linux/sound/soc/sunxi/sun8i-codec.c
Uwe Kleine-König 130af75b5c
ASoC: Switch back to struct platform_driver::remove()
After commit 0edb555a65d1 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.

Convert all drivers below sound/soc to use .remove(), with the eventual
goal to drop struct platform_driver::remove_new(). As .remove() and
.remove_new() have the same prototypes, conversion is done by just
changing the structure member name in the driver initializer.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://patch.msgid.link/20240909151230.909818-2-u.kleine-koenig@baylibre.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-09-09 18:26:49 +01:00

1724 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* This driver supports the digital controls for the internal codec
* found in Allwinner's A33 SoCs.
*
* (C) Copyright 2010-2016
* Reuuimlla Technology Co., Ltd. <www.reuuimllatech.com>
* huangxin <huangxin@Reuuimllatech.com>
* Mylène Josserand <mylene.josserand@free-electrons.com>
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/input.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/log2.h>
#include <sound/jack.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#define SUN8I_SYSCLK_CTL 0x00c
#define SUN8I_SYSCLK_CTL_AIF1CLK_ENA 11
#define SUN8I_SYSCLK_CTL_AIF1CLK_SRC_PLL (0x2 << 8)
#define SUN8I_SYSCLK_CTL_AIF2CLK_ENA 7
#define SUN8I_SYSCLK_CTL_AIF2CLK_SRC_PLL (0x2 << 4)
#define SUN8I_SYSCLK_CTL_SYSCLK_ENA 3
#define SUN8I_SYSCLK_CTL_SYSCLK_SRC 0
#define SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF1CLK (0x0 << 0)
#define SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF2CLK (0x1 << 0)
#define SUN8I_MOD_CLK_ENA 0x010
#define SUN8I_MOD_CLK_ENA_AIF1 15
#define SUN8I_MOD_CLK_ENA_AIF2 14
#define SUN8I_MOD_CLK_ENA_AIF3 13
#define SUN8I_MOD_CLK_ENA_ADC 3
#define SUN8I_MOD_CLK_ENA_DAC 2
#define SUN8I_MOD_RST_CTL 0x014
#define SUN8I_MOD_RST_CTL_AIF1 15
#define SUN8I_MOD_RST_CTL_AIF2 14
#define SUN8I_MOD_RST_CTL_AIF3 13
#define SUN8I_MOD_RST_CTL_ADC 3
#define SUN8I_MOD_RST_CTL_DAC 2
#define SUN8I_SYS_SR_CTRL 0x018
#define SUN8I_SYS_SR_CTRL_AIF1_FS 12
#define SUN8I_SYS_SR_CTRL_AIF2_FS 8
#define SUN8I_AIF_CLK_CTRL(n) (0x040 * (1 + (n)))
#define SUN8I_AIF_CLK_CTRL_MSTR_MOD 15
#define SUN8I_AIF_CLK_CTRL_CLK_INV 13
#define SUN8I_AIF_CLK_CTRL_BCLK_DIV 9
#define SUN8I_AIF_CLK_CTRL_LRCK_DIV 6
#define SUN8I_AIF_CLK_CTRL_WORD_SIZ 4
#define SUN8I_AIF_CLK_CTRL_DATA_FMT 2
#define SUN8I_AIF1_ADCDAT_CTRL 0x044
#define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_ENA 15
#define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_ENA 14
#define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_SRC 10
#define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_SRC 8
#define SUN8I_AIF1_DACDAT_CTRL 0x048
#define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_ENA 15
#define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_ENA 14
#define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_SRC 10
#define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_SRC 8
#define SUN8I_AIF1_MXR_SRC 0x04c
#define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF1DA0L 15
#define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACL 14
#define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_ADCL 13
#define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACR 12
#define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF1DA0R 11
#define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACR 10
#define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_ADCR 9
#define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACL 8
#define SUN8I_AIF1_VOL_CTRL1 0x050
#define SUN8I_AIF1_VOL_CTRL1_AD0L_VOL 8
#define SUN8I_AIF1_VOL_CTRL1_AD0R_VOL 0
#define SUN8I_AIF1_VOL_CTRL3 0x058
#define SUN8I_AIF1_VOL_CTRL3_DA0L_VOL 8
#define SUN8I_AIF1_VOL_CTRL3_DA0R_VOL 0
#define SUN8I_AIF2_ADCDAT_CTRL 0x084
#define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_ENA 15
#define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_ENA 14
#define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_SRC 10
#define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_SRC 8
#define SUN8I_AIF2_DACDAT_CTRL 0x088
#define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_ENA 15
#define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_ENA 14
#define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_SRC 10
#define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_SRC 8
#define SUN8I_AIF2_MXR_SRC 0x08c
#define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA0L 15
#define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA1L 14
#define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF2DACR 13
#define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_ADCL 12
#define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA0R 11
#define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA1R 10
#define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF2DACL 9
#define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_ADCR 8
#define SUN8I_AIF2_VOL_CTRL1 0x090
#define SUN8I_AIF2_VOL_CTRL1_ADCL_VOL 8
#define SUN8I_AIF2_VOL_CTRL1_ADCR_VOL 0
#define SUN8I_AIF2_VOL_CTRL2 0x098
#define SUN8I_AIF2_VOL_CTRL2_DACL_VOL 8
#define SUN8I_AIF2_VOL_CTRL2_DACR_VOL 0
#define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF1 (0x0 << 0)
#define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF2 (0x1 << 0)
#define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF1CLK (0x2 << 0)
#define SUN8I_AIF3_PATH_CTRL 0x0cc
#define SUN8I_AIF3_PATH_CTRL_AIF3_ADC_SRC 10
#define SUN8I_AIF3_PATH_CTRL_AIF2_DAC_SRC 8
#define SUN8I_AIF3_PATH_CTRL_AIF3_PINS_TRI 7
#define SUN8I_ADC_DIG_CTRL 0x100
#define SUN8I_ADC_DIG_CTRL_ENAD 15
#define SUN8I_ADC_DIG_CTRL_ADOUT_DTS 2
#define SUN8I_ADC_DIG_CTRL_ADOUT_DLY 1
#define SUN8I_ADC_VOL_CTRL 0x104
#define SUN8I_ADC_VOL_CTRL_ADCL_VOL 8
#define SUN8I_ADC_VOL_CTRL_ADCR_VOL 0
#define SUN8I_HMIC_CTRL1 0x110
#define SUN8I_HMIC_CTRL1_HMIC_M 12
#define SUN8I_HMIC_CTRL1_HMIC_N 8
#define SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB 5
#define SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN 4
#define SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN 3
#define SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN 0
#define SUN8I_HMIC_CTRL2 0x114
#define SUN8I_HMIC_CTRL2_HMIC_SAMPLE 14
#define SUN8I_HMIC_CTRL2_HMIC_MDATA_THRESHOLD 8
#define SUN8I_HMIC_CTRL2_HMIC_SF 6
#define SUN8I_HMIC_STS 0x118
#define SUN8I_HMIC_STS_MDATA_DISCARD 13
#define SUN8I_HMIC_STS_HMIC_DATA 8
#define SUN8I_HMIC_STS_JACK_OUT_IRQ_ST 4
#define SUN8I_HMIC_STS_JACK_IN_IRQ_ST 3
#define SUN8I_HMIC_STS_HMIC_DATA_IRQ_ST 0
#define SUN8I_DAC_DIG_CTRL 0x120
#define SUN8I_DAC_DIG_CTRL_ENDA 15
#define SUN8I_DAC_VOL_CTRL 0x124
#define SUN8I_DAC_VOL_CTRL_DACL_VOL 8
#define SUN8I_DAC_VOL_CTRL_DACR_VOL 0
#define SUN8I_DAC_MXR_SRC 0x130
#define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA0L 15
#define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA1L 14
#define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF2DACL 13
#define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_ADCL 12
#define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA0R 11
#define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA1R 10
#define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF2DACR 9
#define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_ADCR 8
#define SUN8I_SYSCLK_CTL_AIF1CLK_SRC_MASK GENMASK(9, 8)
#define SUN8I_SYSCLK_CTL_AIF2CLK_SRC_MASK GENMASK(5, 4)
#define SUN8I_SYS_SR_CTRL_AIF1_FS_MASK GENMASK(15, 12)
#define SUN8I_SYS_SR_CTRL_AIF2_FS_MASK GENMASK(11, 8)
#define SUN8I_AIF_CLK_CTRL_CLK_INV_MASK GENMASK(14, 13)
#define SUN8I_AIF_CLK_CTRL_BCLK_DIV_MASK GENMASK(12, 9)
#define SUN8I_AIF_CLK_CTRL_LRCK_DIV_MASK GENMASK(8, 6)
#define SUN8I_AIF_CLK_CTRL_WORD_SIZ_MASK GENMASK(5, 4)
#define SUN8I_AIF_CLK_CTRL_DATA_FMT_MASK GENMASK(3, 2)
#define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_MASK GENMASK(1, 0)
#define SUN8I_HMIC_CTRL1_HMIC_M_MASK GENMASK(15, 12)
#define SUN8I_HMIC_CTRL1_HMIC_N_MASK GENMASK(11, 8)
#define SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB_MASK GENMASK(6, 5)
#define SUN8I_HMIC_CTRL2_HMIC_SAMPLE_MASK GENMASK(15, 14)
#define SUN8I_HMIC_CTRL2_HMIC_SF_MASK GENMASK(7, 6)
#define SUN8I_HMIC_STS_HMIC_DATA_MASK GENMASK(12, 8)
#define SUN8I_CODEC_BUTTONS (SND_JACK_BTN_0|\
SND_JACK_BTN_1|\
SND_JACK_BTN_2|\
SND_JACK_BTN_3)
#define SUN8I_CODEC_PASSTHROUGH_SAMPLE_RATE 48000
#define SUN8I_CODEC_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 |\
SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S20_LE |\
SNDRV_PCM_FMTBIT_S24_LE |\
SNDRV_PCM_FMTBIT_S20_3LE|\
SNDRV_PCM_FMTBIT_S24_3LE)
#define SUN8I_CODEC_PCM_RATES (SNDRV_PCM_RATE_8000_48000|\
SNDRV_PCM_RATE_88200 |\
SNDRV_PCM_RATE_96000 |\
SNDRV_PCM_RATE_176400 |\
SNDRV_PCM_RATE_192000 |\
SNDRV_PCM_RATE_KNOT)
enum {
SUN8I_CODEC_AIF1,
SUN8I_CODEC_AIF2,
SUN8I_CODEC_AIF3,
SUN8I_CODEC_NAIFS
};
struct sun8i_codec_aif {
unsigned int lrck_div_order;
unsigned int sample_rate;
unsigned int slots;
unsigned int slot_width;
unsigned int active_streams : 2;
unsigned int open_streams : 2;
};
struct sun8i_codec_quirks {
bool bus_clock : 1;
bool jack_detection : 1;
bool legacy_widgets : 1;
bool lrck_inversion : 1;
};
enum {
SUN8I_JACK_STATUS_DISCONNECTED,
SUN8I_JACK_STATUS_WAITING_HBIAS,
SUN8I_JACK_STATUS_CONNECTED,
};
struct sun8i_codec {
struct snd_soc_component *component;
struct regmap *regmap;
struct clk *clk_bus;
struct clk *clk_module;
const struct sun8i_codec_quirks *quirks;
struct sun8i_codec_aif aifs[SUN8I_CODEC_NAIFS];
struct snd_soc_jack *jack;
struct delayed_work jack_work;
int jack_irq;
int jack_status;
int jack_type;
int jack_last_sample;
ktime_t jack_hbias_ready;
struct mutex jack_mutex;
int last_hmic_irq;
unsigned int sysclk_rate;
int sysclk_refcnt;
};
static struct snd_soc_dai_driver sun8i_codec_dais[];
static int sun8i_codec_runtime_resume(struct device *dev)
{
struct sun8i_codec *scodec = dev_get_drvdata(dev);
int ret;
if (scodec->clk_bus) {
ret = clk_prepare_enable(scodec->clk_bus);
if (ret) {
dev_err(dev, "Failed to enable the bus clock\n");
return ret;
}
}
regcache_cache_only(scodec->regmap, false);
ret = regcache_sync(scodec->regmap);
if (ret) {
dev_err(dev, "Failed to sync regmap cache\n");
return ret;
}
return 0;
}
static int sun8i_codec_runtime_suspend(struct device *dev)
{
struct sun8i_codec *scodec = dev_get_drvdata(dev);
regcache_cache_only(scodec->regmap, true);
regcache_mark_dirty(scodec->regmap);
if (scodec->clk_bus)
clk_disable_unprepare(scodec->clk_bus);
return 0;
}
static int sun8i_codec_get_hw_rate(unsigned int sample_rate)
{
switch (sample_rate) {
case 7350:
case 8000:
return 0x0;
case 11025:
return 0x1;
case 12000:
return 0x2;
case 14700:
case 16000:
return 0x3;
case 22050:
return 0x4;
case 24000:
return 0x5;
case 29400:
case 32000:
return 0x6;
case 44100:
return 0x7;
case 48000:
return 0x8;
case 88200:
case 96000:
return 0x9;
case 176400:
case 192000:
return 0xa;
default:
return -EINVAL;
}
}
static int sun8i_codec_update_sample_rate(struct sun8i_codec *scodec)
{
unsigned int max_rate = 0;
int hw_rate, i;
for (i = SUN8I_CODEC_AIF1; i < SUN8I_CODEC_NAIFS; ++i) {
struct sun8i_codec_aif *aif = &scodec->aifs[i];
if (aif->active_streams)
max_rate = max(max_rate, aif->sample_rate);
}
/* Set the sample rate for ADC->DAC passthrough when no AIF is active. */
if (!max_rate)
max_rate = SUN8I_CODEC_PASSTHROUGH_SAMPLE_RATE;
hw_rate = sun8i_codec_get_hw_rate(max_rate);
if (hw_rate < 0)
return hw_rate;
regmap_update_bits(scodec->regmap, SUN8I_SYS_SR_CTRL,
SUN8I_SYS_SR_CTRL_AIF1_FS_MASK,
hw_rate << SUN8I_SYS_SR_CTRL_AIF1_FS);
return 0;
}
static int sun8i_codec_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai);
u32 dsp_format, format, invert, value;
/* clock masters */
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBC_CFC: /* Codec slave, DAI master */
value = 0x1;
break;
case SND_SOC_DAIFMT_CBP_CFP: /* Codec Master, DAI slave */
value = 0x0;
break;
default:
return -EINVAL;
}
if (dai->id == SUN8I_CODEC_AIF3) {
/* AIF3 only supports master mode. */
if (value)
return -EINVAL;
/* Use the AIF2 BCLK and LRCK for AIF3. */
regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id),
SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_MASK,
SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF2);
} else {
regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id),
BIT(SUN8I_AIF_CLK_CTRL_MSTR_MOD),
value << SUN8I_AIF_CLK_CTRL_MSTR_MOD);
}
/* DAI format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
format = 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
format = 0x1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
format = 0x2;
break;
case SND_SOC_DAIFMT_DSP_A:
format = 0x3;
dsp_format = 0x0; /* Set LRCK_INV to 0 */
break;
case SND_SOC_DAIFMT_DSP_B:
format = 0x3;
dsp_format = 0x1; /* Set LRCK_INV to 1 */
break;
default:
return -EINVAL;
}
if (dai->id == SUN8I_CODEC_AIF3) {
/* AIF3 only supports DSP mode. */
if (format != 3)
return -EINVAL;
} else {
regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id),
SUN8I_AIF_CLK_CTRL_DATA_FMT_MASK,
format << SUN8I_AIF_CLK_CTRL_DATA_FMT);
}
/* clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF: /* Normal */
invert = 0x0;
break;
case SND_SOC_DAIFMT_NB_IF: /* Inverted LRCK */
invert = 0x1;
break;
case SND_SOC_DAIFMT_IB_NF: /* Inverted BCLK */
invert = 0x2;
break;
case SND_SOC_DAIFMT_IB_IF: /* Both inverted */
invert = 0x3;
break;
default:
return -EINVAL;
}
if (format == 0x3) {
/* Inverted LRCK is not available in DSP mode. */
if (invert & BIT(0))
return -EINVAL;
/* Instead, the bit selects between DSP A/B formats. */
invert |= dsp_format;
} else {
/*
* It appears that the DAI and the codec in the A33 SoC don't
* share the same polarity for the LRCK signal when they mean
* 'normal' and 'inverted' in the datasheet.
*
* Since the DAI here is our regular i2s driver that have been
* tested with way more codecs than just this one, it means
* that the codec probably gets it backward, and we have to
* invert the value here.
*/
invert ^= scodec->quirks->lrck_inversion;
}
regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id),
SUN8I_AIF_CLK_CTRL_CLK_INV_MASK,
invert << SUN8I_AIF_CLK_CTRL_CLK_INV);
return 0;
}
static int sun8i_codec_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask,
int slots, int slot_width)
{
struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai);
struct sun8i_codec_aif *aif = &scodec->aifs[dai->id];
if (slot_width && !is_power_of_2(slot_width))
return -EINVAL;
aif->slots = slots;
aif->slot_width = slot_width;
return 0;
}
static const unsigned int sun8i_codec_rates[] = {
7350, 8000, 11025, 12000, 14700, 16000, 22050, 24000,
29400, 32000, 44100, 48000, 88200, 96000, 176400, 192000,
};
static const struct snd_pcm_hw_constraint_list sun8i_codec_all_rates = {
.list = sun8i_codec_rates,
.count = ARRAY_SIZE(sun8i_codec_rates),
};
static const struct snd_pcm_hw_constraint_list sun8i_codec_22M_rates = {
.list = sun8i_codec_rates,
.count = ARRAY_SIZE(sun8i_codec_rates),
.mask = 0x5555,
};
static const struct snd_pcm_hw_constraint_list sun8i_codec_24M_rates = {
.list = sun8i_codec_rates,
.count = ARRAY_SIZE(sun8i_codec_rates),
.mask = 0xaaaa,
};
static int sun8i_codec_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai);
const struct snd_pcm_hw_constraint_list *list;
/* hw_constraints is not relevant for codec2codec DAIs. */
if (dai->id != SUN8I_CODEC_AIF1)
return 0;
if (!scodec->sysclk_refcnt)
list = &sun8i_codec_all_rates;
else if (scodec->sysclk_rate == 22579200)
list = &sun8i_codec_22M_rates;
else if (scodec->sysclk_rate == 24576000)
list = &sun8i_codec_24M_rates;
else
return -EINVAL;
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, list);
}
struct sun8i_codec_clk_div {
u8 div;
u8 val;
};
static const struct sun8i_codec_clk_div sun8i_codec_bclk_div[] = {
{ .div = 1, .val = 0 },
{ .div = 2, .val = 1 },
{ .div = 4, .val = 2 },
{ .div = 6, .val = 3 },
{ .div = 8, .val = 4 },
{ .div = 12, .val = 5 },
{ .div = 16, .val = 6 },
{ .div = 24, .val = 7 },
{ .div = 32, .val = 8 },
{ .div = 48, .val = 9 },
{ .div = 64, .val = 10 },
{ .div = 96, .val = 11 },
{ .div = 128, .val = 12 },
{ .div = 192, .val = 13 },
};
static int sun8i_codec_get_bclk_div(unsigned int sysclk_rate,
unsigned int lrck_div_order,
unsigned int sample_rate)
{
unsigned int div = sysclk_rate / sample_rate >> lrck_div_order;
int i;
for (i = 0; i < ARRAY_SIZE(sun8i_codec_bclk_div); i++) {
const struct sun8i_codec_clk_div *bdiv = &sun8i_codec_bclk_div[i];
if (bdiv->div == div)
return bdiv->val;
}
return -EINVAL;
}
static int sun8i_codec_get_lrck_div_order(unsigned int slots,
unsigned int slot_width)
{
unsigned int div = slots * slot_width;
if (div < 16 || div > 256)
return -EINVAL;
return order_base_2(div);
}
static unsigned int sun8i_codec_get_sysclk_rate(unsigned int sample_rate)
{
return (sample_rate % 4000) ? 22579200 : 24576000;
}
static int sun8i_codec_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai);
struct sun8i_codec_aif *aif = &scodec->aifs[dai->id];
unsigned int sample_rate = params_rate(params);
unsigned int slots = aif->slots ?: params_channels(params);
unsigned int slot_width = aif->slot_width ?: params_width(params);
unsigned int sysclk_rate = sun8i_codec_get_sysclk_rate(sample_rate);
int bclk_div, lrck_div_order, ret, word_size;
u32 clk_reg;
/* word size */
switch (params_width(params)) {
case 8:
word_size = 0x0;
break;
case 16:
word_size = 0x1;
break;
case 20:
word_size = 0x2;
break;
case 24:
word_size = 0x3;
break;
default:
return -EINVAL;
}
regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id),
SUN8I_AIF_CLK_CTRL_WORD_SIZ_MASK,
word_size << SUN8I_AIF_CLK_CTRL_WORD_SIZ);
/* LRCK divider (BCLK/LRCK ratio) */
lrck_div_order = sun8i_codec_get_lrck_div_order(slots, slot_width);
if (lrck_div_order < 0)
return lrck_div_order;
if (dai->id == SUN8I_CODEC_AIF2 || dai->id == SUN8I_CODEC_AIF3) {
/* AIF2 and AIF3 share AIF2's BCLK and LRCK generation circuitry. */
int partner = (SUN8I_CODEC_AIF2 + SUN8I_CODEC_AIF3) - dai->id;
const struct sun8i_codec_aif *partner_aif = &scodec->aifs[partner];
const char *partner_name = sun8i_codec_dais[partner].name;
if (partner_aif->open_streams &&
(lrck_div_order != partner_aif->lrck_div_order ||
sample_rate != partner_aif->sample_rate)) {
dev_err(dai->dev,
"%s sample and bit rates must match %s when both are used\n",
dai->name, partner_name);
return -EBUSY;
}
clk_reg = SUN8I_AIF_CLK_CTRL(SUN8I_CODEC_AIF2);
} else {
clk_reg = SUN8I_AIF_CLK_CTRL(dai->id);
}
regmap_update_bits(scodec->regmap, clk_reg,
SUN8I_AIF_CLK_CTRL_LRCK_DIV_MASK,
(lrck_div_order - 4) << SUN8I_AIF_CLK_CTRL_LRCK_DIV);
/* BCLK divider (SYSCLK/BCLK ratio) */
bclk_div = sun8i_codec_get_bclk_div(sysclk_rate, lrck_div_order, sample_rate);
if (bclk_div < 0)
return bclk_div;
regmap_update_bits(scodec->regmap, clk_reg,
SUN8I_AIF_CLK_CTRL_BCLK_DIV_MASK,
bclk_div << SUN8I_AIF_CLK_CTRL_BCLK_DIV);
/*
* SYSCLK rate
*
* Clock rate protection is reference counted; but hw_params may be
* called many times per substream, without matching calls to hw_free.
* Protect the clock rate once per AIF, on the first hw_params call
* for the first substream. clk_set_rate() will allow clock rate
* changes on subsequent calls if only one AIF has open streams.
*/
ret = (aif->open_streams ? clk_set_rate : clk_set_rate_exclusive)(scodec->clk_module,
sysclk_rate);
if (ret == -EBUSY)
dev_err(dai->dev,
"%s sample rate (%u Hz) conflicts with other audio streams\n",
dai->name, sample_rate);
if (ret < 0)
return ret;
if (!aif->open_streams)
scodec->sysclk_refcnt++;
scodec->sysclk_rate = sysclk_rate;
aif->lrck_div_order = lrck_div_order;
aif->sample_rate = sample_rate;
aif->open_streams |= BIT(substream->stream);
return sun8i_codec_update_sample_rate(scodec);
}
static int sun8i_codec_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai);
struct sun8i_codec_aif *aif = &scodec->aifs[dai->id];
/* Drop references when the last substream for the AIF is freed. */
if (aif->open_streams != BIT(substream->stream))
goto done;
clk_rate_exclusive_put(scodec->clk_module);
scodec->sysclk_refcnt--;
aif->lrck_div_order = 0;
aif->sample_rate = 0;
done:
aif->open_streams &= ~BIT(substream->stream);
return 0;
}
static const struct snd_soc_dai_ops sun8i_codec_dai_ops = {
.set_fmt = sun8i_codec_set_fmt,
.set_tdm_slot = sun8i_codec_set_tdm_slot,
.startup = sun8i_codec_startup,
.hw_params = sun8i_codec_hw_params,
.hw_free = sun8i_codec_hw_free,
};
static struct snd_soc_dai_driver sun8i_codec_dais[] = {
{
.name = "sun8i-codec-aif1",
.id = SUN8I_CODEC_AIF1,
.ops = &sun8i_codec_dai_ops,
/* capture capabilities */
.capture = {
.stream_name = "AIF1 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
.sig_bits = 24,
},
/* playback capabilities */
.playback = {
.stream_name = "AIF1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
},
.symmetric_rate = true,
.symmetric_channels = true,
.symmetric_sample_bits = true,
},
{
.name = "sun8i-codec-aif2",
.id = SUN8I_CODEC_AIF2,
.ops = &sun8i_codec_dai_ops,
/* capture capabilities */
.capture = {
.stream_name = "AIF2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
.sig_bits = 24,
},
/* playback capabilities */
.playback = {
.stream_name = "AIF2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
},
.symmetric_rate = true,
.symmetric_channels = true,
.symmetric_sample_bits = true,
},
{
.name = "sun8i-codec-aif3",
.id = SUN8I_CODEC_AIF3,
.ops = &sun8i_codec_dai_ops,
/* capture capabilities */
.capture = {
.stream_name = "AIF3 Capture",
.channels_min = 1,
.channels_max = 1,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
.sig_bits = 24,
},
/* playback capabilities */
.playback = {
.stream_name = "AIF3 Playback",
.channels_min = 1,
.channels_max = 1,
.rates = SUN8I_CODEC_PCM_RATES,
.formats = SUN8I_CODEC_PCM_FORMATS,
},
.symmetric_rate = true,
.symmetric_channels = true,
.symmetric_sample_bits = true,
},
};
static const DECLARE_TLV_DB_SCALE(sun8i_codec_vol_scale, -12000, 75, 1);
static const struct snd_kcontrol_new sun8i_codec_controls[] = {
SOC_DOUBLE_TLV("AIF1 AD0 Capture Volume",
SUN8I_AIF1_VOL_CTRL1,
SUN8I_AIF1_VOL_CTRL1_AD0L_VOL,
SUN8I_AIF1_VOL_CTRL1_AD0R_VOL,
0xc0, 0, sun8i_codec_vol_scale),
SOC_DOUBLE_TLV("AIF1 DA0 Playback Volume",
SUN8I_AIF1_VOL_CTRL3,
SUN8I_AIF1_VOL_CTRL3_DA0L_VOL,
SUN8I_AIF1_VOL_CTRL3_DA0R_VOL,
0xc0, 0, sun8i_codec_vol_scale),
SOC_DOUBLE_TLV("AIF2 ADC Capture Volume",
SUN8I_AIF2_VOL_CTRL1,
SUN8I_AIF2_VOL_CTRL1_ADCL_VOL,
SUN8I_AIF2_VOL_CTRL1_ADCR_VOL,
0xc0, 0, sun8i_codec_vol_scale),
SOC_DOUBLE_TLV("AIF2 DAC Playback Volume",
SUN8I_AIF2_VOL_CTRL2,
SUN8I_AIF2_VOL_CTRL2_DACL_VOL,
SUN8I_AIF2_VOL_CTRL2_DACR_VOL,
0xc0, 0, sun8i_codec_vol_scale),
SOC_DOUBLE_TLV("ADC Capture Volume",
SUN8I_ADC_VOL_CTRL,
SUN8I_ADC_VOL_CTRL_ADCL_VOL,
SUN8I_ADC_VOL_CTRL_ADCR_VOL,
0xc0, 0, sun8i_codec_vol_scale),
SOC_DOUBLE_TLV("DAC Playback Volume",
SUN8I_DAC_VOL_CTRL,
SUN8I_DAC_VOL_CTRL_DACL_VOL,
SUN8I_DAC_VOL_CTRL_DACR_VOL,
0xc0, 0, sun8i_codec_vol_scale),
};
static int sun8i_codec_aif_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component);
struct sun8i_codec_aif *aif = &scodec->aifs[w->sname[3] - '1'];
int stream = w->id == snd_soc_dapm_aif_out;
if (SND_SOC_DAPM_EVENT_ON(event))
aif->active_streams |= BIT(stream);
else
aif->active_streams &= ~BIT(stream);
return sun8i_codec_update_sample_rate(scodec);
}
static const char *const sun8i_aif_stereo_mux_enum_values[] = {
"Stereo", "Reverse Stereo", "Sum Mono", "Mix Mono"
};
static SOC_ENUM_DOUBLE_DECL(sun8i_aif1_ad0_stereo_mux_enum,
SUN8I_AIF1_ADCDAT_CTRL,
SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_SRC,
SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_SRC,
sun8i_aif_stereo_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif1_ad0_stereo_mux_control =
SOC_DAPM_ENUM("AIF1 AD0 Stereo Capture Route",
sun8i_aif1_ad0_stereo_mux_enum);
static SOC_ENUM_DOUBLE_DECL(sun8i_aif2_adc_stereo_mux_enum,
SUN8I_AIF2_ADCDAT_CTRL,
SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_SRC,
SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_SRC,
sun8i_aif_stereo_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif2_adc_stereo_mux_control =
SOC_DAPM_ENUM("AIF2 ADC Stereo Capture Route",
sun8i_aif2_adc_stereo_mux_enum);
static const char *const sun8i_aif3_adc_mux_enum_values[] = {
"None", "AIF2 ADCL", "AIF2 ADCR"
};
static SOC_ENUM_SINGLE_DECL(sun8i_aif3_adc_mux_enum,
SUN8I_AIF3_PATH_CTRL,
SUN8I_AIF3_PATH_CTRL_AIF3_ADC_SRC,
sun8i_aif3_adc_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif3_adc_mux_control =
SOC_DAPM_ENUM("AIF3 ADC Source Capture Route",
sun8i_aif3_adc_mux_enum);
static const struct snd_kcontrol_new sun8i_aif1_ad0_mixer_controls[] = {
SOC_DAPM_DOUBLE("AIF1 Slot 0 Digital ADC Capture Switch",
SUN8I_AIF1_MXR_SRC,
SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF1DA0L,
SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF1DA0R, 1, 0),
SOC_DAPM_DOUBLE("AIF2 Digital ADC Capture Switch",
SUN8I_AIF1_MXR_SRC,
SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACL,
SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACR, 1, 0),
SOC_DAPM_DOUBLE("AIF1 Data Digital ADC Capture Switch",
SUN8I_AIF1_MXR_SRC,
SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_ADCL,
SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_ADCR, 1, 0),
SOC_DAPM_DOUBLE("AIF2 Inv Digital ADC Capture Switch",
SUN8I_AIF1_MXR_SRC,
SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACR,
SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACL, 1, 0),
};
static const struct snd_kcontrol_new sun8i_aif2_adc_mixer_controls[] = {
SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF1 DA0 Capture Switch",
SUN8I_AIF2_MXR_SRC,
SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA0L,
SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA0R, 1, 0),
SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF1 DA1 Capture Switch",
SUN8I_AIF2_MXR_SRC,
SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA1L,
SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA1R, 1, 0),
SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF2 DAC Rev Capture Switch",
SUN8I_AIF2_MXR_SRC,
SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF2DACR,
SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF2DACL, 1, 0),
SOC_DAPM_DOUBLE("AIF2 ADC Mixer ADC Capture Switch",
SUN8I_AIF2_MXR_SRC,
SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_ADCL,
SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_ADCR, 1, 0),
};
static const char *const sun8i_aif2_dac_mux_enum_values[] = {
"AIF2", "AIF3+2", "AIF2+3"
};
static SOC_ENUM_SINGLE_DECL(sun8i_aif2_dac_mux_enum,
SUN8I_AIF3_PATH_CTRL,
SUN8I_AIF3_PATH_CTRL_AIF2_DAC_SRC,
sun8i_aif2_dac_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif2_dac_mux_control =
SOC_DAPM_ENUM("AIF2 DAC Source Playback Route",
sun8i_aif2_dac_mux_enum);
static SOC_ENUM_DOUBLE_DECL(sun8i_aif1_da0_stereo_mux_enum,
SUN8I_AIF1_DACDAT_CTRL,
SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_SRC,
SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_SRC,
sun8i_aif_stereo_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif1_da0_stereo_mux_control =
SOC_DAPM_ENUM("AIF1 DA0 Stereo Playback Route",
sun8i_aif1_da0_stereo_mux_enum);
static SOC_ENUM_DOUBLE_DECL(sun8i_aif2_dac_stereo_mux_enum,
SUN8I_AIF2_DACDAT_CTRL,
SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_SRC,
SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_SRC,
sun8i_aif_stereo_mux_enum_values);
static const struct snd_kcontrol_new sun8i_aif2_dac_stereo_mux_control =
SOC_DAPM_ENUM("AIF2 DAC Stereo Playback Route",
sun8i_aif2_dac_stereo_mux_enum);
static const struct snd_kcontrol_new sun8i_dac_mixer_controls[] = {
SOC_DAPM_DOUBLE("AIF1 Slot 0 Digital DAC Playback Switch",
SUN8I_DAC_MXR_SRC,
SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA0L,
SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA0R, 1, 0),
SOC_DAPM_DOUBLE("AIF1 Slot 1 Digital DAC Playback Switch",
SUN8I_DAC_MXR_SRC,
SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA1L,
SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA1R, 1, 0),
SOC_DAPM_DOUBLE("AIF2 Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC,
SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF2DACL,
SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF2DACR, 1, 0),
SOC_DAPM_DOUBLE("ADC Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC,
SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_ADCL,
SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_ADCR, 1, 0),
};
static const struct snd_soc_dapm_widget sun8i_codec_dapm_widgets[] = {
/* System Clocks */
SND_SOC_DAPM_CLOCK_SUPPLY("mod"),
SND_SOC_DAPM_SUPPLY("AIF1CLK",
SUN8I_SYSCLK_CTL,
SUN8I_SYSCLK_CTL_AIF1CLK_ENA, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("AIF2CLK",
SUN8I_SYSCLK_CTL,
SUN8I_SYSCLK_CTL_AIF2CLK_ENA, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("SYSCLK",
SUN8I_SYSCLK_CTL,
SUN8I_SYSCLK_CTL_SYSCLK_ENA, 0, NULL, 0),
/* Module Clocks */
SND_SOC_DAPM_SUPPLY("CLK AIF1",
SUN8I_MOD_CLK_ENA,
SUN8I_MOD_CLK_ENA_AIF1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CLK AIF2",
SUN8I_MOD_CLK_ENA,
SUN8I_MOD_CLK_ENA_AIF2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CLK AIF3",
SUN8I_MOD_CLK_ENA,
SUN8I_MOD_CLK_ENA_AIF3, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CLK ADC",
SUN8I_MOD_CLK_ENA,
SUN8I_MOD_CLK_ENA_ADC, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CLK DAC",
SUN8I_MOD_CLK_ENA,
SUN8I_MOD_CLK_ENA_DAC, 0, NULL, 0),
/* Module Resets */
SND_SOC_DAPM_SUPPLY("RST AIF1",
SUN8I_MOD_RST_CTL,
SUN8I_MOD_RST_CTL_AIF1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RST AIF2",
SUN8I_MOD_RST_CTL,
SUN8I_MOD_RST_CTL_AIF2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RST AIF3",
SUN8I_MOD_RST_CTL,
SUN8I_MOD_RST_CTL_AIF3, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RST ADC",
SUN8I_MOD_RST_CTL,
SUN8I_MOD_RST_CTL_ADC, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RST DAC",
SUN8I_MOD_RST_CTL,
SUN8I_MOD_RST_CTL_DAC, 0, NULL, 0),
/* Module Supplies */
SND_SOC_DAPM_SUPPLY("ADC",
SUN8I_ADC_DIG_CTRL,
SUN8I_ADC_DIG_CTRL_ENAD, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC",
SUN8I_DAC_DIG_CTRL,
SUN8I_DAC_DIG_CTRL_ENDA, 0, NULL, 0),
/* AIF "ADC" Outputs */
SND_SOC_DAPM_AIF_OUT_E("AIF1 AD0L", "AIF1 Capture", 0,
SUN8I_AIF1_ADCDAT_CTRL,
SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_ENA, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_OUT("AIF1 AD0R", "AIF1 Capture", 1,
SUN8I_AIF1_ADCDAT_CTRL,
SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_ENA, 0),
SND_SOC_DAPM_AIF_OUT_E("AIF2 ADCL", "AIF2 Capture", 0,
SUN8I_AIF2_ADCDAT_CTRL,
SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_ENA, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_OUT("AIF2 ADCR", "AIF2 Capture", 1,
SUN8I_AIF2_ADCDAT_CTRL,
SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_ENA, 0),
SND_SOC_DAPM_AIF_OUT_E("AIF3 ADC", "AIF3 Capture", 0,
SND_SOC_NOPM, 0, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* AIF "ADC" Mono/Stereo Muxes */
SND_SOC_DAPM_MUX("AIF1 AD0L Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif1_ad0_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF1 AD0R Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif1_ad0_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF2 ADCL Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_adc_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF2 ADCR Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_adc_stereo_mux_control),
/* AIF "ADC" Output Muxes */
SND_SOC_DAPM_MUX("AIF3 ADC Source Capture Route", SND_SOC_NOPM, 0, 0,
&sun8i_aif3_adc_mux_control),
/* AIF "ADC" Mixers */
SOC_MIXER_ARRAY("AIF1 AD0L Mixer", SND_SOC_NOPM, 0, 0,
sun8i_aif1_ad0_mixer_controls),
SOC_MIXER_ARRAY("AIF1 AD0R Mixer", SND_SOC_NOPM, 0, 0,
sun8i_aif1_ad0_mixer_controls),
SOC_MIXER_ARRAY("AIF2 ADCL Mixer", SND_SOC_NOPM, 0, 0,
sun8i_aif2_adc_mixer_controls),
SOC_MIXER_ARRAY("AIF2 ADCR Mixer", SND_SOC_NOPM, 0, 0,
sun8i_aif2_adc_mixer_controls),
/* AIF "DAC" Input Muxes */
SND_SOC_DAPM_MUX("AIF2 DACL Source", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_dac_mux_control),
SND_SOC_DAPM_MUX("AIF2 DACR Source", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_dac_mux_control),
/* AIF "DAC" Mono/Stereo Muxes */
SND_SOC_DAPM_MUX("AIF1 DA0L Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif1_da0_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF1 DA0R Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif1_da0_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF2 DACL Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_dac_stereo_mux_control),
SND_SOC_DAPM_MUX("AIF2 DACR Stereo Mux", SND_SOC_NOPM, 0, 0,
&sun8i_aif2_dac_stereo_mux_control),
/* AIF "DAC" Inputs */
SND_SOC_DAPM_AIF_IN_E("AIF1 DA0L", "AIF1 Playback", 0,
SUN8I_AIF1_DACDAT_CTRL,
SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_ENA, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN("AIF1 DA0R", "AIF1 Playback", 1,
SUN8I_AIF1_DACDAT_CTRL,
SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_ENA, 0),
SND_SOC_DAPM_AIF_IN_E("AIF2 DACL", "AIF2 Playback", 0,
SUN8I_AIF2_DACDAT_CTRL,
SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_ENA, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_IN("AIF2 DACR", "AIF2 Playback", 1,
SUN8I_AIF2_DACDAT_CTRL,
SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_ENA, 0),
SND_SOC_DAPM_AIF_IN_E("AIF3 DAC", "AIF3 Playback", 0,
SND_SOC_NOPM, 0, 0,
sun8i_codec_aif_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
/* ADC Inputs (connected to analog codec DAPM context) */
SND_SOC_DAPM_ADC("ADCL", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, SND_SOC_NOPM, 0, 0),
/* DAC Outputs (connected to analog codec DAPM context) */
SND_SOC_DAPM_DAC("DACL", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACR", NULL, SND_SOC_NOPM, 0, 0),
/* DAC Mixers */
SOC_MIXER_ARRAY("DACL Mixer", SND_SOC_NOPM, 0, 0,
sun8i_dac_mixer_controls),
SOC_MIXER_ARRAY("DACR Mixer", SND_SOC_NOPM, 0, 0,
sun8i_dac_mixer_controls),
};
static const struct snd_soc_dapm_route sun8i_codec_dapm_routes[] = {
/* Clock Routes */
{ "AIF1CLK", NULL, "mod" },
{ "SYSCLK", NULL, "AIF1CLK" },
{ "CLK AIF1", NULL, "AIF1CLK" },
{ "CLK AIF1", NULL, "SYSCLK" },
{ "RST AIF1", NULL, "CLK AIF1" },
{ "AIF1 AD0L", NULL, "RST AIF1" },
{ "AIF1 AD0R", NULL, "RST AIF1" },
{ "AIF1 DA0L", NULL, "RST AIF1" },
{ "AIF1 DA0R", NULL, "RST AIF1" },
{ "CLK AIF2", NULL, "AIF2CLK" },
{ "CLK AIF2", NULL, "SYSCLK" },
{ "RST AIF2", NULL, "CLK AIF2" },
{ "AIF2 ADCL", NULL, "RST AIF2" },
{ "AIF2 ADCR", NULL, "RST AIF2" },
{ "AIF2 DACL", NULL, "RST AIF2" },
{ "AIF2 DACR", NULL, "RST AIF2" },
{ "CLK AIF3", NULL, "AIF1CLK" },
{ "CLK AIF3", NULL, "SYSCLK" },
{ "RST AIF3", NULL, "CLK AIF3" },
{ "AIF3 ADC", NULL, "RST AIF3" },
{ "AIF3 DAC", NULL, "RST AIF3" },
{ "CLK ADC", NULL, "SYSCLK" },
{ "RST ADC", NULL, "CLK ADC" },
{ "ADC", NULL, "RST ADC" },
{ "ADCL", NULL, "ADC" },
{ "ADCR", NULL, "ADC" },
{ "CLK DAC", NULL, "SYSCLK" },
{ "RST DAC", NULL, "CLK DAC" },
{ "DAC", NULL, "RST DAC" },
{ "DACL", NULL, "DAC" },
{ "DACR", NULL, "DAC" },
/* AIF "ADC" Output Routes */
{ "AIF1 AD0L", NULL, "AIF1 AD0L Stereo Mux" },
{ "AIF1 AD0R", NULL, "AIF1 AD0R Stereo Mux" },
{ "AIF2 ADCL", NULL, "AIF2 ADCL Stereo Mux" },
{ "AIF2 ADCR", NULL, "AIF2 ADCR Stereo Mux" },
{ "AIF3 ADC", NULL, "AIF3 ADC Source Capture Route" },
/* AIF "ADC" Mono/Stereo Mux Routes */
{ "AIF1 AD0L Stereo Mux", "Stereo", "AIF1 AD0L Mixer" },
{ "AIF1 AD0L Stereo Mux", "Reverse Stereo", "AIF1 AD0R Mixer" },
{ "AIF1 AD0L Stereo Mux", "Sum Mono", "AIF1 AD0L Mixer" },
{ "AIF1 AD0L Stereo Mux", "Sum Mono", "AIF1 AD0R Mixer" },
{ "AIF1 AD0L Stereo Mux", "Mix Mono", "AIF1 AD0L Mixer" },
{ "AIF1 AD0L Stereo Mux", "Mix Mono", "AIF1 AD0R Mixer" },
{ "AIF1 AD0R Stereo Mux", "Stereo", "AIF1 AD0R Mixer" },
{ "AIF1 AD0R Stereo Mux", "Reverse Stereo", "AIF1 AD0L Mixer" },
{ "AIF1 AD0R Stereo Mux", "Sum Mono", "AIF1 AD0L Mixer" },
{ "AIF1 AD0R Stereo Mux", "Sum Mono", "AIF1 AD0R Mixer" },
{ "AIF1 AD0R Stereo Mux", "Mix Mono", "AIF1 AD0L Mixer" },
{ "AIF1 AD0R Stereo Mux", "Mix Mono", "AIF1 AD0R Mixer" },
{ "AIF2 ADCL Stereo Mux", "Stereo", "AIF2 ADCL Mixer" },
{ "AIF2 ADCL Stereo Mux", "Reverse Stereo", "AIF2 ADCR Mixer" },
{ "AIF2 ADCL Stereo Mux", "Sum Mono", "AIF2 ADCL Mixer" },
{ "AIF2 ADCL Stereo Mux", "Sum Mono", "AIF2 ADCR Mixer" },
{ "AIF2 ADCL Stereo Mux", "Mix Mono", "AIF2 ADCL Mixer" },
{ "AIF2 ADCL Stereo Mux", "Mix Mono", "AIF2 ADCR Mixer" },
{ "AIF2 ADCR Stereo Mux", "Stereo", "AIF2 ADCR Mixer" },
{ "AIF2 ADCR Stereo Mux", "Reverse Stereo", "AIF2 ADCL Mixer" },
{ "AIF2 ADCR Stereo Mux", "Sum Mono", "AIF2 ADCL Mixer" },
{ "AIF2 ADCR Stereo Mux", "Sum Mono", "AIF2 ADCR Mixer" },
{ "AIF2 ADCR Stereo Mux", "Mix Mono", "AIF2 ADCL Mixer" },
{ "AIF2 ADCR Stereo Mux", "Mix Mono", "AIF2 ADCR Mixer" },
/* AIF "ADC" Output Mux Routes */
{ "AIF3 ADC Source Capture Route", "AIF2 ADCL", "AIF2 ADCL Mixer" },
{ "AIF3 ADC Source Capture Route", "AIF2 ADCR", "AIF2 ADCR Mixer" },
/* AIF "ADC" Mixer Routes */
{ "AIF1 AD0L Mixer", "AIF1 Slot 0 Digital ADC Capture Switch", "AIF1 DA0L Stereo Mux" },
{ "AIF1 AD0L Mixer", "AIF2 Digital ADC Capture Switch", "AIF2 DACL Source" },
{ "AIF1 AD0L Mixer", "AIF1 Data Digital ADC Capture Switch", "ADCL" },
{ "AIF1 AD0L Mixer", "AIF2 Inv Digital ADC Capture Switch", "AIF2 DACR Source" },
{ "AIF1 AD0R Mixer", "AIF1 Slot 0 Digital ADC Capture Switch", "AIF1 DA0R Stereo Mux" },
{ "AIF1 AD0R Mixer", "AIF2 Digital ADC Capture Switch", "AIF2 DACR Source" },
{ "AIF1 AD0R Mixer", "AIF1 Data Digital ADC Capture Switch", "ADCR" },
{ "AIF1 AD0R Mixer", "AIF2 Inv Digital ADC Capture Switch", "AIF2 DACL Source" },
{ "AIF2 ADCL Mixer", "AIF2 ADC Mixer AIF1 DA0 Capture Switch", "AIF1 DA0L Stereo Mux" },
{ "AIF2 ADCL Mixer", "AIF2 ADC Mixer AIF2 DAC Rev Capture Switch", "AIF2 DACR Source" },
{ "AIF2 ADCL Mixer", "AIF2 ADC Mixer ADC Capture Switch", "ADCL" },
{ "AIF2 ADCR Mixer", "AIF2 ADC Mixer AIF1 DA0 Capture Switch", "AIF1 DA0R Stereo Mux" },
{ "AIF2 ADCR Mixer", "AIF2 ADC Mixer AIF2 DAC Rev Capture Switch", "AIF2 DACL Source" },
{ "AIF2 ADCR Mixer", "AIF2 ADC Mixer ADC Capture Switch", "ADCR" },
/* AIF "DAC" Input Mux Routes */
{ "AIF2 DACL Source", "AIF2", "AIF2 DACL Stereo Mux" },
{ "AIF2 DACL Source", "AIF3+2", "AIF3 DAC" },
{ "AIF2 DACL Source", "AIF2+3", "AIF2 DACL Stereo Mux" },
{ "AIF2 DACR Source", "AIF2", "AIF2 DACR Stereo Mux" },
{ "AIF2 DACR Source", "AIF3+2", "AIF2 DACR Stereo Mux" },
{ "AIF2 DACR Source", "AIF2+3", "AIF3 DAC" },
/* AIF "DAC" Mono/Stereo Mux Routes */
{ "AIF1 DA0L Stereo Mux", "Stereo", "AIF1 DA0L" },
{ "AIF1 DA0L Stereo Mux", "Reverse Stereo", "AIF1 DA0R" },
{ "AIF1 DA0L Stereo Mux", "Sum Mono", "AIF1 DA0L" },
{ "AIF1 DA0L Stereo Mux", "Sum Mono", "AIF1 DA0R" },
{ "AIF1 DA0L Stereo Mux", "Mix Mono", "AIF1 DA0L" },
{ "AIF1 DA0L Stereo Mux", "Mix Mono", "AIF1 DA0R" },
{ "AIF1 DA0R Stereo Mux", "Stereo", "AIF1 DA0R" },
{ "AIF1 DA0R Stereo Mux", "Reverse Stereo", "AIF1 DA0L" },
{ "AIF1 DA0R Stereo Mux", "Sum Mono", "AIF1 DA0L" },
{ "AIF1 DA0R Stereo Mux", "Sum Mono", "AIF1 DA0R" },
{ "AIF1 DA0R Stereo Mux", "Mix Mono", "AIF1 DA0L" },
{ "AIF1 DA0R Stereo Mux", "Mix Mono", "AIF1 DA0R" },
{ "AIF2 DACL Stereo Mux", "Stereo", "AIF2 DACL" },
{ "AIF2 DACL Stereo Mux", "Reverse Stereo", "AIF2 DACR" },
{ "AIF2 DACL Stereo Mux", "Sum Mono", "AIF2 DACL" },
{ "AIF2 DACL Stereo Mux", "Sum Mono", "AIF2 DACR" },
{ "AIF2 DACL Stereo Mux", "Mix Mono", "AIF2 DACL" },
{ "AIF2 DACL Stereo Mux", "Mix Mono", "AIF2 DACR" },
{ "AIF2 DACR Stereo Mux", "Stereo", "AIF2 DACR" },
{ "AIF2 DACR Stereo Mux", "Reverse Stereo", "AIF2 DACL" },
{ "AIF2 DACR Stereo Mux", "Sum Mono", "AIF2 DACL" },
{ "AIF2 DACR Stereo Mux", "Sum Mono", "AIF2 DACR" },
{ "AIF2 DACR Stereo Mux", "Mix Mono", "AIF2 DACL" },
{ "AIF2 DACR Stereo Mux", "Mix Mono", "AIF2 DACR" },
/* DAC Output Routes */
{ "DACL", NULL, "DACL Mixer" },
{ "DACR", NULL, "DACR Mixer" },
/* DAC Mixer Routes */
{ "DACL Mixer", "AIF1 Slot 0 Digital DAC Playback Switch", "AIF1 DA0L Stereo Mux" },
{ "DACL Mixer", "AIF2 Digital DAC Playback Switch", "AIF2 DACL Source" },
{ "DACL Mixer", "ADC Digital DAC Playback Switch", "ADCL" },
{ "DACR Mixer", "AIF1 Slot 0 Digital DAC Playback Switch", "AIF1 DA0R Stereo Mux" },
{ "DACR Mixer", "AIF2 Digital DAC Playback Switch", "AIF2 DACR Source" },
{ "DACR Mixer", "ADC Digital DAC Playback Switch", "ADCR" },
};
static const struct snd_soc_dapm_widget sun8i_codec_legacy_widgets[] = {
/* Legacy ADC Inputs (connected to analog codec DAPM context) */
SND_SOC_DAPM_ADC("AIF1 Slot 0 Left ADC", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_ADC("AIF1 Slot 0 Right ADC", NULL, SND_SOC_NOPM, 0, 0),
/* Legacy DAC Outputs (connected to analog codec DAPM context) */
SND_SOC_DAPM_DAC("AIF1 Slot 0 Left", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("AIF1 Slot 0 Right", NULL, SND_SOC_NOPM, 0, 0),
};
static const struct snd_soc_dapm_route sun8i_codec_legacy_routes[] = {
/* Legacy ADC Routes */
{ "ADCL", NULL, "AIF1 Slot 0 Left ADC" },
{ "ADCR", NULL, "AIF1 Slot 0 Right ADC" },
/* Legacy DAC Routes */
{ "AIF1 Slot 0 Left", NULL, "DACL" },
{ "AIF1 Slot 0 Right", NULL, "DACR" },
};
static int sun8i_codec_component_probe(struct snd_soc_component *component)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component);
int ret;
scodec->component = component;
/* Add widgets for backward compatibility with old device trees. */
if (scodec->quirks->legacy_widgets) {
ret = snd_soc_dapm_new_controls(dapm, sun8i_codec_legacy_widgets,
ARRAY_SIZE(sun8i_codec_legacy_widgets));
if (ret)
return ret;
ret = snd_soc_dapm_add_routes(dapm, sun8i_codec_legacy_routes,
ARRAY_SIZE(sun8i_codec_legacy_routes));
if (ret)
return ret;
}
/*
* AIF1CLK and AIF2CLK share a pair of clock parents: PLL_AUDIO ("mod")
* and MCLK (from the CPU DAI connected to AIF1). MCLK's parent is also
* PLL_AUDIO, so using it adds no additional flexibility. Use PLL_AUDIO
* directly to simplify the clock tree.
*/
regmap_update_bits(scodec->regmap, SUN8I_SYSCLK_CTL,
SUN8I_SYSCLK_CTL_AIF1CLK_SRC_MASK |
SUN8I_SYSCLK_CTL_AIF2CLK_SRC_MASK,
SUN8I_SYSCLK_CTL_AIF1CLK_SRC_PLL |
SUN8I_SYSCLK_CTL_AIF2CLK_SRC_PLL);
/* Use AIF1CLK as the SYSCLK parent since AIF1 is used most often. */
regmap_update_bits(scodec->regmap, SUN8I_SYSCLK_CTL,
BIT(SUN8I_SYSCLK_CTL_SYSCLK_SRC),
SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF1CLK);
/* Program the default sample rate. */
sun8i_codec_update_sample_rate(scodec);
return 0;
}
static void sun8i_codec_set_hmic_bias(struct sun8i_codec *scodec, bool enable)
{
struct snd_soc_dapm_context *dapm = &scodec->component->card->dapm;
int irq_mask = BIT(SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN);
if (enable)
snd_soc_dapm_force_enable_pin(dapm, "HBIAS");
else
snd_soc_dapm_disable_pin(dapm, "HBIAS");
snd_soc_dapm_sync(dapm);
regmap_update_bits(scodec->regmap, SUN8I_HMIC_CTRL1,
irq_mask, enable ? irq_mask : 0);
}
static void sun8i_codec_jack_work(struct work_struct *work)
{
struct sun8i_codec *scodec = container_of(work, struct sun8i_codec,
jack_work.work);
unsigned int mdata;
int type;
guard(mutex)(&scodec->jack_mutex);
if (scodec->jack_status == SUN8I_JACK_STATUS_DISCONNECTED) {
if (scodec->last_hmic_irq != SUN8I_HMIC_STS_JACK_IN_IRQ_ST)
return;
scodec->jack_last_sample = -1;
if (scodec->jack_type & SND_JACK_MICROPHONE) {
/*
* If we were in disconnected state, we enable HBIAS and
* wait 600ms before reading initial HDATA value.
*/
scodec->jack_hbias_ready = ktime_add_ms(ktime_get(), 600);
sun8i_codec_set_hmic_bias(scodec, true);
queue_delayed_work(system_power_efficient_wq,
&scodec->jack_work,
msecs_to_jiffies(610));
scodec->jack_status = SUN8I_JACK_STATUS_WAITING_HBIAS;
} else {
snd_soc_jack_report(scodec->jack, SND_JACK_HEADPHONE,
scodec->jack_type);
scodec->jack_status = SUN8I_JACK_STATUS_CONNECTED;
}
} else if (scodec->jack_status == SUN8I_JACK_STATUS_WAITING_HBIAS) {
/*
* If we're waiting for HBIAS to stabilize, and we get plug-out
* interrupt and nothing more for > 100ms, just cancel the
* initialization.
*/
if (scodec->last_hmic_irq == SUN8I_HMIC_STS_JACK_OUT_IRQ_ST) {
scodec->jack_status = SUN8I_JACK_STATUS_DISCONNECTED;
sun8i_codec_set_hmic_bias(scodec, false);
return;
}
/*
* If we're not done waiting for HBIAS to stabilize, wait more.
*/
if (!ktime_after(ktime_get(), scodec->jack_hbias_ready)) {
s64 msecs = ktime_ms_delta(scodec->jack_hbias_ready,
ktime_get());
queue_delayed_work(system_power_efficient_wq,
&scodec->jack_work,
msecs_to_jiffies(msecs + 10));
return;
}
/*
* Everything is stabilized, determine jack type and report it.
*/
regmap_read(scodec->regmap, SUN8I_HMIC_STS, &mdata);
mdata &= SUN8I_HMIC_STS_HMIC_DATA_MASK;
mdata >>= SUN8I_HMIC_STS_HMIC_DATA;
regmap_write(scodec->regmap, SUN8I_HMIC_STS, 0);
type = mdata < 16 ? SND_JACK_HEADPHONE : SND_JACK_HEADSET;
if (type == SND_JACK_HEADPHONE)
sun8i_codec_set_hmic_bias(scodec, false);
snd_soc_jack_report(scodec->jack, type, scodec->jack_type);
scodec->jack_status = SUN8I_JACK_STATUS_CONNECTED;
} else if (scodec->jack_status == SUN8I_JACK_STATUS_CONNECTED) {
if (scodec->last_hmic_irq != SUN8I_HMIC_STS_JACK_OUT_IRQ_ST)
return;
scodec->jack_status = SUN8I_JACK_STATUS_DISCONNECTED;
if (scodec->jack_type & SND_JACK_MICROPHONE)
sun8i_codec_set_hmic_bias(scodec, false);
snd_soc_jack_report(scodec->jack, 0, scodec->jack_type);
}
}
static irqreturn_t sun8i_codec_jack_irq(int irq, void *dev_id)
{
struct sun8i_codec *scodec = dev_id;
int type = SND_JACK_HEADSET;
unsigned int status, value;
guard(mutex)(&scodec->jack_mutex);
regmap_read(scodec->regmap, SUN8I_HMIC_STS, &status);
regmap_write(scodec->regmap, SUN8I_HMIC_STS, status);
/*
* De-bounce in/out interrupts via a delayed work re-scheduling to
* 100ms after each interrupt..
*/
if (status & BIT(SUN8I_HMIC_STS_JACK_OUT_IRQ_ST)) {
/*
* Out interrupt has priority over in interrupt so that if
* we get both, we assume the disconnected state, which is
* safer.
*/
scodec->last_hmic_irq = SUN8I_HMIC_STS_JACK_OUT_IRQ_ST;
mod_delayed_work(system_power_efficient_wq, &scodec->jack_work,
msecs_to_jiffies(100));
} else if (status & BIT(SUN8I_HMIC_STS_JACK_IN_IRQ_ST)) {
scodec->last_hmic_irq = SUN8I_HMIC_STS_JACK_IN_IRQ_ST;
mod_delayed_work(system_power_efficient_wq, &scodec->jack_work,
msecs_to_jiffies(100));
} else if (status & BIT(SUN8I_HMIC_STS_HMIC_DATA_IRQ_ST)) {
/*
* Ignore data interrupts until jack status turns to connected
* state, which is after HMIC enable stabilization is completed.
* Until then tha data are bogus.
*/
if (scodec->jack_status != SUN8I_JACK_STATUS_CONNECTED)
return IRQ_HANDLED;
value = (status & SUN8I_HMIC_STS_HMIC_DATA_MASK) >>
SUN8I_HMIC_STS_HMIC_DATA;
/*
* Assumes 60 mV per ADC LSB increment, 2V bias voltage, 2.2kOhm
* bias resistor.
*/
if (value == 0)
type |= SND_JACK_BTN_0;
else if (value == 1)
type |= SND_JACK_BTN_3;
else if (value <= 3)
type |= SND_JACK_BTN_1;
else if (value <= 8)
type |= SND_JACK_BTN_2;
/*
* De-bounce. Only report button after two consecutive A/D
* samples are identical.
*/
if (scodec->jack_last_sample >= 0 &&
scodec->jack_last_sample == value)
snd_soc_jack_report(scodec->jack, type,
scodec->jack_type);
scodec->jack_last_sample = value;
}
return IRQ_HANDLED;
}
static int sun8i_codec_enable_jack_detect(struct snd_soc_component *component,
struct snd_soc_jack *jack, void *data)
{
struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component);
struct platform_device *pdev = to_platform_device(component->dev);
int ret;
if (!scodec->quirks->jack_detection)
return 0;
scodec->jack = jack;
scodec->jack_irq = platform_get_irq(pdev, 0);
if (scodec->jack_irq < 0)
return scodec->jack_irq;
/* Reserved value required for jack IRQs to trigger. */
regmap_write(scodec->regmap, SUN8I_HMIC_CTRL1,
0xf << SUN8I_HMIC_CTRL1_HMIC_N |
0x0 << SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB |
0x4 << SUN8I_HMIC_CTRL1_HMIC_M);
/* Sample the ADC at 128 Hz; bypass smooth filter. */
regmap_write(scodec->regmap, SUN8I_HMIC_CTRL2,
0x0 << SUN8I_HMIC_CTRL2_HMIC_SAMPLE |
0x17 << SUN8I_HMIC_CTRL2_HMIC_MDATA_THRESHOLD |
0x0 << SUN8I_HMIC_CTRL2_HMIC_SF);
/* Do not discard any MDATA, enable user written MDATA threshold. */
regmap_write(scodec->regmap, SUN8I_HMIC_STS, 0);
regmap_set_bits(scodec->regmap, SUN8I_HMIC_CTRL1,
BIT(SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN) |
BIT(SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN));
ret = devm_request_threaded_irq(&pdev->dev, scodec->jack_irq,
NULL, sun8i_codec_jack_irq,
IRQF_ONESHOT,
dev_name(&pdev->dev), scodec);
if (ret)
return ret;
return 0;
}
static void sun8i_codec_disable_jack_detect(struct snd_soc_component *component)
{
struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component);
if (!scodec->quirks->jack_detection)
return;
devm_free_irq(component->dev, scodec->jack_irq, scodec);
cancel_delayed_work_sync(&scodec->jack_work);
regmap_clear_bits(scodec->regmap, SUN8I_HMIC_CTRL1,
BIT(SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN) |
BIT(SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN) |
BIT(SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN));
scodec->jack = NULL;
}
static int sun8i_codec_component_set_jack(struct snd_soc_component *component,
struct snd_soc_jack *jack, void *data)
{
int ret = 0;
if (jack)
ret = sun8i_codec_enable_jack_detect(component, jack, data);
else
sun8i_codec_disable_jack_detect(component);
return ret;
}
static const struct snd_soc_component_driver sun8i_soc_component = {
.controls = sun8i_codec_controls,
.num_controls = ARRAY_SIZE(sun8i_codec_controls),
.dapm_widgets = sun8i_codec_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(sun8i_codec_dapm_widgets),
.dapm_routes = sun8i_codec_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(sun8i_codec_dapm_routes),
.set_jack = sun8i_codec_component_set_jack,
.probe = sun8i_codec_component_probe,
.idle_bias_on = 1,
.suspend_bias_off = 1,
.endianness = 1,
};
static bool sun8i_codec_volatile_reg(struct device *dev, unsigned int reg)
{
return reg == SUN8I_HMIC_STS;
}
static const struct regmap_config sun8i_codec_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.volatile_reg = sun8i_codec_volatile_reg,
.max_register = SUN8I_DAC_MXR_SRC,
.cache_type = REGCACHE_FLAT,
};
static int sun8i_codec_probe(struct platform_device *pdev)
{
struct sun8i_codec *scodec;
void __iomem *base;
int ret;
scodec = devm_kzalloc(&pdev->dev, sizeof(*scodec), GFP_KERNEL);
if (!scodec)
return -ENOMEM;
scodec->quirks = of_device_get_match_data(&pdev->dev);
INIT_DELAYED_WORK(&scodec->jack_work, sun8i_codec_jack_work);
mutex_init(&scodec->jack_mutex);
platform_set_drvdata(pdev, scodec);
if (scodec->quirks->bus_clock) {
scodec->clk_bus = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scodec->clk_bus)) {
dev_err(&pdev->dev, "Failed to get the bus clock\n");
return PTR_ERR(scodec->clk_bus);
}
}
scodec->clk_module = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(scodec->clk_module)) {
dev_err(&pdev->dev, "Failed to get the module clock\n");
return PTR_ERR(scodec->clk_module);
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base)) {
dev_err(&pdev->dev, "Failed to map the registers\n");
return PTR_ERR(base);
}
scodec->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&sun8i_codec_regmap_config);
if (IS_ERR(scodec->regmap)) {
dev_err(&pdev->dev, "Failed to create our regmap\n");
return PTR_ERR(scodec->regmap);
}
regcache_cache_only(scodec->regmap, true);
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = sun8i_codec_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
ret = devm_snd_soc_register_component(&pdev->dev, &sun8i_soc_component,
sun8i_codec_dais,
ARRAY_SIZE(sun8i_codec_dais));
if (ret) {
dev_err(&pdev->dev, "Failed to register codec\n");
goto err_suspend;
}
return ret;
err_suspend:
if (!pm_runtime_status_suspended(&pdev->dev))
sun8i_codec_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static void sun8i_codec_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
sun8i_codec_runtime_suspend(&pdev->dev);
}
static const struct sun8i_codec_quirks sun8i_a33_quirks = {
.bus_clock = true,
.legacy_widgets = true,
.lrck_inversion = true,
};
static const struct sun8i_codec_quirks sun50i_a64_quirks = {
.bus_clock = true,
.jack_detection = true,
};
static const struct of_device_id sun8i_codec_of_match[] = {
{ .compatible = "allwinner,sun8i-a33-codec", .data = &sun8i_a33_quirks },
{ .compatible = "allwinner,sun50i-a64-codec", .data = &sun50i_a64_quirks },
{}
};
MODULE_DEVICE_TABLE(of, sun8i_codec_of_match);
static const struct dev_pm_ops sun8i_codec_pm_ops = {
SET_RUNTIME_PM_OPS(sun8i_codec_runtime_suspend,
sun8i_codec_runtime_resume, NULL)
};
static struct platform_driver sun8i_codec_driver = {
.driver = {
.name = "sun8i-codec",
.of_match_table = sun8i_codec_of_match,
.pm = &sun8i_codec_pm_ops,
},
.probe = sun8i_codec_probe,
.remove = sun8i_codec_remove,
};
module_platform_driver(sun8i_codec_driver);
MODULE_DESCRIPTION("Allwinner A33 (sun8i) codec driver");
MODULE_AUTHOR("Mylène Josserand <mylene.josserand@free-electrons.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:sun8i-codec");