mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 10:56:14 +00:00
7dab174e2e
In preparation for the CXL region driver to take over the responsibility of registering device-dax instances for CXL regions, move the registration of "hmem" devices to dax_hmem.ko. Previously the builtin component of this enabling (drivers/dax/hmem/device.o) would register platform devices for each address range and trigger the dax_hmem.ko module to load and attach device-dax instances to those devices. Now, the ranges are collected from the HMAT and EFI memory map walking, but the device creation is deferred. A new "hmem_platform" device is created which triggers dax_hmem.ko to load and register the platform devices. Tested-by: Fan Ni <fan.ni@samsung.com> Reviewed-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/167602002771.1924368.5653558226424530127.stgit@dwillia2-xfh.jf.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
873 lines
21 KiB
C
873 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2019, Intel Corporation.
|
|
*
|
|
* Heterogeneous Memory Attributes Table (HMAT) representation
|
|
*
|
|
* This program parses and reports the platform's HMAT tables, and registers
|
|
* the applicable attributes with the node's interfaces.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "acpi/hmat: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/device.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/memregion.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/node.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/dax.h>
|
|
|
|
static u8 hmat_revision;
|
|
static int hmat_disable __initdata;
|
|
|
|
void __init disable_hmat(void)
|
|
{
|
|
hmat_disable = 1;
|
|
}
|
|
|
|
static LIST_HEAD(targets);
|
|
static LIST_HEAD(initiators);
|
|
static LIST_HEAD(localities);
|
|
|
|
static DEFINE_MUTEX(target_lock);
|
|
|
|
/*
|
|
* The defined enum order is used to prioritize attributes to break ties when
|
|
* selecting the best performing node.
|
|
*/
|
|
enum locality_types {
|
|
WRITE_LATENCY,
|
|
READ_LATENCY,
|
|
WRITE_BANDWIDTH,
|
|
READ_BANDWIDTH,
|
|
};
|
|
|
|
static struct memory_locality *localities_types[4];
|
|
|
|
struct target_cache {
|
|
struct list_head node;
|
|
struct node_cache_attrs cache_attrs;
|
|
};
|
|
|
|
struct memory_target {
|
|
struct list_head node;
|
|
unsigned int memory_pxm;
|
|
unsigned int processor_pxm;
|
|
struct resource memregions;
|
|
struct node_hmem_attrs hmem_attrs[2];
|
|
struct list_head caches;
|
|
struct node_cache_attrs cache_attrs;
|
|
bool registered;
|
|
};
|
|
|
|
struct memory_initiator {
|
|
struct list_head node;
|
|
unsigned int processor_pxm;
|
|
bool has_cpu;
|
|
};
|
|
|
|
struct memory_locality {
|
|
struct list_head node;
|
|
struct acpi_hmat_locality *hmat_loc;
|
|
};
|
|
|
|
static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
|
|
{
|
|
struct memory_initiator *initiator;
|
|
|
|
list_for_each_entry(initiator, &initiators, node)
|
|
if (initiator->processor_pxm == cpu_pxm)
|
|
return initiator;
|
|
return NULL;
|
|
}
|
|
|
|
static struct memory_target *find_mem_target(unsigned int mem_pxm)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
list_for_each_entry(target, &targets, node)
|
|
if (target->memory_pxm == mem_pxm)
|
|
return target;
|
|
return NULL;
|
|
}
|
|
|
|
static __init void alloc_memory_initiator(unsigned int cpu_pxm)
|
|
{
|
|
struct memory_initiator *initiator;
|
|
|
|
if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
|
|
return;
|
|
|
|
initiator = find_mem_initiator(cpu_pxm);
|
|
if (initiator)
|
|
return;
|
|
|
|
initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
|
|
if (!initiator)
|
|
return;
|
|
|
|
initiator->processor_pxm = cpu_pxm;
|
|
initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
|
|
list_add_tail(&initiator->node, &initiators);
|
|
}
|
|
|
|
static __init void alloc_memory_target(unsigned int mem_pxm,
|
|
resource_size_t start, resource_size_t len)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
target = find_mem_target(mem_pxm);
|
|
if (!target) {
|
|
target = kzalloc(sizeof(*target), GFP_KERNEL);
|
|
if (!target)
|
|
return;
|
|
target->memory_pxm = mem_pxm;
|
|
target->processor_pxm = PXM_INVAL;
|
|
target->memregions = (struct resource) {
|
|
.name = "ACPI mem",
|
|
.start = 0,
|
|
.end = -1,
|
|
.flags = IORESOURCE_MEM,
|
|
};
|
|
list_add_tail(&target->node, &targets);
|
|
INIT_LIST_HEAD(&target->caches);
|
|
}
|
|
|
|
/*
|
|
* There are potentially multiple ranges per PXM, so record each
|
|
* in the per-target memregions resource tree.
|
|
*/
|
|
if (!__request_region(&target->memregions, start, len, "memory target",
|
|
IORESOURCE_MEM))
|
|
pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
|
|
start, start + len, mem_pxm);
|
|
}
|
|
|
|
static __init const char *hmat_data_type(u8 type)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
return "Access Latency";
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
return "Read Latency";
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
return "Write Latency";
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
return "Access Bandwidth";
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
return "Read Bandwidth";
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
return "Write Bandwidth";
|
|
default:
|
|
return "Reserved";
|
|
}
|
|
}
|
|
|
|
static __init const char *hmat_data_type_suffix(u8 type)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
return " nsec";
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
return " MB/s";
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
|
|
static u32 hmat_normalize(u16 entry, u64 base, u8 type)
|
|
{
|
|
u32 value;
|
|
|
|
/*
|
|
* Check for invalid and overflow values
|
|
*/
|
|
if (entry == 0xffff || !entry)
|
|
return 0;
|
|
else if (base > (UINT_MAX / (entry)))
|
|
return 0;
|
|
|
|
/*
|
|
* Divide by the base unit for version 1, convert latency from
|
|
* picosenonds to nanoseconds if revision 2.
|
|
*/
|
|
value = entry * base;
|
|
if (hmat_revision == 1) {
|
|
if (value < 10)
|
|
return 0;
|
|
value = DIV_ROUND_UP(value, 10);
|
|
} else if (hmat_revision == 2) {
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
value = DIV_ROUND_UP(value, 1000);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static void hmat_update_target_access(struct memory_target *target,
|
|
u8 type, u32 value, int access)
|
|
{
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
target->hmem_attrs[access].read_latency = value;
|
|
target->hmem_attrs[access].write_latency = value;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
target->hmem_attrs[access].read_latency = value;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
target->hmem_attrs[access].write_latency = value;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
target->hmem_attrs[access].read_bandwidth = value;
|
|
target->hmem_attrs[access].write_bandwidth = value;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
target->hmem_attrs[access].read_bandwidth = value;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
target->hmem_attrs[access].write_bandwidth = value;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
|
|
{
|
|
struct memory_locality *loc;
|
|
|
|
loc = kzalloc(sizeof(*loc), GFP_KERNEL);
|
|
if (!loc) {
|
|
pr_notice_once("Failed to allocate HMAT locality\n");
|
|
return;
|
|
}
|
|
|
|
loc->hmat_loc = hmat_loc;
|
|
list_add_tail(&loc->node, &localities);
|
|
|
|
switch (hmat_loc->data_type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
localities_types[READ_LATENCY] = loc;
|
|
localities_types[WRITE_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
localities_types[READ_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
localities_types[WRITE_LATENCY] = loc;
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
localities_types[READ_BANDWIDTH] = loc;
|
|
localities_types[WRITE_BANDWIDTH] = loc;
|
|
break;
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
localities_types[READ_BANDWIDTH] = loc;
|
|
break;
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
localities_types[WRITE_BANDWIDTH] = loc;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_locality *hmat_loc = (void *)header;
|
|
struct memory_target *target;
|
|
unsigned int init, targ, total_size, ipds, tpds;
|
|
u32 *inits, *targs, value;
|
|
u16 *entries;
|
|
u8 type, mem_hier;
|
|
|
|
if (hmat_loc->header.length < sizeof(*hmat_loc)) {
|
|
pr_notice("Unexpected locality header length: %u\n",
|
|
hmat_loc->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
type = hmat_loc->data_type;
|
|
mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
|
|
ipds = hmat_loc->number_of_initiator_Pds;
|
|
tpds = hmat_loc->number_of_target_Pds;
|
|
total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
|
|
sizeof(*inits) * ipds + sizeof(*targs) * tpds;
|
|
if (hmat_loc->header.length < total_size) {
|
|
pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
|
|
hmat_loc->header.length, total_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
|
|
hmat_loc->flags, hmat_data_type(type), ipds, tpds,
|
|
hmat_loc->entry_base_unit);
|
|
|
|
inits = (u32 *)(hmat_loc + 1);
|
|
targs = inits + ipds;
|
|
entries = (u16 *)(targs + tpds);
|
|
for (init = 0; init < ipds; init++) {
|
|
alloc_memory_initiator(inits[init]);
|
|
for (targ = 0; targ < tpds; targ++) {
|
|
value = hmat_normalize(entries[init * tpds + targ],
|
|
hmat_loc->entry_base_unit,
|
|
type);
|
|
pr_info(" Initiator-Target[%u-%u]:%u%s\n",
|
|
inits[init], targs[targ], value,
|
|
hmat_data_type_suffix(type));
|
|
|
|
if (mem_hier == ACPI_HMAT_MEMORY) {
|
|
target = find_mem_target(targs[targ]);
|
|
if (target && target->processor_pxm == inits[init]) {
|
|
hmat_update_target_access(target, type, value, 0);
|
|
/* If the node has a CPU, update access 1 */
|
|
if (node_state(pxm_to_node(inits[init]), N_CPU))
|
|
hmat_update_target_access(target, type, value, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mem_hier == ACPI_HMAT_MEMORY)
|
|
hmat_add_locality(hmat_loc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int hmat_parse_cache(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_cache *cache = (void *)header;
|
|
struct memory_target *target;
|
|
struct target_cache *tcache;
|
|
u32 attrs;
|
|
|
|
if (cache->header.length < sizeof(*cache)) {
|
|
pr_notice("Unexpected cache header length: %u\n",
|
|
cache->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
attrs = cache->cache_attributes;
|
|
pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
|
|
cache->memory_PD, cache->cache_size, attrs,
|
|
cache->number_of_SMBIOShandles);
|
|
|
|
target = find_mem_target(cache->memory_PD);
|
|
if (!target)
|
|
return 0;
|
|
|
|
tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
|
|
if (!tcache) {
|
|
pr_notice_once("Failed to allocate HMAT cache info\n");
|
|
return 0;
|
|
}
|
|
|
|
tcache->cache_attrs.size = cache->cache_size;
|
|
tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
|
|
tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
|
|
|
|
switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
|
|
case ACPI_HMAT_CA_DIRECT_MAPPED:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
|
|
break;
|
|
case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
|
|
break;
|
|
case ACPI_HMAT_CA_NONE:
|
|
default:
|
|
tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
|
|
break;
|
|
}
|
|
|
|
switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
|
|
case ACPI_HMAT_CP_WB:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
|
|
break;
|
|
case ACPI_HMAT_CP_WT:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
|
|
break;
|
|
case ACPI_HMAT_CP_NONE:
|
|
default:
|
|
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
|
|
break;
|
|
}
|
|
list_add_tail(&tcache->node, &target->caches);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_proximity_domain *p = (void *)header;
|
|
struct memory_target *target = NULL;
|
|
|
|
if (p->header.length != sizeof(*p)) {
|
|
pr_notice("Unexpected address range header length: %u\n",
|
|
p->header.length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hmat_revision == 1)
|
|
pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
|
|
p->reserved3, p->reserved4, p->flags, p->processor_PD,
|
|
p->memory_PD);
|
|
else
|
|
pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
|
|
p->flags, p->processor_PD, p->memory_PD);
|
|
|
|
if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
|
|
hmat_revision > 1) {
|
|
target = find_mem_target(p->memory_PD);
|
|
if (!target) {
|
|
pr_debug("Memory Domain missing from SRAT\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
|
|
int p_node = pxm_to_node(p->processor_PD);
|
|
|
|
if (p_node == NUMA_NO_NODE) {
|
|
pr_debug("Invalid Processor Domain\n");
|
|
return -EINVAL;
|
|
}
|
|
target->processor_pxm = p->processor_PD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_hmat_structure *hdr = (void *)header;
|
|
|
|
if (!hdr)
|
|
return -EINVAL;
|
|
|
|
switch (hdr->type) {
|
|
case ACPI_HMAT_TYPE_PROXIMITY:
|
|
return hmat_parse_proximity_domain(header, end);
|
|
case ACPI_HMAT_TYPE_LOCALITY:
|
|
return hmat_parse_locality(header, end);
|
|
case ACPI_HMAT_TYPE_CACHE:
|
|
return hmat_parse_cache(header, end);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
|
|
const unsigned long end)
|
|
{
|
|
struct acpi_srat_mem_affinity *ma = (void *)header;
|
|
|
|
if (!ma)
|
|
return -EINVAL;
|
|
if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
|
|
return 0;
|
|
alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
|
|
return 0;
|
|
}
|
|
|
|
static u32 hmat_initiator_perf(struct memory_target *target,
|
|
struct memory_initiator *initiator,
|
|
struct acpi_hmat_locality *hmat_loc)
|
|
{
|
|
unsigned int ipds, tpds, i, idx = 0, tdx = 0;
|
|
u32 *inits, *targs;
|
|
u16 *entries;
|
|
|
|
ipds = hmat_loc->number_of_initiator_Pds;
|
|
tpds = hmat_loc->number_of_target_Pds;
|
|
inits = (u32 *)(hmat_loc + 1);
|
|
targs = inits + ipds;
|
|
entries = (u16 *)(targs + tpds);
|
|
|
|
for (i = 0; i < ipds; i++) {
|
|
if (inits[i] == initiator->processor_pxm) {
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == ipds)
|
|
return 0;
|
|
|
|
for (i = 0; i < tpds; i++) {
|
|
if (targs[i] == target->memory_pxm) {
|
|
tdx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == tpds)
|
|
return 0;
|
|
|
|
return hmat_normalize(entries[idx * tpds + tdx],
|
|
hmat_loc->entry_base_unit,
|
|
hmat_loc->data_type);
|
|
}
|
|
|
|
static bool hmat_update_best(u8 type, u32 value, u32 *best)
|
|
{
|
|
bool updated = false;
|
|
|
|
if (!value)
|
|
return false;
|
|
|
|
switch (type) {
|
|
case ACPI_HMAT_ACCESS_LATENCY:
|
|
case ACPI_HMAT_READ_LATENCY:
|
|
case ACPI_HMAT_WRITE_LATENCY:
|
|
if (!*best || *best > value) {
|
|
*best = value;
|
|
updated = true;
|
|
}
|
|
break;
|
|
case ACPI_HMAT_ACCESS_BANDWIDTH:
|
|
case ACPI_HMAT_READ_BANDWIDTH:
|
|
case ACPI_HMAT_WRITE_BANDWIDTH:
|
|
if (!*best || *best < value) {
|
|
*best = value;
|
|
updated = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return updated;
|
|
}
|
|
|
|
static int initiator_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct memory_initiator *ia;
|
|
struct memory_initiator *ib;
|
|
|
|
ia = list_entry(a, struct memory_initiator, node);
|
|
ib = list_entry(b, struct memory_initiator, node);
|
|
|
|
return ia->processor_pxm - ib->processor_pxm;
|
|
}
|
|
|
|
static int initiators_to_nodemask(unsigned long *p_nodes)
|
|
{
|
|
struct memory_initiator *initiator;
|
|
|
|
if (list_empty(&initiators))
|
|
return -ENXIO;
|
|
|
|
list_for_each_entry(initiator, &initiators, node)
|
|
set_bit(initiator->processor_pxm, p_nodes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hmat_register_target_initiators(struct memory_target *target)
|
|
{
|
|
static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
|
|
struct memory_initiator *initiator;
|
|
unsigned int mem_nid, cpu_nid;
|
|
struct memory_locality *loc = NULL;
|
|
u32 best = 0;
|
|
bool access0done = false;
|
|
int i;
|
|
|
|
mem_nid = pxm_to_node(target->memory_pxm);
|
|
/*
|
|
* If the Address Range Structure provides a local processor pxm, link
|
|
* only that one. Otherwise, find the best performance attributes and
|
|
* register all initiators that match.
|
|
*/
|
|
if (target->processor_pxm != PXM_INVAL) {
|
|
cpu_nid = pxm_to_node(target->processor_pxm);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
|
|
access0done = true;
|
|
if (node_state(cpu_nid, N_CPU)) {
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (list_empty(&localities))
|
|
return;
|
|
|
|
/*
|
|
* We need the initiator list sorted so we can use bitmap_clear for
|
|
* previously set initiators when we find a better memory accessor.
|
|
* We'll also use the sorting to prime the candidate nodes with known
|
|
* initiators.
|
|
*/
|
|
bitmap_zero(p_nodes, MAX_NUMNODES);
|
|
list_sort(NULL, &initiators, initiator_cmp);
|
|
if (initiators_to_nodemask(p_nodes) < 0)
|
|
return;
|
|
|
|
if (!access0done) {
|
|
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
|
|
loc = localities_types[i];
|
|
if (!loc)
|
|
continue;
|
|
|
|
best = 0;
|
|
list_for_each_entry(initiator, &initiators, node) {
|
|
u32 value;
|
|
|
|
if (!test_bit(initiator->processor_pxm, p_nodes))
|
|
continue;
|
|
|
|
value = hmat_initiator_perf(target, initiator,
|
|
loc->hmat_loc);
|
|
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
|
|
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
|
|
if (value != best)
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
}
|
|
if (best)
|
|
hmat_update_target_access(target, loc->hmat_loc->data_type,
|
|
best, 0);
|
|
}
|
|
|
|
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
|
|
cpu_nid = pxm_to_node(i);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
|
|
}
|
|
}
|
|
|
|
/* Access 1 ignores Generic Initiators */
|
|
bitmap_zero(p_nodes, MAX_NUMNODES);
|
|
if (initiators_to_nodemask(p_nodes) < 0)
|
|
return;
|
|
|
|
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
|
|
loc = localities_types[i];
|
|
if (!loc)
|
|
continue;
|
|
|
|
best = 0;
|
|
list_for_each_entry(initiator, &initiators, node) {
|
|
u32 value;
|
|
|
|
if (!initiator->has_cpu) {
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
continue;
|
|
}
|
|
if (!test_bit(initiator->processor_pxm, p_nodes))
|
|
continue;
|
|
|
|
value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
|
|
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
|
|
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
|
|
if (value != best)
|
|
clear_bit(initiator->processor_pxm, p_nodes);
|
|
}
|
|
if (best)
|
|
hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
|
|
}
|
|
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
|
|
cpu_nid = pxm_to_node(i);
|
|
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
|
|
}
|
|
}
|
|
|
|
static void hmat_register_target_cache(struct memory_target *target)
|
|
{
|
|
unsigned mem_nid = pxm_to_node(target->memory_pxm);
|
|
struct target_cache *tcache;
|
|
|
|
list_for_each_entry(tcache, &target->caches, node)
|
|
node_add_cache(mem_nid, &tcache->cache_attrs);
|
|
}
|
|
|
|
static void hmat_register_target_perf(struct memory_target *target, int access)
|
|
{
|
|
unsigned mem_nid = pxm_to_node(target->memory_pxm);
|
|
node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
|
|
}
|
|
|
|
static void hmat_register_target_devices(struct memory_target *target)
|
|
{
|
|
struct resource *res;
|
|
|
|
/*
|
|
* Do not bother creating devices if no driver is available to
|
|
* consume them.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
|
|
return;
|
|
|
|
for (res = target->memregions.child; res; res = res->sibling) {
|
|
int target_nid = pxm_to_node(target->memory_pxm);
|
|
|
|
hmem_register_resource(target_nid, res);
|
|
}
|
|
}
|
|
|
|
static void hmat_register_target(struct memory_target *target)
|
|
{
|
|
int nid = pxm_to_node(target->memory_pxm);
|
|
|
|
/*
|
|
* Devices may belong to either an offline or online
|
|
* node, so unconditionally add them.
|
|
*/
|
|
hmat_register_target_devices(target);
|
|
|
|
/*
|
|
* Skip offline nodes. This can happen when memory
|
|
* marked EFI_MEMORY_SP, "specific purpose", is applied
|
|
* to all the memory in a proximity domain leading to
|
|
* the node being marked offline / unplugged, or if
|
|
* memory-only "hotplug" node is offline.
|
|
*/
|
|
if (nid == NUMA_NO_NODE || !node_online(nid))
|
|
return;
|
|
|
|
mutex_lock(&target_lock);
|
|
if (!target->registered) {
|
|
hmat_register_target_initiators(target);
|
|
hmat_register_target_cache(target);
|
|
hmat_register_target_perf(target, 0);
|
|
hmat_register_target_perf(target, 1);
|
|
target->registered = true;
|
|
}
|
|
mutex_unlock(&target_lock);
|
|
}
|
|
|
|
static void hmat_register_targets(void)
|
|
{
|
|
struct memory_target *target;
|
|
|
|
list_for_each_entry(target, &targets, node)
|
|
hmat_register_target(target);
|
|
}
|
|
|
|
static int hmat_callback(struct notifier_block *self,
|
|
unsigned long action, void *arg)
|
|
{
|
|
struct memory_target *target;
|
|
struct memory_notify *mnb = arg;
|
|
int pxm, nid = mnb->status_change_nid;
|
|
|
|
if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
|
|
return NOTIFY_OK;
|
|
|
|
pxm = node_to_pxm(nid);
|
|
target = find_mem_target(pxm);
|
|
if (!target)
|
|
return NOTIFY_OK;
|
|
|
|
hmat_register_target(target);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static __init void hmat_free_structures(void)
|
|
{
|
|
struct memory_target *target, *tnext;
|
|
struct memory_locality *loc, *lnext;
|
|
struct memory_initiator *initiator, *inext;
|
|
struct target_cache *tcache, *cnext;
|
|
|
|
list_for_each_entry_safe(target, tnext, &targets, node) {
|
|
struct resource *res, *res_next;
|
|
|
|
list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
|
|
list_del(&tcache->node);
|
|
kfree(tcache);
|
|
}
|
|
|
|
list_del(&target->node);
|
|
res = target->memregions.child;
|
|
while (res) {
|
|
res_next = res->sibling;
|
|
__release_region(&target->memregions, res->start,
|
|
resource_size(res));
|
|
res = res_next;
|
|
}
|
|
kfree(target);
|
|
}
|
|
|
|
list_for_each_entry_safe(initiator, inext, &initiators, node) {
|
|
list_del(&initiator->node);
|
|
kfree(initiator);
|
|
}
|
|
|
|
list_for_each_entry_safe(loc, lnext, &localities, node) {
|
|
list_del(&loc->node);
|
|
kfree(loc);
|
|
}
|
|
}
|
|
|
|
static __init int hmat_init(void)
|
|
{
|
|
struct acpi_table_header *tbl;
|
|
enum acpi_hmat_type i;
|
|
acpi_status status;
|
|
|
|
if (srat_disabled() || hmat_disable)
|
|
return 0;
|
|
|
|
status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
|
|
if (ACPI_FAILURE(status))
|
|
return 0;
|
|
|
|
if (acpi_table_parse_entries(ACPI_SIG_SRAT,
|
|
sizeof(struct acpi_table_srat),
|
|
ACPI_SRAT_TYPE_MEMORY_AFFINITY,
|
|
srat_parse_mem_affinity, 0) < 0)
|
|
goto out_put;
|
|
acpi_put_table(tbl);
|
|
|
|
status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
|
|
if (ACPI_FAILURE(status))
|
|
goto out_put;
|
|
|
|
hmat_revision = tbl->revision;
|
|
switch (hmat_revision) {
|
|
case 1:
|
|
case 2:
|
|
break;
|
|
default:
|
|
pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
|
|
goto out_put;
|
|
}
|
|
|
|
for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
|
|
if (acpi_table_parse_entries(ACPI_SIG_HMAT,
|
|
sizeof(struct acpi_table_hmat), i,
|
|
hmat_parse_subtable, 0) < 0) {
|
|
pr_notice("Ignoring: Invalid table");
|
|
goto out_put;
|
|
}
|
|
}
|
|
hmat_register_targets();
|
|
|
|
/* Keep the table and structures if the notifier may use them */
|
|
if (!hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
|
|
return 0;
|
|
out_put:
|
|
hmat_free_structures();
|
|
acpi_put_table(tbl);
|
|
return 0;
|
|
}
|
|
subsys_initcall(hmat_init);
|