kvec alike */
|
|
#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
|
|
size_t off = 0; \
|
|
size_t skip = i->iov_offset; \
|
|
do { \
|
|
len = min(n, __p->iov_len - skip); \
|
|
if (likely(len)) { \
|
|
base = __p->iov_base + skip; \
|
|
len -= (STEP); \
|
|
off += len; \
|
|
skip += len; \
|
|
n -= len; \
|
|
if (skip < __p->iov_len) \
|
|
break; \
|
|
} \
|
|
__p++; \
|
|
skip = 0; \
|
|
} while (n); \
|
|
i->iov_offset = skip; \
|
|
n = off; \
|
|
}
|
|
|
|
#define iterate_bvec(i, n, base, len, off, p, STEP) { \
|
|
size_t off = 0; \
|
|
unsigned skip = i->iov_offset; \
|
|
while (n) { \
|
|
unsigned offset = p->bv_offset + skip; \
|
|
unsigned left; \
|
|
void *kaddr = kmap_local_page(p->bv_page + \
|
|
offset / PAGE_SIZE); \
|
|
base = kaddr + offset % PAGE_SIZE; \
|
|
len = min(min(n, (size_t)(p->bv_len - skip)), \
|
|
(size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
|
|
left = (STEP); \
|
|
kunmap_local(kaddr); \
|
|
len -= left; \
|
|
off += len; \
|
|
skip += len; \
|
|
if (skip == p->bv_len) { \
|
|
skip = 0; \
|
|
p++; \
|
|
} \
|
|
n -= len; \
|
|
if (left) \
|
|
break; \
|
|
} \
|
|
i->iov_offset = skip; \
|
|
n = off; \
|
|
}
|
|
|
|
#define iterate_xarray(i, n, base, len, __off, STEP) { \
|
|
__label__ __out; \
|
|
size_t __off = 0; \
|
|
struct folio *folio; \
|
|
loff_t start = i->xarray_start + i->iov_offset; \
|
|
pgoff_t index = start / PAGE_SIZE; \
|
|
XA_STATE(xas, i->xarray, index); \
|
|
\
|
|
len = PAGE_SIZE - offset_in_page(start); \
|
|
rcu_read_lock(); \
|
|
xas_for_each(&xas, folio, ULONG_MAX) { \
|
|
unsigned left; \
|
|
size_t offset; \
|
|
if (xas_retry(&xas, folio)) \
|
|
continue; \
|
|
if (WARN_ON(xa_is_value(folio))) \
|
|
break; \
|
|
if (WARN_ON(folio_test_hugetlb(folio))) \
|
|
break; \
|
|
offset = offset_in_folio(folio, start + __off); \
|
|
while (offset < folio_size(folio)) { \
|
|
base = kmap_local_folio(folio, offset); \
|
|
len = min(n, len); \
|
|
left = (STEP); \
|
|
kunmap_local(base); \
|
|
len -= left; \
|
|
__off += len; \
|
|
n -= len; \
|
|
if (left || n == 0) \
|
|
goto __out; \
|
|
offset += len; \
|
|
len = PAGE_SIZE; \
|
|
} \
|
|
} \
|
|
__out: \
|
|
rcu_read_unlock(); \
|
|
i->iov_offset += __off; \
|
|
n = __off; \
|
|
}
|
|
|
|
#define __iterate_and_advance(i, n, base, len, off, I, K) { \
|
|
if (unlikely(i->count < n)) \
|
|
n = i->count; \
|
|
if (likely(n)) { \
|
|
if (likely(iter_is_ubuf(i))) { \
|
|
void __user *base; \
|
|
size_t len; \
|
|
iterate_buf(i, n, base, len, off, \
|
|
i->ubuf, (I)) \
|
|
} else if (likely(iter_is_iovec(i))) { \
|
|
const struct iovec *iov = i->iov; \
|
|
void __user *base; \
|
|
size_t len; \
|
|
iterate_iovec(i, n, base, len, off, \
|
|
iov, (I)) \
|
|
i->nr_segs -= iov - i->iov; \
|
|
i->iov = iov; \
|
|
} else if (iov_iter_is_bvec(i)) { \
|
|
const struct bio_vec *bvec = i->bvec; \
|
|
void *base; \
|
|
size_t len; \
|
|
iterate_bvec(i, n, base, len, off, \
|
|
bvec, (K)) \
|
|
i->nr_segs -= bvec - i->bvec; \
|
|
i->bvec = bvec; \
|
|
} else if (iov_iter_is_kvec(i)) { \
|
|
const struct kvec *kvec = i->kvec; \
|
|
void *base; \
|
|
size_t len; \
|
|
iterate_iovec(i, n, base, len, off, \
|
|
kvec, (K)) \
|
|
i->nr_segs -= kvec - i->kvec; \
|
|
i->kvec = kvec; \
|
|
} else if (iov_iter_is_xarray(i)) { \
|
|
void *base; \
|
|
size_t len; \
|
|
iterate_xarray(i, n, base, len, off, \
|
|
(K)) \
|
|
} \
|
|
i->count -= n; \
|
|
} \
|
|
}
|
|
#define iterate_and_advance(i, n, base, len, off, I, K) \
|
|
__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
|
|
|
|
static int copyout(void __user *to, const void *from, size_t n)
|
|
{
|
|
if (should_fail_usercopy())
|
|
return n;
|
|
if (access_ok(to, n)) {
|
|
instrument_copy_to_user(to, from, n);
|
|
n = raw_copy_to_user(to, from, n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int copyin(void *to, const void __user *from, size_t n)
|
|
{
|
|
size_t res = n;
|
|
|
|
if (should_fail_usercopy())
|
|
return n;
|
|
if (access_ok(from, n)) {
|
|
instrument_copy_from_user_before(to, from, n);
|
|
res = raw_copy_from_user(to, from, n);
|
|
instrument_copy_from_user_after(to, from, n, res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline struct pipe_buffer *pipe_buf(const struct pipe_inode_info *pipe,
|
|
unsigned int slot)
|
|
{
|
|
return &pipe->bufs[slot & (pipe->ring_size - 1)];
|
|
}
|
|
|
|
#ifdef PIPE_PARANOIA
|
|
static bool sanity(const struct iov_iter *i)
|
|
{
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
unsigned int p_head = pipe->head;
|
|
unsigned int p_tail = pipe->tail;
|
|
unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
|
|
unsigned int i_head = i->head;
|
|
unsigned int idx;
|
|
|
|
if (i->last_offset) {
|
|
struct pipe_buffer *p;
|
|
if (unlikely(p_occupancy == 0))
|
|
goto Bad; // pipe must be non-empty
|
|
if (unlikely(i_head != p_head - 1))
|
|
goto Bad; // must be at the last buffer...
|
|
|
|
p = pipe_buf(pipe, i_head);
|
|
if (unlikely(p->offset + p->len != abs(i->last_offset)))
|
|
goto Bad; // ... at the end of segment
|
|
} else {
|
|
if (i_head != p_head)
|
|
goto Bad; // must be right after the last buffer
|
|
}
|
|
return true;
|
|
Bad:
|
|
printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
|
|
printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
|
|
p_head, p_tail, pipe->ring_size);
|
|
for (idx = 0; idx < pipe->ring_size; idx++)
|
|
printk(KERN_ERR "[%p %p %d %d]\n",
|
|
pipe->bufs[idx].ops,
|
|
pipe->bufs[idx].page,
|
|
pipe->bufs[idx].offset,
|
|
pipe->bufs[idx].len);
|
|
WARN_ON(1);
|
|
return false;
|
|
}
|
|
#else
|
|
#define sanity(i) true
|
|
#endif
|
|
|
|
static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
|
|
{
|
|
struct page *page = alloc_page(GFP_USER);
|
|
if (page) {
|
|
struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
|
|
*buf = (struct pipe_buffer) {
|
|
.ops = &default_pipe_buf_ops,
|
|
.page = page,
|
|
.offset = 0,
|
|
.len = size
|
|
};
|
|
}
|
|
return page;
|
|
}
|
|
|
|
static void push_page(struct pipe_inode_info *pipe, struct page *page,
|
|
unsigned int offset, unsigned int size)
|
|
{
|
|
struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
|
|
*buf = (struct pipe_buffer) {
|
|
.ops = &page_cache_pipe_buf_ops,
|
|
.page = page,
|
|
.offset = offset,
|
|
.len = size
|
|
};
|
|
get_page(page);
|
|
}
|
|
|
|
static inline int last_offset(const struct pipe_buffer *buf)
|
|
{
|
|
if (buf->ops == &default_pipe_buf_ops)
|
|
return buf->len; // buf->offset is 0 for those
|
|
else
|
|
return -(buf->offset + buf->len);
|
|
}
|
|
|
|
static struct page *append_pipe(struct iov_iter *i, size_t size,
|
|
unsigned int *off)
|
|
{
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
int offset = i->last_offset;
|
|
struct pipe_buffer *buf;
|
|
struct page *page;
|
|
|
|
if (offset > 0 && offset < PAGE_SIZE) {
|
|
// some space in the last buffer; add to it
|
|
buf = pipe_buf(pipe, pipe->head - 1);
|
|
size = min_t(size_t, size, PAGE_SIZE - offset);
|
|
buf->len += size;
|
|
i->last_offset += size;
|
|
i->count -= size;
|
|
*off = offset;
|
|
return buf->page;
|
|
}
|
|
// OK, we need a new buffer
|
|
*off = 0;
|
|
size = min_t(size_t, size, PAGE_SIZE);
|
|
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
|
|
return NULL;
|
|
page = push_anon(pipe, size);
|
|
if (!page)
|
|
return NULL;
|
|
i->head = pipe->head - 1;
|
|
i->last_offset = size;
|
|
i->count -= size;
|
|
return page;
|
|
}
|
|
|
|
static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
unsigned int head = pipe->head;
|
|
|
|
if (unlikely(bytes > i->count))
|
|
bytes = i->count;
|
|
|
|
if (unlikely(!bytes))
|
|
return 0;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
if (offset && i->last_offset == -offset) { // could we merge it?
|
|
struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
|
|
if (buf->page == page) {
|
|
buf->len += bytes;
|
|
i->last_offset -= bytes;
|
|
i->count -= bytes;
|
|
return bytes;
|
|
}
|
|
}
|
|
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
|
|
return 0;
|
|
|
|
push_page(pipe, page, offset, bytes);
|
|
i->last_offset = -(offset + bytes);
|
|
i->head = head;
|
|
i->count -= bytes;
|
|
return bytes;
|
|
}
|
|
|
|
/*
|
|
* fault_in_iov_iter_readable - fault in iov iterator for reading
|
|
* @i: iterator
|
|
* @size: maximum length
|
|
*
|
|
* Fault in one or more iovecs of the given iov_iter, to a maximum length of
|
|
* @size. For each iovec, fault in each page that constitutes the iovec.
|
|
*
|
|
* Returns the number of bytes not faulted in (like copy_to_user() and
|
|
* copy_from_user()).
|
|
*
|
|
* Always returns 0 for non-userspace iterators.
|
|
*/
|
|
size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
|
|
{
|
|
if (iter_is_ubuf(i)) {
|
|
size_t n = min(size, iov_iter_count(i));
|
|
n -= fault_in_readable(i->ubuf + i->iov_offset, n);
|
|
return size - n;
|
|
} else if (iter_is_iovec(i)) {
|
|
size_t count = min(size, iov_iter_count(i));
|
|
const struct iovec *p;
|
|
size_t skip;
|
|
|
|
size -= count;
|
|
for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
|
|
size_t len = min(count, p->iov_len - skip);
|
|
size_t ret;
|
|
|
|
if (unlikely(!len))
|
|
continue;
|
|
ret = fault_in_readable(p->iov_base + skip, len);
|
|
count -= len - ret;
|
|
if (ret)
|
|
break;
|
|
}
|
|
return count + size;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fault_in_iov_iter_readable);
|
|
|
|
/*
|
|
* fault_in_iov_iter_writeable - fault in iov iterator for writing
|
|
* @i: iterator
|
|
* @size: maximum length
|
|
*
|
|
* Faults in the iterator using get_user_pages(), i.e., without triggering
|
|
* hardware page faults. This is primarily useful when we already know that
|
|
* some or all of the pages in @i aren't in memory.
|
|
*
|
|
* Returns the number of bytes not faulted in, like copy_to_user() and
|
|
* copy_from_user().
|
|
*
|
|
* Always returns 0 for non-user-space iterators.
|
|
*/
|
|
size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
|
|
{
|
|
if (iter_is_ubuf(i)) {
|
|
size_t n = min(size, iov_iter_count(i));
|
|
n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
|
|
return size - n;
|
|
} else if (iter_is_iovec(i)) {
|
|
size_t count = min(size, iov_iter_count(i));
|
|
const struct iovec *p;
|
|
size_t skip;
|
|
|
|
size -= count;
|
|
for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
|
|
size_t len = min(count, p->iov_len - skip);
|
|
size_t ret;
|
|
|
|
if (unlikely(!len))
|
|
continue;
|
|
ret = fault_in_safe_writeable(p->iov_base + skip, len);
|
|
count -= len - ret;
|
|
if (ret)
|
|
break;
|
|
}
|
|
return count + size;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fault_in_iov_iter_writeable);
|
|
|
|
void iov_iter_init(struct iov_iter *i, unsigned int direction,
|
|
const struct iovec *iov, unsigned long nr_segs,
|
|
size_t count)
|
|
{
|
|
WARN_ON(direction & ~(READ | WRITE));
|
|
*i = (struct iov_iter) {
|
|
.iter_type = ITER_IOVEC,
|
|
.nofault = false,
|
|
.user_backed = true,
|
|
.data_source = direction,
|
|
.iov = iov,
|
|
.nr_segs = nr_segs,
|
|
.iov_offset = 0,
|
|
.count = count
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_init);
|
|
|
|
// returns the offset in partial buffer (if any)
|
|
static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
|
|
{
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
int used = pipe->head - pipe->tail;
|
|
int off = i->last_offset;
|
|
|
|
*npages = max((int)pipe->max_usage - used, 0);
|
|
|
|
if (off > 0 && off < PAGE_SIZE) { // anon and not full
|
|
(*npages)++;
|
|
return off;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
unsigned int off, chunk;
|
|
|
|
if (unlikely(bytes > i->count))
|
|
bytes = i->count;
|
|
if (unlikely(!bytes))
|
|
return 0;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
for (size_t n = bytes; n; n -= chunk) {
|
|
struct page *page = append_pipe(i, n, &off);
|
|
chunk = min_t(size_t, n, PAGE_SIZE - off);
|
|
if (!page)
|
|
return bytes - n;
|
|
memcpy_to_page(page, off, addr, chunk);
|
|
addr += chunk;
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
|
|
__wsum sum, size_t off)
|
|
{
|
|
__wsum next = csum_partial_copy_nocheck(from, to, len);
|
|
return csum_block_add(sum, next, off);
|
|
}
|
|
|
|
static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
|
|
struct iov_iter *i, __wsum *sump)
|
|
{
|
|
__wsum sum = *sump;
|
|
size_t off = 0;
|
|
unsigned int chunk, r;
|
|
|
|
if (unlikely(bytes > i->count))
|
|
bytes = i->count;
|
|
if (unlikely(!bytes))
|
|
return 0;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
while (bytes) {
|
|
struct page *page = append_pipe(i, bytes, &r);
|
|
char *p;
|
|
|
|
if (!page)
|
|
break;
|
|
chunk = min_t(size_t, bytes, PAGE_SIZE - r);
|
|
p = kmap_local_page(page);
|
|
sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
|
|
kunmap_local(p);
|
|
off += chunk;
|
|
bytes -= chunk;
|
|
}
|
|
*sump = sum;
|
|
return off;
|
|
}
|
|
|
|
size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i)))
|
|
return copy_pipe_to_iter(addr, bytes, i);
|
|
if (user_backed_iter(i))
|
|
might_fault();
|
|
iterate_and_advance(i, bytes, base, len, off,
|
|
copyout(base, addr + off, len),
|
|
memcpy(base, addr + off, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(_copy_to_iter);
|
|
|
|
#ifdef CONFIG_ARCH_HAS_COPY_MC
|
|
static int copyout_mc(void __user *to, const void *from, size_t n)
|
|
{
|
|
if (access_ok(to, n)) {
|
|
instrument_copy_to_user(to, from, n);
|
|
n = copy_mc_to_user((__force void *) to, from, n);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
size_t xfer = 0;
|
|
unsigned int off, chunk;
|
|
|
|
if (unlikely(bytes > i->count))
|
|
bytes = i->count;
|
|
if (unlikely(!bytes))
|
|
return 0;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
while (bytes) {
|
|
struct page *page = append_pipe(i, bytes, &off);
|
|
unsigned long rem;
|
|
char *p;
|
|
|
|
if (!page)
|
|
break;
|
|
chunk = min_t(size_t, bytes, PAGE_SIZE - off);
|
|
p = kmap_local_page(page);
|
|
rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
|
|
chunk -= rem;
|
|
kunmap_local(p);
|
|
xfer += chunk;
|
|
bytes -= chunk;
|
|
if (rem) {
|
|
iov_iter_revert(i, rem);
|
|
break;
|
|
}
|
|
}
|
|
return xfer;
|
|
}
|
|
|
|
/**
|
|
* _copy_mc_to_iter - copy to iter with source memory error exception handling
|
|
* @addr: source kernel address
|
|
* @bytes: total transfer length
|
|
* @i: destination iterator
|
|
*
|
|
* The pmem driver deploys this for the dax operation
|
|
* (dax_copy_to_iter()) for dax reads (bypass page-cache and the
|
|
* block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
|
|
* successfully copied.
|
|
*
|
|
* The main differences between this and typical _copy_to_iter().
|
|
*
|
|
* * Typical tail/residue handling after a fault retries the copy
|
|
* byte-by-byte until the fault happens again. Re-triggering machine
|
|
* checks is potentially fatal so the implementation uses source
|
|
* alignment and poison alignment assumptions to avoid re-triggering
|
|
* hardware exceptions.
|
|
*
|
|
* * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
|
|
* Compare to copy_to_iter() where only ITER_IOVEC attempts might return
|
|
* a short copy.
|
|
*
|
|
* Return: number of bytes copied (may be %0)
|
|
*/
|
|
size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i)))
|
|
return copy_mc_pipe_to_iter(addr, bytes, i);
|
|
if (user_backed_iter(i))
|
|
might_fault();
|
|
__iterate_and_advance(i, bytes, base, len, off,
|
|
copyout_mc(base, addr + off, len),
|
|
copy_mc_to_kernel(base, addr + off, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
|
|
#endif /* CONFIG_ARCH_HAS_COPY_MC */
|
|
|
|
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i))) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
if (user_backed_iter(i))
|
|
might_fault();
|
|
iterate_and_advance(i, bytes, base, len, off,
|
|
copyin(addr + off, base, len),
|
|
memcpy(addr + off, base, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(_copy_from_iter);
|
|
|
|
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i))) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
iterate_and_advance(i, bytes, base, len, off,
|
|
__copy_from_user_inatomic_nocache(addr + off, base, len),
|
|
memcpy(addr + off, base, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(_copy_from_iter_nocache);
|
|
|
|
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
|
|
/**
|
|
* _copy_from_iter_flushcache - write destination through cpu cache
|
|
* @addr: destination kernel address
|
|
* @bytes: total transfer length
|
|
* @i: source iterator
|
|
*
|
|
* The pmem driver arranges for filesystem-dax to use this facility via
|
|
* dax_copy_from_iter() for ensuring that writes to persistent memory
|
|
* are flushed through the CPU cache. It is differentiated from
|
|
* _copy_from_iter_nocache() in that guarantees all data is flushed for
|
|
* all iterator types. The _copy_from_iter_nocache() only attempts to
|
|
* bypass the cache for the ITER_IOVEC case, and on some archs may use
|
|
* instructions that strand dirty-data in the cache.
|
|
*
|
|
* Return: number of bytes copied (may be %0)
|
|
*/
|
|
size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i))) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
iterate_and_advance(i, bytes, base, len, off,
|
|
__copy_from_user_flushcache(addr + off, base, len),
|
|
memcpy_flushcache(addr + off, base, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
|
|
#endif
|
|
|
|
static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
|
|
{
|
|
struct page *head;
|
|
size_t v = n + offset;
|
|
|
|
/*
|
|
* The general case needs to access the page order in order
|
|
* to compute the page size.
|
|
* However, we mostly deal with order-0 pages and thus can
|
|
* avoid a possible cache line miss for requests that fit all
|
|
* page orders.
|
|
*/
|
|
if (n <= v && v <= PAGE_SIZE)
|
|
return true;
|
|
|
|
head = compound_head(page);
|
|
v += (page - head) << PAGE_SHIFT;
|
|
|
|
if (likely(n <= v && v <= (page_size(head))))
|
|
return true;
|
|
WARN_ON(1);
|
|
return false;
|
|
}
|
|
|
|
size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
size_t res = 0;
|
|
if (unlikely(!page_copy_sane(page, offset, bytes)))
|
|
return 0;
|
|
if (unlikely(iov_iter_is_pipe(i)))
|
|
return copy_page_to_iter_pipe(page, offset, bytes, i);
|
|
page += offset / PAGE_SIZE; // first subpage
|
|
offset %= PAGE_SIZE;
|
|
while (1) {
|
|
void *kaddr = kmap_local_page(page);
|
|
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
|
|
n = _copy_to_iter(kaddr + offset, n, i);
|
|
kunmap_local(kaddr);
|
|
res += n;
|
|
bytes -= n;
|
|
if (!bytes || !n)
|
|
break;
|
|
offset += n;
|
|
if (offset == PAGE_SIZE) {
|
|
page++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(copy_page_to_iter);
|
|
|
|
size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
size_t res = 0;
|
|
if (!page_copy_sane(page, offset, bytes))
|
|
return 0;
|
|
page += offset / PAGE_SIZE; // first subpage
|
|
offset %= PAGE_SIZE;
|
|
while (1) {
|
|
void *kaddr = kmap_local_page(page);
|
|
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
|
|
n = _copy_from_iter(kaddr + offset, n, i);
|
|
kunmap_local(kaddr);
|
|
res += n;
|
|
bytes -= n;
|
|
if (!bytes || !n)
|
|
break;
|
|
offset += n;
|
|
if (offset == PAGE_SIZE) {
|
|
page++;
|
|
offset = 0;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(copy_page_from_iter);
|
|
|
|
static size_t pipe_zero(size_t bytes, struct iov_iter *i)
|
|
{
|
|
unsigned int chunk, off;
|
|
|
|
if (unlikely(bytes > i->count))
|
|
bytes = i->count;
|
|
if (unlikely(!bytes))
|
|
return 0;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
for (size_t n = bytes; n; n -= chunk) {
|
|
struct page *page = append_pipe(i, n, &off);
|
|
char *p;
|
|
|
|
if (!page)
|
|
return bytes - n;
|
|
chunk = min_t(size_t, n, PAGE_SIZE - off);
|
|
p = kmap_local_page(page);
|
|
memset(p + off, 0, chunk);
|
|
kunmap_local(p);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
|
|
{
|
|
if (unlikely(iov_iter_is_pipe(i)))
|
|
return pipe_zero(bytes, i);
|
|
iterate_and_advance(i, bytes, base, len, count,
|
|
clear_user(base, len),
|
|
memset(base, 0, len)
|
|
)
|
|
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_zero);
|
|
|
|
size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
|
|
struct iov_iter *i)
|
|
{
|
|
char *kaddr = kmap_atomic(page), *p = kaddr + offset;
|
|
if (unlikely(!page_copy_sane(page, offset, bytes))) {
|
|
kunmap_atomic(kaddr);
|
|
return 0;
|
|
}
|
|
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
|
|
kunmap_atomic(kaddr);
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
iterate_and_advance(i, bytes, base, len, off,
|
|
copyin(p + off, base, len),
|
|
memcpy(p + off, base, len)
|
|
)
|
|
kunmap_atomic(kaddr);
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(copy_page_from_iter_atomic);
|
|
|
|
static void pipe_advance(struct iov_iter *i, size_t size)
|
|
{
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
int off = i->last_offset;
|
|
|
|
if (!off && !size) {
|
|
pipe_discard_from(pipe, i->start_head); // discard everything
|
|
return;
|
|
}
|
|
i->count -= size;
|
|
while (1) {
|
|
struct pipe_buffer *buf = pipe_buf(pipe, i->head);
|
|
if (off) /* make it relative to the beginning of buffer */
|
|
size += abs(off) - buf->offset;
|
|
if (size <= buf->len) {
|
|
buf->len = size;
|
|
i->last_offset = last_offset(buf);
|
|
break;
|
|
}
|
|
size -= buf->len;
|
|
i->head++;
|
|
off = 0;
|
|
}
|
|
pipe_discard_from(pipe, i->head + 1); // discard everything past this one
|
|
}
|
|
|
|
static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
|
|
{
|
|
const struct bio_vec *bvec, *end;
|
|
|
|
if (!i->count)
|
|
return;
|
|
i->count -= size;
|
|
|
|
size += i->iov_offset;
|
|
|
|
for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
|
|
if (likely(size < bvec->bv_len))
|
|
break;
|
|
size -= bvec->bv_len;
|
|
}
|
|
i->iov_offset = size;
|
|
i->nr_segs -= bvec - i->bvec;
|
|
i->bvec = bvec;
|
|
}
|
|
|
|
static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
|
|
{
|
|
const struct iovec *iov, *end;
|
|
|
|
if (!i->count)
|
|
return;
|
|
i->count -= size;
|
|
|
|
size += i->iov_offset; // from beginning of current segment
|
|
for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
|
|
if (likely(size < iov->iov_len))
|
|
break;
|
|
size -= iov->iov_len;
|
|
}
|
|
i->iov_offset = size;
|
|
i->nr_segs -= iov - i->iov;
|
|
i->iov = iov;
|
|
}
|
|
|
|
void iov_iter_advance(struct iov_iter *i, size_t size)
|
|
{
|
|
if (unlikely(i->count < size))
|
|
size = i->count;
|
|
if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
|
|
i->iov_offset += size;
|
|
i->count -= size;
|
|
} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
|
|
/* iovec and kvec have identical layouts */
|
|
iov_iter_iovec_advance(i, size);
|
|
} else if (iov_iter_is_bvec(i)) {
|
|
iov_iter_bvec_advance(i, size);
|
|
} else if (iov_iter_is_pipe(i)) {
|
|
pipe_advance(i, size);
|
|
} else if (iov_iter_is_discard(i)) {
|
|
i->count -= size;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_advance);
|
|
|
|
void iov_iter_revert(struct iov_iter *i, size_t unroll)
|
|
{
|
|
if (!unroll)
|
|
return;
|
|
if (WARN_ON(unroll > MAX_RW_COUNT))
|
|
return;
|
|
i->count += unroll;
|
|
if (unlikely(iov_iter_is_pipe(i))) {
|
|
struct pipe_inode_info *pipe = i->pipe;
|
|
unsigned int head = pipe->head;
|
|
|
|
while (head > i->start_head) {
|
|
struct pipe_buffer *b = pipe_buf(pipe, --head);
|
|
if (unroll < b->len) {
|
|
b->len -= unroll;
|
|
i->last_offset = last_offset(b);
|
|
i->head = head;
|
|
return;
|
|
}
|
|
unroll -= b->len;
|
|
pipe_buf_release(pipe, b);
|
|
pipe->head--;
|
|
}
|
|
i->last_offset = 0;
|
|
i->head = head;
|
|
return;
|
|
}
|
|
if (unlikely(iov_iter_is_discard(i)))
|
|
return;
|
|
if (unroll <= i->iov_offset) {
|
|
i->iov_offset -= unroll;
|
|
return;
|
|
}
|
|
unroll -= i->iov_offset;
|
|
if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
|
|
BUG(); /* We should never go beyond the start of the specified
|
|
* range since we might then be straying into pages that
|
|
* aren't pinned.
|
|
*/
|
|
} else if (iov_iter_is_bvec(i)) {
|
|
const struct bio_vec *bvec = i->bvec;
|
|
while (1) {
|
|
size_t n = (--bvec)->bv_len;
|
|
i->nr_segs++;
|
|
if (unroll <= n) {
|
|
i->bvec = bvec;
|
|
i->iov_offset = n - unroll;
|
|
return;
|
|
}
|
|
unroll -= n;
|
|
}
|
|
} else { /* same logics for iovec and kvec */
|
|
const struct iovec *iov = i->iov;
|
|
while (1) {
|
|
size_t n = (--iov)->iov_len;
|
|
i->nr_segs++;
|
|
if (unroll <= n) {
|
|
i->iov = iov;
|
|
i->iov_offset = n - unroll;
|
|
return;
|
|
}
|
|
unroll -= n;
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_revert);
|
|
|
|
/*
|
|
* Return the count of just the current iov_iter segment.
|
|
*/
|
|
size_t iov_iter_single_seg_count(const struct iov_iter *i)
|
|
{
|
|
if (i->nr_segs > 1) {
|
|
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
|
|
return min(i->count, i->iov->iov_len - i->iov_offset);
|
|
if (iov_iter_is_bvec(i))
|
|
return min(i->count, i->bvec->bv_len - i->iov_offset);
|
|
}
|
|
return i->count;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_single_seg_count);
|
|
|
|
void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
|
|
const struct kvec *kvec, unsigned long nr_segs,
|
|
size_t count)
|
|
{
|
|
WARN_ON(direction & ~(READ | WRITE));
|
|
*i = (struct iov_iter){
|
|
.iter_type = ITER_KVEC,
|
|
.data_source = direction,
|
|
.kvec = kvec,
|
|
.nr_segs = nr_segs,
|
|
.iov_offset = 0,
|
|
.count = count
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_kvec);
|
|
|
|
void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
|
|
const struct bio_vec *bvec, unsigned long nr_segs,
|
|
size_t count)
|
|
{
|
|
WARN_ON(direction & ~(READ | WRITE));
|
|
*i = (struct iov_iter){
|
|
.iter_type = ITER_BVEC,
|
|
.data_source = direction,
|
|
.bvec = bvec,
|
|
.nr_segs = nr_segs,
|
|
.iov_offset = 0,
|
|
.count = count
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_bvec);
|
|
|
|
void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
|
|
struct pipe_inode_info *pipe,
|
|
size_t count)
|
|
{
|
|
BUG_ON(direction != READ);
|
|
WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
|
|
*i = (struct iov_iter){
|
|
.iter_type = ITER_PIPE,
|
|
.data_source = false,
|
|
.pipe = pipe,
|
|
.head = pipe->head,
|
|
.start_head = pipe->head,
|
|
.last_offset = 0,
|
|
.count = count
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_pipe);
|
|
|
|
/**
|
|
* iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
|
|
* @i: The iterator to initialise.
|
|
* @direction: The direction of the transfer.
|
|
* @xarray: The xarray to access.
|
|
* @start: The start file position.
|
|
* @count: The size of the I/O buffer in bytes.
|
|
*
|
|
* Set up an I/O iterator to either draw data out of the pages attached to an
|
|
* inode or to inject data into those pages. The pages *must* be prevented
|
|
* from evaporation, either by taking a ref on them or locking them by the
|
|
* caller.
|
|
*/
|
|
void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
|
|
struct xarray *xarray, loff_t start, size_t count)
|
|
{
|
|
BUG_ON(direction & ~1);
|
|
*i = (struct iov_iter) {
|
|
.iter_type = ITER_XARRAY,
|
|
.data_source = direction,
|
|
.xarray = xarray,
|
|
.xarray_start = start,
|
|
.count = count,
|
|
.iov_offset = 0
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_xarray);
|
|
|
|
/**
|
|
* iov_iter_discard - Initialise an I/O iterator that discards data
|
|
* @i: The iterator to initialise.
|
|
* @direction: The direction of the transfer.
|
|
* @count: The size of the I/O buffer in bytes.
|
|
*
|
|
* Set up an I/O iterator that just discards everything that's written to it.
|
|
* It's only available as a READ iterator.
|
|
*/
|
|
void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
|
|
{
|
|
BUG_ON(direction != READ);
|
|
*i = (struct iov_iter){
|
|
.iter_type = ITER_DISCARD,
|
|
.data_source = false,
|
|
.count = count,
|
|
.iov_offset = 0
|
|
};
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_discard);
|
|
|
|
static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
|
|
unsigned len_mask)
|
|
{
|
|
size_t size = i->count;
|
|
size_t skip = i->iov_offset;
|
|
unsigned k;
|
|
|
|
for (k = 0; k < i->nr_segs; k++, skip = 0) {
|
|
size_t len = i->iov[k].iov_len - skip;
|
|
|
|
if (len > size)
|
|
len = size;
|
|
if (len & len_mask)
|
|
return false;
|
|
if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
|
|
return false;
|
|
|
|
size -= len;
|
|
if (!size)
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
|
|
unsigned len_mask)
|
|
{
|
|
size_t size = i->count;
|
|
unsigned skip = i->iov_offset;
|
|
unsigned k;
|
|
|
|
for (k = 0; k < i->nr_segs; k++, skip = 0) {
|
|
size_t len = i->bvec[k].bv_len - skip;
|
|
|
|
if (len > size)
|
|
len = size;
|
|
if (len & len_mask)
|
|
return false;
|
|
if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
|
|
return false;
|
|
|
|
size -= len;
|
|
if (!size)
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* iov_iter_is_aligned() - Check if the addresses and lengths of each segments
|
|
* are aligned to the parameters.
|
|
*
|
|
* @i: &struct iov_iter to restore
|
|
* @addr_mask: bit mask to check against the iov element's addresses
|
|
* @len_mask: bit mask to check against the iov element's lengths
|
|
*
|
|
* Return: false if any addresses or lengths intersect with the provided masks
|
|
*/
|
|
bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
|
|
unsigned len_mask)
|
|
{
|
|
if (likely(iter_is_ubuf(i))) {
|
|
if (i->count & len_mask)
|
|
return false;
|
|
if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
|
|
return iov_iter_aligned_iovec(i, addr_mask, len_mask);
|
|
|
|
if (iov_iter_is_bvec(i))
|
|
return iov_iter_aligned_bvec(i, addr_mask, len_mask);
|
|
|
|
if (iov_iter_is_pipe(i)) {
|
|
size_t size = i->count;
|
|
|
|
if (size & len_mask)
|
|
return false;
|
|
if (size && i->last_offset > 0) {
|
|
if (i->last_offset & addr_mask)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (iov_iter_is_xarray(i)) {
|
|
if (i->count & len_mask)
|
|
return false;
|
|
if ((i->xarray_start + i->iov_offset) & addr_mask)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
|
|
|
|
static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
|
|
{
|
|
unsigned long res = 0;
|
|
size_t size = i->count;
|
|
size_t skip = i->iov_offset;
|
|
unsigned k;
|
|
|
|
for (k = 0; k < i->nr_segs; k++, skip = 0) {
|
|
size_t len = i->iov[k].iov_len - skip;
|
|
if (len) {
|
|
res |= (unsigned long)i->iov[k].iov_base + skip;
|
|
if (len > size)
|
|
len = size;
|
|
res |= len;
|
|
size -= len;
|
|
if (!size)
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
|
|
{
|
|
unsigned res = 0;
|
|
size_t size = i->count;
|
|
unsigned skip = i->iov_offset;
|
|
unsigned k;
|
|
|
|
for (k = 0; k < i->nr_segs; k++, skip = 0) {
|
|
size_t len = i->bvec[k].bv_len - skip;
|
|
res |= (unsigned long)i->bvec[k].bv_offset + skip;
|
|
if (len > size)
|
|
len = size;
|
|
res |= len;
|
|
size -= len;
|
|
if (!size)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
unsigned long iov_iter_alignment(const struct iov_iter *i)
|
|
{
|
|
if (likely(iter_is_ubuf(i))) {
|
|
size_t size = i->count;
|
|
if (size)
|
|
return ((unsigned long)i->ubuf + i->iov_offset) | size;
|
|
return 0;
|
|
}
|
|
|
|
/* iovec and kvec have identical layouts */
|
|
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
|
|
return iov_iter_alignment_iovec(i);
|
|
|
|
if (iov_iter_is_bvec(i))
|
|
return iov_iter_alignment_bvec(i);
|
|
|
|
if (iov_iter_is_pipe(i)) {
|
|
size_t size = i->count;
|
|
|
|
if (size && i->last_offset > 0)
|
|
return size | i->last_offset;
|
|
return size;
|
|
}
|
|
|
|
if (iov_iter_is_xarray(i))
|
|
return (i->xarray_start + i->iov_offset) | i->count;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_alignment);
|
|
|
|
unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
|
|
{
|
|
unsigned long res = 0;
|
|
unsigned long v = 0;
|
|
size_t size = i->count;
|
|
unsigned k;
|
|
|
|
if (iter_is_ubuf(i))
|
|
return 0;
|
|
|
|
if (WARN_ON(!iter_is_iovec(i)))
|
|
return ~0U;
|
|
|
|
for (k = 0; k < i->nr_segs; k++) {
|
|
if (i->iov[k].iov_len) {
|
|
unsigned long base = (unsigned long)i->iov[k].iov_base;
|
|
if (v) // if not the first one
|
|
res |= base | v; // this start | previous end
|
|
v = base + i->iov[k].iov_len;
|
|
if (size <= i->iov[k].iov_len)
|
|
break;
|
|
size -= i->iov[k].iov_len;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_gap_alignment);
|
|
|
|
static int want_pages_array(struct page ***res, size_t size,
|
|
size_t start, unsigned int maxpages)
|
|
{
|
|
unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
|
|
|
|
if (count > maxpages)
|
|
count = maxpages;
|
|
WARN_ON(!count); // caller should've prevented that
|
|
if (!*res) {
|
|
*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
|
|
if (!*res)
|
|
return 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t pipe_get_pages(struct iov_iter *i,
|
|
struct page ***pages, size_t maxsize, unsigned maxpages,
|
|
size_t *start)
|
|
{
|
|
unsigned int npages, count, off, chunk;
|
|
struct page **p;
|
|
size_t left;
|
|
|
|
if (!sanity(i))
|
|
return -EFAULT;
|
|
|
|
*start = off = pipe_npages(i, &npages);
|
|
if (!npages)
|
|
return -EFAULT;
|
|
count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
|
|
if (!count)
|
|
return -ENOMEM;
|
|
p = *pages;
|
|
for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
|
|
struct page *page = append_pipe(i, left, &off);
|
|
if (!page)
|
|
break;
|
|
chunk = min_t(size_t, left, PAGE_SIZE - off);
|
|
get_page(*p++ = page);
|
|
}
|
|
if (!npages)
|
|
return -EFAULT;
|
|
return maxsize - left;
|
|
}
|
|
|
|
static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
|
|
pgoff_t index, unsigned int nr_pages)
|
|
{
|
|
XA_STATE(xas, xa, index);
|
|
struct page *page;
|
|
unsigned int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
|
|
if (xas_retry(&xas, page))
|
|
continue;
|
|
|
|
/* Has the page moved or been split? */
|
|
if (unlikely(page != xas_reload(&xas))) {
|
|
xas_reset(&xas);
|
|
continue;
|
|
}
|
|
|
|
pages[ret] = find_subpage(page, xas.xa_index);
|
|
get_page(pages[ret]);
|
|
if (++ret == nr_pages)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t iter_xarray_get_pages(struct iov_iter *i,
|
|
struct page ***pages, size_t maxsize,
|
|
unsigned maxpages, size_t *_start_offset)
|
|
{
|
|
unsigned nr, offset, count;
|
|
pgoff_t index;
|
|
loff_t pos;
|
|
|
|
pos = i->xarray_start + i->iov_offset;
|
|
index = pos >> PAGE_SHIFT;
|
|
offset = pos & ~PAGE_MASK;
|
|
*_start_offset = offset;
|
|
|
|
count = want_pages_array(pages, maxsize, offset, maxpages);
|
|
if (!count)
|
|
return -ENOMEM;
|
|
nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
|
|
if (nr == 0)
|
|
return 0;
|
|
|
|
maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
|
|
i->iov_offset += maxsize;
|
|
i->count -= maxsize;
|
|
return maxsize;
|
|
}
|
|
|
|
/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
|
|
static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
|
|
{
|
|
size_t skip;
|
|
long k;
|
|
|
|
if (iter_is_ubuf(i))
|
|
return (unsigned long)i->ubuf + i->iov_offset;
|
|
|
|
for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
|
|
size_t len = i->iov[k].iov_len - skip;
|
|
|
|
if (unlikely(!len))
|
|
continue;
|
|
if (*size > len)
|
|
*size = len;
|
|
return (unsigned long)i->iov[k].iov_base + skip;
|
|
}
|
|
BUG(); // if it had been empty, we wouldn't get called
|
|
}
|
|
|
|
/* must be done on non-empty ITER_BVEC one */
|
|
static struct page *first_bvec_segment(const struct iov_iter *i,
|
|
size_t *size, size_t *start)
|
|
{
|
|
struct page *page;
|
|
size_t skip = i->iov_offset, len;
|
|
|
|
len = i->bvec->bv_len - skip;
|
|
if (*size > len)
|
|
*size = len;
|
|
skip += i->bvec->bv_offset;
|
|
page = i->bvec->bv_page + skip / PAGE_SIZE;
|
|
*start = skip % PAGE_SIZE;
|
|
return page;
|
|
}
|
|
|
|
static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
|
|
struct page ***pages, size_t maxsize,
|
|
unsigned int maxpages, size_t *start)
|
|
{
|
|
unsigned int n;
|
|
|
|
if (maxsize > i->count)
|
|
maxsize = i->count;
|
|
if (!maxsize)
|
|
return 0;
|
|
if (maxsize > MAX_RW_COUNT)
|
|
maxsize = MAX_RW_COUNT;
|
|
|
|
if (likely(user_backed_iter(i))) {
|
|
unsigned int gup_flags = 0;
|
|
unsigned long addr;
|
|
int res;
|
|
|
|
if (iov_iter_rw(i) != WRITE)
|
|
gup_flags |= FOLL_WRITE;
|
|
if (i->nofault)
|
|
gup_flags |= FOLL_NOFAULT;
|
|
|
|
addr = first_iovec_segment(i, &maxsize);
|
|
*start = addr % PAGE_SIZE;
|
|
addr &= PAGE_MASK;
|
|
n = want_pages_array(pages, maxsize, *start, maxpages);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
res = get_user_pages_fast(addr, n, gup_flags, *pages);
|
|
if (unlikely(res <= 0))
|
|
return res;
|
|
maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
|
|
iov_iter_advance(i, maxsize);
|
|
return maxsize;
|
|
}
|
|
if (iov_iter_is_bvec(i)) {
|
|
struct page **p;
|
|
struct page *page;
|
|
|
|
page = first_bvec_segment(i, &maxsize, start);
|
|
n = want_pages_array(pages, maxsize, *start, maxpages);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
p = *pages;
|
|
for (int k = 0; k < n; k++)
|
|
get_page(p[k] = page + k);
|
|
maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
|
|
i->count -= maxsize;
|
|
i->iov_offset += maxsize;
|
|
if (i->iov_offset == i->bvec->bv_len) {
|
|
i->iov_offset = 0;
|
|
i->bvec++;
|
|
i->nr_segs--;
|
|
}
|
|
return maxsize;
|
|
}
|
|
if (iov_iter_is_pipe(i))
|
|
return pipe_get_pages(i, pages, maxsize, maxpages, start);
|
|
if (iov_iter_is_xarray(i))
|
|
return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
|
|
return -EFAULT;
|
|
}
|
|
|
|
ssize_t iov_iter_get_pages2(struct iov_iter *i,
|
|
struct page **pages, size_t maxsize, unsigned maxpages,
|
|
size_t *start)
|
|
{
|
|
if (!maxpages)
|
|
return 0;
|
|
BUG_ON(!pages);
|
|
|
|
return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_get_pages2);
|
|
|
|
ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
|
|
struct page ***pages, size_t maxsize,
|
|
size_t *start)
|
|
{
|
|
ssize_t len;
|
|
|
|
*pages = NULL;
|
|
|
|
len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
|
|
if (len <= 0) {
|
|
kvfree(*pages);
|
|
*pages = NULL;
|
|
}
|
|
return len;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
|
|
|
|
size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
|
|
struct iov_iter *i)
|
|
{
|
|
__wsum sum, next;
|
|
sum = *csum;
|
|
if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
iterate_and_advance(i, bytes, base, len, off, ({
|
|
next = csum_and_copy_from_user(base, addr + off, len);
|
|
sum = csum_block_add(sum, next, off);
|
|
next ? 0 : len;
|
|
}), ({
|
|
sum = csum_and_memcpy(addr + off, base, len, sum, off);
|
|
})
|
|
)
|
|
*csum = sum;
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(csum_and_copy_from_iter);
|
|
|
|
size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
|
|
struct iov_iter *i)
|
|
{
|
|
struct csum_state *csstate = _csstate;
|
|
__wsum sum, next;
|
|
|
|
if (unlikely(iov_iter_is_discard(i))) {
|
|
WARN_ON(1); /* for now */
|
|
return 0;
|
|
}
|
|
|
|
sum = csum_shift(csstate->csum, csstate->off);
|
|
if (unlikely(iov_iter_is_pipe(i)))
|
|
bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
|
|
else iterate_and_advance(i, bytes, base, len, off, ({
|
|
next = csum_and_copy_to_user(addr + off, base, len);
|
|
sum = csum_block_add(sum, next, off);
|
|
next ? 0 : len;
|
|
}), ({
|
|
sum = csum_and_memcpy(base, addr + off, len, sum, off);
|
|
})
|
|
)
|
|
csstate->csum = csum_shift(sum, csstate->off);
|
|
csstate->off += bytes;
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL(csum_and_copy_to_iter);
|
|
|
|
size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
|
|
struct iov_iter *i)
|
|
{
|
|
#ifdef CONFIG_CRYPTO_HASH
|
|
struct ahash_request *hash = hashp;
|
|
struct scatterlist sg;
|
|
size_t copied;
|
|
|
|
copied = copy_to_iter(addr, bytes, i);
|
|
sg_init_one(&sg, addr, copied);
|
|
ahash_request_set_crypt(hash, &sg, NULL, copied);
|
|
crypto_ahash_update(hash);
|
|
return copied;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(hash_and_copy_to_iter);
|
|
|
|
static int iov_npages(const struct iov_iter *i, int maxpages)
|
|
{
|
|
size_t skip = i->iov_offset, size = i->count;
|
|
const struct iovec *p;
|
|
int npages = 0;
|
|
|
|
for (p = i->iov; size; skip = 0, p++) {
|
|
unsigned offs = offset_in_page(p->iov_base + skip);
|
|
size_t len = min(p->iov_len - skip, size);
|
|
|
|
if (len) {
|
|
size -= len;
|
|
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
|
|
if (unlikely(npages > maxpages))
|
|
return maxpages;
|
|
}
|
|
}
|
|
return npages;
|
|
}
|
|
|
|
static int bvec_npages(const struct iov_iter *i, int maxpages)
|
|
{
|
|
size_t skip = i->iov_offset, size = i->count;
|
|
const struct bio_vec *p;
|
|
int npages = 0;
|
|
|
|
for (p = i->bvec; size; skip = 0, p++) {
|
|
unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
|
|
size_t len = min(p->bv_len - skip, size);
|
|
|
|
size -= len;
|
|
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
|
|
if (unlikely(npages > maxpages))
|
|
return maxpages;
|
|
}
|
|
return npages;
|
|
}
|
|
|
|
int iov_iter_npages(const struct iov_iter *i, int maxpages)
|
|
{
|
|
if (unlikely(!i->count))
|
|
return 0;
|
|
if (likely(iter_is_ubuf(i))) {
|
|
unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
|
|
int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
|
|
return min(npages, maxpages);
|
|
}
|
|
/* iovec and kvec have identical layouts */
|
|
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
|
|
return iov_npages(i, maxpages);
|
|
if (iov_iter_is_bvec(i))
|
|
return bvec_npages(i, maxpages);
|
|
if (iov_iter_is_pipe(i)) {
|
|
int npages;
|
|
|
|
if (!sanity(i))
|
|
return 0;
|
|
|
|
pipe_npages(i, &npages);
|
|
return min(npages, maxpages);
|
|
}
|
|
if (iov_iter_is_xarray(i)) {
|
|
unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
|
|
int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
|
|
return min(npages, maxpages);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iov_iter_npages);
|
|
|
|
const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
|
|
{
|
|
*new = *old;
|
|
if (unlikely(iov_iter_is_pipe(new))) {
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
if (iov_iter_is_bvec(new))
|
|
return new->bvec = kmemdup(new->bvec,
|
|
new->nr_segs * sizeof(struct bio_vec),
|
|
flags);
|
|
else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
|
|
/* iovec and kvec have identical layout */
|
|
return new->iov = kmemdup(new->iov,
|
|
new->nr_segs * sizeof(struct iovec),
|
|
flags);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dup_iter);
|
|
|
|
static int copy_compat_iovec_from_user(struct iovec *iov,
|
|
const struct iovec __user *uvec, unsigned long nr_segs)
|
|
{
|
|
const struct compat_iovec __user *uiov =
|
|
(const struct compat_iovec __user *)uvec;
|
|
int ret = -EFAULT, i;
|
|
|
|
if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < nr_segs; i++) {
|
|
compat_uptr_t buf;
|
|
compat_ssize_t len;
|
|
|
|
unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
|
|
unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
|
|
|
|
/* check for compat_size_t not fitting in compat_ssize_t .. */
|
|
if (len < 0) {
|
|
ret = -EINVAL;
|
|
goto uaccess_end;
|
|
}
|
|
iov[i].iov_base = compat_ptr(buf);
|
|
iov[i].iov_len = len;
|
|
}
|
|
|
|
ret = 0;
|
|
uaccess_end:
|
|
user_access_end();
|
|
return ret;
|
|
}
|
|
|
|
static int copy_iovec_from_user(struct iovec *iov,
|
|
const struct iovec __user *uvec, unsigned long nr_segs)
|
|
{
|
|
unsigned long seg;
|
|
|
|
if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
|
|
return -EFAULT;
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
|
if ((ssize_t)iov[seg].iov_len < 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct iovec *iovec_from_user(const struct iovec __user *uvec,
|
|
unsigned long nr_segs, unsigned long fast_segs,
|
|
struct iovec *fast_iov, bool compat)
|
|
{
|
|
struct iovec *iov = fast_iov;
|
|
int ret;
|
|
|
|
/*
|
|
* SuS says "The readv() function *may* fail if the iovcnt argument was
|
|
* less than or equal to 0, or greater than {IOV_MAX}. Linux has
|
|
* traditionally returned zero for zero segments, so...
|
|
*/
|
|
if (nr_segs == 0)
|
|
return iov;
|
|
if (nr_segs > UIO_MAXIOV)
|
|
return ERR_PTR(-EINVAL);
|
|
if (nr_segs > fast_segs) {
|
|
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
|
|
if (!iov)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
if (compat)
|
|
ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
|
|
else
|
|
ret = copy_iovec_from_user(iov, uvec, nr_segs);
|
|
if (ret) {
|
|
if (iov != fast_iov)
|
|
kfree(iov);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return iov;
|
|
}
|
|
|
|
ssize_t __import_iovec(int type, const struct iovec __user *uvec,
|
|
unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
|
|
struct iov_iter *i, bool compat)
|
|
{
|
|
ssize_t total_len = 0;
|
|
unsigned long seg;
|
|
struct iovec *iov;
|
|
|
|
iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
|
|
if (IS_ERR(iov)) {
|
|
*iovp = NULL;
|
|
return PTR_ERR(iov);
|
|
}
|
|
|
|
/*
|
|
* According to the Single Unix Specification we should return EINVAL if
|
|
* an element length is < 0 when cast to ssize_t or if the total length
|
|
* would overflow the ssize_t return value of the system call.
|
|
*
|
|
* Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
|
|
* overflow case.
|
|
*/
|
|
for (seg = 0; seg < nr_segs; seg++) {
|
|
ssize_t len = (ssize_t)iov[seg].iov_len;
|
|
|
|
if (!access_ok(iov[seg].iov_base, len)) {
|
|
if (iov != *iovp)
|
|
kfree(iov);
|
|
*iovp = NULL;
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (len > MAX_RW_COUNT - total_len) {
|
|
len = MAX_RW_COUNT - total_len;
|
|
iov[seg].iov_len = len;
|
|
}
|
|
total_len += len;
|
|
}
|
|
|
|
iov_iter_init(i, type, iov, nr_segs, total_len);
|
|
if (iov == *iovp)
|
|
*iovp = NULL;
|
|
else
|
|
*iovp = iov;
|
|
return total_len;
|
|
}
|
|
|
|
/**
|
|
* import_iovec() - Copy an array of &struct iovec from userspace
|
|
* into the kernel, check that it is valid, and initialize a new
|
|
* &struct iov_iter iterator to access it.
|
|
*
|
|
* @type: One of %READ or %WRITE.
|
|
* @uvec: Pointer to the userspace array.
|
|
* @nr_segs: Number of elements in userspace array.
|
|
* @fast_segs: Number of elements in @iov.
|
|
* @iovp: (input and output parameter) Pointer to pointer to (usually small
|
|
* on-stack) kernel array.
|
|
* @i: Pointer to iterator that will be initialized on success.
|
|
*
|
|
* If the array pointed to by *@iov is large enough to hold all @nr_segs,
|
|
* then this function places %NULL in *@iov on return. Otherwise, a new
|
|
* array will be allocated and the result placed in *@iov. This means that
|
|
* the caller may call kfree() on *@iov regardless of whether the small
|
|
* on-stack array was used or not (and regardless of whether this function
|
|
* returns an error or not).
|
|
*
|
|
* Return: Negative error code on error, bytes imported on success
|
|
*/
|
|
ssize_t import_iovec(int type, const struct iovec __user *uvec,
|
|
unsigned nr_segs, unsigned fast_segs,
|
|
struct iovec **iovp, struct iov_iter *i)
|
|
{
|
|
return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
|
|
in_compat_syscall());
|
|
}
|
|
EXPORT_SYMBOL(import_iovec);
|
|
|
|
int import_single_range(int rw, void __user *buf, size_t len,
|
|
struct iovec *iov, struct iov_iter *i)
|
|
{
|
|
if (len > MAX_RW_COUNT)
|
|
len = MAX_RW_COUNT;
|
|
if (unlikely(!access_ok(buf, len)))
|
|
return -EFAULT;
|
|
|
|
iov->iov_base = buf;
|
|
iov->iov_len = len;
|
|
iov_iter_init(i, rw, iov, 1, len);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(import_single_range);
|
|
|
|
/**
|
|
* iov_iter_restore() - Restore a &struct iov_iter to the same state as when
|
|
* iov_iter_save_state() was called.
|
|
*
|
|
* @i: &struct iov_iter to restore
|
|
* @state: state to restore from
|
|
*
|
|
* Used after iov_iter_save_state() to bring restore @i, if operations may
|
|
* have advanced it.
|
|
*
|
|
* Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
|
|
*/
|
|
void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
|
|
{
|
|
if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
|
|
!iov_iter_is_kvec(i) && !iter_is_ubuf(i))
|
|
return;
|
|
i->iov_offset = state->iov_offset;
|
|
i->count = state->count;
|
|
if (iter_is_ubuf(i))
|
|
return;
|
|
/*
|
|
* For the *vec iters, nr_segs + iov is constant - if we increment
|
|
* the vec, then we also decrement the nr_segs count. Hence we don't
|
|
* need to track both of these, just one is enough and we can deduct
|
|
* the other from that. ITER_KVEC and ITER_IOVEC are the same struct
|
|
* size, so we can just increment the iov pointer as they are unionzed.
|
|
* ITER_BVEC _may_ be the same size on some archs, but on others it is
|
|
* not. Be safe and handle it separately.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
|
|
if (iov_iter_is_bvec(i))
|
|
i->bvec -= state->nr_segs - i->nr_segs;
|
|
else
|
|
i->iov -= state->nr_segs - i->nr_segs;
|
|
i->nr_segs = state->nr_segs;
|
|
}
|