mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-07 22:03:14 +00:00
5a88a3f67e
The count variable is used without initialization, it results in mistakes
in the device counting and crashes the userspace if the get hot reset info
path is triggered.
Fixes: f6944d4a0b
("vfio/pci: Collect hot-reset devices to local buffer")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219010
Reported-by: Žilvinas Žaltiena <zaltys@natrix.lt>
Cc: Beld Zhang <beldzhang@gmail.com>
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20240710004150.319105-1-yi.l.liu@intel.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2567 lines
68 KiB
C
2567 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
|
|
* Author: Alex Williamson <alex.williamson@redhat.com>
|
|
*
|
|
* Derived from original vfio:
|
|
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
|
|
* Author: Tom Lyon, pugs@cisco.com
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/aperture.h>
|
|
#include <linux/device.h>
|
|
#include <linux/eventfd.h>
|
|
#include <linux/file.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vgaarb.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/iommufd.h>
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
#include <asm/eeh.h>
|
|
#endif
|
|
|
|
#include "vfio_pci_priv.h"
|
|
|
|
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
|
|
#define DRIVER_DESC "core driver for VFIO based PCI devices"
|
|
|
|
static bool nointxmask;
|
|
static bool disable_vga;
|
|
static bool disable_idle_d3;
|
|
|
|
/* List of PF's that vfio_pci_core_sriov_configure() has been called on */
|
|
static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
|
|
static LIST_HEAD(vfio_pci_sriov_pfs);
|
|
|
|
struct vfio_pci_dummy_resource {
|
|
struct resource resource;
|
|
int index;
|
|
struct list_head res_next;
|
|
};
|
|
|
|
struct vfio_pci_vf_token {
|
|
struct mutex lock;
|
|
uuid_t uuid;
|
|
int users;
|
|
};
|
|
|
|
struct vfio_pci_mmap_vma {
|
|
struct vm_area_struct *vma;
|
|
struct list_head vma_next;
|
|
};
|
|
|
|
static inline bool vfio_vga_disabled(void)
|
|
{
|
|
#ifdef CONFIG_VFIO_PCI_VGA
|
|
return disable_vga;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Our VGA arbiter participation is limited since we don't know anything
|
|
* about the device itself. However, if the device is the only VGA device
|
|
* downstream of a bridge and VFIO VGA support is disabled, then we can
|
|
* safely return legacy VGA IO and memory as not decoded since the user
|
|
* has no way to get to it and routing can be disabled externally at the
|
|
* bridge.
|
|
*/
|
|
static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
|
|
{
|
|
struct pci_dev *tmp = NULL;
|
|
unsigned char max_busnr;
|
|
unsigned int decodes;
|
|
|
|
if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
|
|
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
|
|
VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
|
|
|
|
max_busnr = pci_bus_max_busnr(pdev->bus);
|
|
decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
|
|
|
|
while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
|
|
if (tmp == pdev ||
|
|
pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
|
|
pci_is_root_bus(tmp->bus))
|
|
continue;
|
|
|
|
if (tmp->bus->number >= pdev->bus->number &&
|
|
tmp->bus->number <= max_busnr) {
|
|
pci_dev_put(tmp);
|
|
decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return decodes;
|
|
}
|
|
|
|
static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct resource *res;
|
|
int i;
|
|
struct vfio_pci_dummy_resource *dummy_res;
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
int bar = i + PCI_STD_RESOURCES;
|
|
|
|
res = &vdev->pdev->resource[bar];
|
|
|
|
if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
|
|
goto no_mmap;
|
|
|
|
if (!(res->flags & IORESOURCE_MEM))
|
|
goto no_mmap;
|
|
|
|
/*
|
|
* The PCI core shouldn't set up a resource with a
|
|
* type but zero size. But there may be bugs that
|
|
* cause us to do that.
|
|
*/
|
|
if (!resource_size(res))
|
|
goto no_mmap;
|
|
|
|
if (resource_size(res) >= PAGE_SIZE) {
|
|
vdev->bar_mmap_supported[bar] = true;
|
|
continue;
|
|
}
|
|
|
|
if (!(res->start & ~PAGE_MASK)) {
|
|
/*
|
|
* Add a dummy resource to reserve the remainder
|
|
* of the exclusive page in case that hot-add
|
|
* device's bar is assigned into it.
|
|
*/
|
|
dummy_res =
|
|
kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
|
|
if (dummy_res == NULL)
|
|
goto no_mmap;
|
|
|
|
dummy_res->resource.name = "vfio sub-page reserved";
|
|
dummy_res->resource.start = res->end + 1;
|
|
dummy_res->resource.end = res->start + PAGE_SIZE - 1;
|
|
dummy_res->resource.flags = res->flags;
|
|
if (request_resource(res->parent,
|
|
&dummy_res->resource)) {
|
|
kfree(dummy_res);
|
|
goto no_mmap;
|
|
}
|
|
dummy_res->index = bar;
|
|
list_add(&dummy_res->res_next,
|
|
&vdev->dummy_resources_list);
|
|
vdev->bar_mmap_supported[bar] = true;
|
|
continue;
|
|
}
|
|
/*
|
|
* Here we don't handle the case when the BAR is not page
|
|
* aligned because we can't expect the BAR will be
|
|
* assigned into the same location in a page in guest
|
|
* when we passthrough the BAR. And it's hard to access
|
|
* this BAR in userspace because we have no way to get
|
|
* the BAR's location in a page.
|
|
*/
|
|
no_mmap:
|
|
vdev->bar_mmap_supported[bar] = false;
|
|
}
|
|
}
|
|
|
|
struct vfio_pci_group_info;
|
|
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
|
|
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
|
|
struct vfio_pci_group_info *groups,
|
|
struct iommufd_ctx *iommufd_ctx);
|
|
|
|
/*
|
|
* INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
|
|
* _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
|
|
* If a device implements the former but not the latter we would typically
|
|
* expect broken_intx_masking be set and require an exclusive interrupt.
|
|
* However since we do have control of the device's ability to assert INTx,
|
|
* we can instead pretend that the device does not implement INTx, virtualizing
|
|
* the pin register to report zero and maintaining DisINTx set on the host.
|
|
*/
|
|
static bool vfio_pci_nointx(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->vendor) {
|
|
case PCI_VENDOR_ID_INTEL:
|
|
switch (pdev->device) {
|
|
/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
|
|
case 0x1572:
|
|
case 0x1574:
|
|
case 0x1580 ... 0x1581:
|
|
case 0x1583 ... 0x158b:
|
|
case 0x37d0 ... 0x37d2:
|
|
/* X550 */
|
|
case 0x1563:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u16 pmcsr;
|
|
|
|
if (!pdev->pm_cap)
|
|
return;
|
|
|
|
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
|
|
}
|
|
|
|
/*
|
|
* pci_set_power_state() wrapper handling devices which perform a soft reset on
|
|
* D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
|
|
* restore when returned to D0. Saved separately from pci_saved_state for use
|
|
* by PM capability emulation and separately from pci_dev internal saved state
|
|
* to avoid it being overwritten and consumed around other resets.
|
|
*/
|
|
int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
bool needs_restore = false, needs_save = false;
|
|
int ret;
|
|
|
|
/* Prevent changing power state for PFs with VFs enabled */
|
|
if (pci_num_vf(pdev) && state > PCI_D0)
|
|
return -EBUSY;
|
|
|
|
if (vdev->needs_pm_restore) {
|
|
if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
|
|
pci_save_state(pdev);
|
|
needs_save = true;
|
|
}
|
|
|
|
if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
|
|
needs_restore = true;
|
|
}
|
|
|
|
ret = pci_set_power_state(pdev, state);
|
|
|
|
if (!ret) {
|
|
/* D3 might be unsupported via quirk, skip unless in D3 */
|
|
if (needs_save && pdev->current_state >= PCI_D3hot) {
|
|
/*
|
|
* The current PCI state will be saved locally in
|
|
* 'pm_save' during the D3hot transition. When the
|
|
* device state is changed to D0 again with the current
|
|
* function, then pci_store_saved_state() will restore
|
|
* the state and will free the memory pointed by
|
|
* 'pm_save'. There are few cases where the PCI power
|
|
* state can be changed to D0 without the involvement
|
|
* of the driver. For these cases, free the earlier
|
|
* allocated memory first before overwriting 'pm_save'
|
|
* to prevent the memory leak.
|
|
*/
|
|
kfree(vdev->pm_save);
|
|
vdev->pm_save = pci_store_saved_state(pdev);
|
|
} else if (needs_restore) {
|
|
pci_load_and_free_saved_state(pdev, &vdev->pm_save);
|
|
pci_restore_state(pdev);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
|
|
struct eventfd_ctx *efdctx)
|
|
{
|
|
/*
|
|
* The vdev power related flags are protected with 'memory_lock'
|
|
* semaphore.
|
|
*/
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
if (vdev->pm_runtime_engaged) {
|
|
up_write(&vdev->memory_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vdev->pm_runtime_engaged = true;
|
|
vdev->pm_wake_eventfd_ctx = efdctx;
|
|
pm_runtime_put_noidle(&vdev->pdev->dev);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
/*
|
|
* Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
|
|
* will be decremented. The pm_runtime_put() will be invoked again
|
|
* while returning from the ioctl and then the device can go into
|
|
* runtime suspended state.
|
|
*/
|
|
return vfio_pci_runtime_pm_entry(vdev, NULL);
|
|
}
|
|
|
|
static int vfio_pci_core_pm_entry_with_wakeup(
|
|
struct vfio_device *device, u32 flags,
|
|
struct vfio_device_low_power_entry_with_wakeup __user *arg,
|
|
size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
struct vfio_device_low_power_entry_with_wakeup entry;
|
|
struct eventfd_ctx *efdctx;
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
|
|
sizeof(entry));
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
if (copy_from_user(&entry, arg, sizeof(entry)))
|
|
return -EFAULT;
|
|
|
|
if (entry.wakeup_eventfd < 0)
|
|
return -EINVAL;
|
|
|
|
efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
|
|
if (IS_ERR(efdctx))
|
|
return PTR_ERR(efdctx);
|
|
|
|
ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
|
|
if (ret)
|
|
eventfd_ctx_put(efdctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
if (vdev->pm_runtime_engaged) {
|
|
vdev->pm_runtime_engaged = false;
|
|
pm_runtime_get_noresume(&vdev->pdev->dev);
|
|
|
|
if (vdev->pm_wake_eventfd_ctx) {
|
|
eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
|
|
vdev->pm_wake_eventfd_ctx = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
/*
|
|
* The vdev power related flags are protected with 'memory_lock'
|
|
* semaphore.
|
|
*/
|
|
down_write(&vdev->memory_lock);
|
|
__vfio_pci_runtime_pm_exit(vdev);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
|
|
static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
/*
|
|
* The device is always in the active state here due to pm wrappers
|
|
* around ioctls. If the device had entered a low power state and
|
|
* pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
|
|
* already signaled the eventfd and exited low power mode itself.
|
|
* pm_runtime_engaged protects the redundant call here.
|
|
*/
|
|
vfio_pci_runtime_pm_exit(vdev);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int vfio_pci_core_runtime_suspend(struct device *dev)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
|
|
|
|
down_write(&vdev->memory_lock);
|
|
/*
|
|
* The user can move the device into D3hot state before invoking
|
|
* power management IOCTL. Move the device into D0 state here and then
|
|
* the pci-driver core runtime PM suspend function will move the device
|
|
* into the low power state. Also, for the devices which have
|
|
* NoSoftRst-, it will help in restoring the original state
|
|
* (saved locally in 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
/*
|
|
* If INTx is enabled, then mask INTx before going into the runtime
|
|
* suspended state and unmask the same in the runtime resume.
|
|
* If INTx has already been masked by the user, then
|
|
* vfio_pci_intx_mask() will return false and in that case, INTx
|
|
* should not be unmasked in the runtime resume.
|
|
*/
|
|
vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
|
|
vfio_pci_intx_mask(vdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_core_runtime_resume(struct device *dev)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
|
|
|
|
/*
|
|
* Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
|
|
* low power mode.
|
|
*/
|
|
down_write(&vdev->memory_lock);
|
|
if (vdev->pm_wake_eventfd_ctx) {
|
|
eventfd_signal(vdev->pm_wake_eventfd_ctx);
|
|
__vfio_pci_runtime_pm_exit(vdev);
|
|
}
|
|
up_write(&vdev->memory_lock);
|
|
|
|
if (vdev->pm_intx_masked)
|
|
vfio_pci_intx_unmask(vdev);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* The pci-driver core runtime PM routines always save the device state
|
|
* before going into suspended state. If the device is going into low power
|
|
* state with only with runtime PM ops, then no explicit handling is needed
|
|
* for the devices which have NoSoftRst-.
|
|
*/
|
|
static const struct dev_pm_ops vfio_pci_core_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
|
|
vfio_pci_core_runtime_resume,
|
|
NULL)
|
|
};
|
|
|
|
int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret;
|
|
u16 cmd;
|
|
u8 msix_pos;
|
|
|
|
if (!disable_idle_d3) {
|
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Don't allow our initial saved state to include busmaster */
|
|
pci_clear_master(pdev);
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret)
|
|
goto out_power;
|
|
|
|
/* If reset fails because of the device lock, fail this path entirely */
|
|
ret = pci_try_reset_function(pdev);
|
|
if (ret == -EAGAIN)
|
|
goto out_disable_device;
|
|
|
|
vdev->reset_works = !ret;
|
|
pci_save_state(pdev);
|
|
vdev->pci_saved_state = pci_store_saved_state(pdev);
|
|
if (!vdev->pci_saved_state)
|
|
pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
|
|
|
|
if (likely(!nointxmask)) {
|
|
if (vfio_pci_nointx(pdev)) {
|
|
pci_info(pdev, "Masking broken INTx support\n");
|
|
vdev->nointx = true;
|
|
pci_intx(pdev, 0);
|
|
} else
|
|
vdev->pci_2_3 = pci_intx_mask_supported(pdev);
|
|
}
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
|
|
cmd &= ~PCI_COMMAND_INTX_DISABLE;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
}
|
|
|
|
ret = vfio_pci_zdev_open_device(vdev);
|
|
if (ret)
|
|
goto out_free_state;
|
|
|
|
ret = vfio_config_init(vdev);
|
|
if (ret)
|
|
goto out_free_zdev;
|
|
|
|
msix_pos = pdev->msix_cap;
|
|
if (msix_pos) {
|
|
u16 flags;
|
|
u32 table;
|
|
|
|
pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
|
|
pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
|
|
|
|
vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
|
|
vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
|
|
vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
|
|
vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
|
|
} else {
|
|
vdev->msix_bar = 0xFF;
|
|
vdev->has_dyn_msix = false;
|
|
}
|
|
|
|
if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
|
|
vdev->has_vga = true;
|
|
|
|
|
|
return 0;
|
|
|
|
out_free_zdev:
|
|
vfio_pci_zdev_close_device(vdev);
|
|
out_free_state:
|
|
kfree(vdev->pci_saved_state);
|
|
vdev->pci_saved_state = NULL;
|
|
out_disable_device:
|
|
pci_disable_device(pdev);
|
|
out_power:
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&pdev->dev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
|
|
|
|
void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_pci_dummy_resource *dummy_res, *tmp;
|
|
struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
|
|
int i, bar;
|
|
|
|
/* For needs_reset */
|
|
lockdep_assert_held(&vdev->vdev.dev_set->lock);
|
|
|
|
/*
|
|
* This function can be invoked while the power state is non-D0.
|
|
* This non-D0 power state can be with or without runtime PM.
|
|
* vfio_pci_runtime_pm_exit() will internally increment the usage
|
|
* count corresponding to pm_runtime_put() called during low power
|
|
* feature entry and then pm_runtime_resume() will wake up the device,
|
|
* if the device has already gone into the suspended state. Otherwise,
|
|
* the vfio_pci_set_power_state() will change the device power state
|
|
* to D0.
|
|
*/
|
|
vfio_pci_runtime_pm_exit(vdev);
|
|
pm_runtime_resume(&pdev->dev);
|
|
|
|
/*
|
|
* This function calls __pci_reset_function_locked() which internally
|
|
* can use pci_pm_reset() for the function reset. pci_pm_reset() will
|
|
* fail if the power state is non-D0. Also, for the devices which
|
|
* have NoSoftRst-, the reset function can cause the PCI config space
|
|
* reset without restoring the original state (saved locally in
|
|
* 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
/* Stop the device from further DMA */
|
|
pci_clear_master(pdev);
|
|
|
|
vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
|
|
VFIO_IRQ_SET_ACTION_TRIGGER,
|
|
vdev->irq_type, 0, 0, NULL);
|
|
|
|
/* Device closed, don't need mutex here */
|
|
list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
|
|
&vdev->ioeventfds_list, next) {
|
|
vfio_virqfd_disable(&ioeventfd->virqfd);
|
|
list_del(&ioeventfd->next);
|
|
kfree(ioeventfd);
|
|
}
|
|
vdev->ioeventfds_nr = 0;
|
|
|
|
vdev->virq_disabled = false;
|
|
|
|
for (i = 0; i < vdev->num_regions; i++)
|
|
vdev->region[i].ops->release(vdev, &vdev->region[i]);
|
|
|
|
vdev->num_regions = 0;
|
|
kfree(vdev->region);
|
|
vdev->region = NULL; /* don't krealloc a freed pointer */
|
|
|
|
vfio_config_free(vdev);
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
bar = i + PCI_STD_RESOURCES;
|
|
if (!vdev->barmap[bar])
|
|
continue;
|
|
pci_iounmap(pdev, vdev->barmap[bar]);
|
|
pci_release_selected_regions(pdev, 1 << bar);
|
|
vdev->barmap[bar] = NULL;
|
|
}
|
|
|
|
list_for_each_entry_safe(dummy_res, tmp,
|
|
&vdev->dummy_resources_list, res_next) {
|
|
list_del(&dummy_res->res_next);
|
|
release_resource(&dummy_res->resource);
|
|
kfree(dummy_res);
|
|
}
|
|
|
|
vdev->needs_reset = true;
|
|
|
|
vfio_pci_zdev_close_device(vdev);
|
|
|
|
/*
|
|
* If we have saved state, restore it. If we can reset the device,
|
|
* even better. Resetting with current state seems better than
|
|
* nothing, but saving and restoring current state without reset
|
|
* is just busy work.
|
|
*/
|
|
if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
|
|
pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
|
|
|
|
if (!vdev->reset_works)
|
|
goto out;
|
|
|
|
pci_save_state(pdev);
|
|
}
|
|
|
|
/*
|
|
* Disable INTx and MSI, presumably to avoid spurious interrupts
|
|
* during reset. Stolen from pci_reset_function()
|
|
*/
|
|
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
|
|
|
|
/*
|
|
* Try to get the locks ourselves to prevent a deadlock. The
|
|
* success of this is dependent on being able to lock the device,
|
|
* which is not always possible.
|
|
* We can not use the "try" reset interface here, which will
|
|
* overwrite the previously restored configuration information.
|
|
*/
|
|
if (vdev->reset_works && pci_dev_trylock(pdev)) {
|
|
if (!__pci_reset_function_locked(pdev))
|
|
vdev->needs_reset = false;
|
|
pci_dev_unlock(pdev);
|
|
}
|
|
|
|
pci_restore_state(pdev);
|
|
out:
|
|
pci_disable_device(pdev);
|
|
|
|
vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
|
|
|
|
/* Put the pm-runtime usage counter acquired during enable */
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&pdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
|
|
|
|
void vfio_pci_core_close_device(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (vdev->sriov_pf_core_dev) {
|
|
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
|
|
vdev->sriov_pf_core_dev->vf_token->users--;
|
|
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
}
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
eeh_dev_release(vdev->pdev);
|
|
#endif
|
|
vfio_pci_core_disable(vdev);
|
|
|
|
mutex_lock(&vdev->igate);
|
|
if (vdev->err_trigger) {
|
|
eventfd_ctx_put(vdev->err_trigger);
|
|
vdev->err_trigger = NULL;
|
|
}
|
|
if (vdev->req_trigger) {
|
|
eventfd_ctx_put(vdev->req_trigger);
|
|
vdev->req_trigger = NULL;
|
|
}
|
|
mutex_unlock(&vdev->igate);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
|
|
|
|
void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
vfio_pci_probe_mmaps(vdev);
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
eeh_dev_open(vdev->pdev);
|
|
#endif
|
|
|
|
if (vdev->sriov_pf_core_dev) {
|
|
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
vdev->sriov_pf_core_dev->vf_token->users++;
|
|
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
|
|
|
|
static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
|
|
{
|
|
if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
|
|
u8 pin;
|
|
|
|
if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
|
|
vdev->nointx || vdev->pdev->is_virtfn)
|
|
return 0;
|
|
|
|
pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
|
|
|
|
return pin ? 1 : 0;
|
|
} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
|
|
u8 pos;
|
|
u16 flags;
|
|
|
|
pos = vdev->pdev->msi_cap;
|
|
if (pos) {
|
|
pci_read_config_word(vdev->pdev,
|
|
pos + PCI_MSI_FLAGS, &flags);
|
|
return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
|
|
}
|
|
} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
|
|
u8 pos;
|
|
u16 flags;
|
|
|
|
pos = vdev->pdev->msix_cap;
|
|
if (pos) {
|
|
pci_read_config_word(vdev->pdev,
|
|
pos + PCI_MSIX_FLAGS, &flags);
|
|
|
|
return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
}
|
|
} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
|
|
if (pci_is_pcie(vdev->pdev))
|
|
return 1;
|
|
} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
|
|
{
|
|
(*(int *)data)++;
|
|
return 0;
|
|
}
|
|
|
|
struct vfio_pci_fill_info {
|
|
struct vfio_device *vdev;
|
|
struct vfio_pci_dependent_device *devices;
|
|
int nr_devices;
|
|
u32 count;
|
|
u32 flags;
|
|
};
|
|
|
|
static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_pci_dependent_device *info;
|
|
struct vfio_pci_fill_info *fill = data;
|
|
|
|
/* The topology changed since we counted devices */
|
|
if (fill->count >= fill->nr_devices)
|
|
return -EAGAIN;
|
|
|
|
info = &fill->devices[fill->count++];
|
|
info->segment = pci_domain_nr(pdev->bus);
|
|
info->bus = pdev->bus->number;
|
|
info->devfn = pdev->devfn;
|
|
|
|
if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
|
|
struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
|
|
struct vfio_device_set *dev_set = fill->vdev->dev_set;
|
|
struct vfio_device *vdev;
|
|
|
|
/*
|
|
* hot-reset requires all affected devices be represented in
|
|
* the dev_set.
|
|
*/
|
|
vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
|
|
if (!vdev) {
|
|
info->devid = VFIO_PCI_DEVID_NOT_OWNED;
|
|
} else {
|
|
int id = vfio_iommufd_get_dev_id(vdev, iommufd);
|
|
|
|
if (id > 0)
|
|
info->devid = id;
|
|
else if (id == -ENOENT)
|
|
info->devid = VFIO_PCI_DEVID_OWNED;
|
|
else
|
|
info->devid = VFIO_PCI_DEVID_NOT_OWNED;
|
|
}
|
|
/* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
|
|
if (info->devid == VFIO_PCI_DEVID_NOT_OWNED)
|
|
fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
|
|
} else {
|
|
struct iommu_group *iommu_group;
|
|
|
|
iommu_group = iommu_group_get(&pdev->dev);
|
|
if (!iommu_group)
|
|
return -EPERM; /* Cannot reset non-isolated devices */
|
|
|
|
info->group_id = iommu_group_id(iommu_group);
|
|
iommu_group_put(iommu_group);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vfio_pci_group_info {
|
|
int count;
|
|
struct file **files;
|
|
};
|
|
|
|
static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
|
|
{
|
|
for (; pdev; pdev = pdev->bus->self)
|
|
if (pdev->bus == slot->bus)
|
|
return (pdev->slot == slot);
|
|
return false;
|
|
}
|
|
|
|
struct vfio_pci_walk_info {
|
|
int (*fn)(struct pci_dev *pdev, void *data);
|
|
void *data;
|
|
struct pci_dev *pdev;
|
|
bool slot;
|
|
int ret;
|
|
};
|
|
|
|
static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_pci_walk_info *walk = data;
|
|
|
|
if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
|
|
walk->ret = walk->fn(pdev, walk->data);
|
|
|
|
return walk->ret;
|
|
}
|
|
|
|
static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
|
|
int (*fn)(struct pci_dev *,
|
|
void *data), void *data,
|
|
bool slot)
|
|
{
|
|
struct vfio_pci_walk_info walk = {
|
|
.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
|
|
};
|
|
|
|
pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
|
|
|
|
return walk.ret;
|
|
}
|
|
|
|
static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
|
|
struct vfio_info_cap *caps)
|
|
{
|
|
struct vfio_info_cap_header header = {
|
|
.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
|
|
.version = 1
|
|
};
|
|
|
|
return vfio_info_add_capability(caps, &header, sizeof(header));
|
|
}
|
|
|
|
int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
|
|
unsigned int type, unsigned int subtype,
|
|
const struct vfio_pci_regops *ops,
|
|
size_t size, u32 flags, void *data)
|
|
{
|
|
struct vfio_pci_region *region;
|
|
|
|
region = krealloc(vdev->region,
|
|
(vdev->num_regions + 1) * sizeof(*region),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
|
|
vdev->region = region;
|
|
vdev->region[vdev->num_regions].type = type;
|
|
vdev->region[vdev->num_regions].subtype = subtype;
|
|
vdev->region[vdev->num_regions].ops = ops;
|
|
vdev->region[vdev->num_regions].size = size;
|
|
vdev->region[vdev->num_regions].flags = flags;
|
|
vdev->region[vdev->num_regions].data = data;
|
|
|
|
vdev->num_regions++;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
|
|
|
|
static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
|
|
struct vfio_info_cap *caps)
|
|
{
|
|
struct vfio_device_info_cap_pci_atomic_comp cap = {
|
|
.header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
|
|
.header.version = 1
|
|
};
|
|
struct pci_dev *pdev = pci_physfn(vdev->pdev);
|
|
u32 devcap2;
|
|
|
|
pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
|
|
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP32;
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
|
|
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP64;
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
|
|
!pci_enable_atomic_ops_to_root(pdev,
|
|
PCI_EXP_DEVCAP2_ATOMIC_COMP128))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP128;
|
|
|
|
if (!cap.flags)
|
|
return -ENODEV;
|
|
|
|
return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_device_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
|
|
struct vfio_device_info info = {};
|
|
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
|
|
int ret;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
minsz = min_t(size_t, info.argsz, sizeof(info));
|
|
|
|
info.flags = VFIO_DEVICE_FLAGS_PCI;
|
|
|
|
if (vdev->reset_works)
|
|
info.flags |= VFIO_DEVICE_FLAGS_RESET;
|
|
|
|
info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
|
|
info.num_irqs = VFIO_PCI_NUM_IRQS;
|
|
|
|
ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
|
|
if (ret && ret != -ENODEV) {
|
|
pci_warn(vdev->pdev,
|
|
"Failed to setup zPCI info capabilities\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = vfio_pci_info_atomic_cap(vdev, &caps);
|
|
if (ret && ret != -ENODEV) {
|
|
pci_warn(vdev->pdev,
|
|
"Failed to setup AtomicOps info capability\n");
|
|
return ret;
|
|
}
|
|
|
|
if (caps.size) {
|
|
info.flags |= VFIO_DEVICE_FLAGS_CAPS;
|
|
if (info.argsz < sizeof(info) + caps.size) {
|
|
info.argsz = sizeof(info) + caps.size;
|
|
} else {
|
|
vfio_info_cap_shift(&caps, sizeof(info));
|
|
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
|
|
kfree(caps.buf);
|
|
return -EFAULT;
|
|
}
|
|
info.cap_offset = sizeof(*arg);
|
|
}
|
|
|
|
kfree(caps.buf);
|
|
}
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_region_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_region_info, offset);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_region_info info;
|
|
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
|
|
int i, ret;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
switch (info.index) {
|
|
case VFIO_PCI_CONFIG_REGION_INDEX:
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = pdev->cfg_size;
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
break;
|
|
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = pci_resource_len(pdev, info.index);
|
|
if (!info.size) {
|
|
info.flags = 0;
|
|
break;
|
|
}
|
|
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
if (vdev->bar_mmap_supported[info.index]) {
|
|
info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
|
|
if (info.index == vdev->msix_bar) {
|
|
ret = msix_mmappable_cap(vdev, &caps);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
break;
|
|
case VFIO_PCI_ROM_REGION_INDEX: {
|
|
void __iomem *io;
|
|
size_t size;
|
|
u16 cmd;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.flags = 0;
|
|
|
|
/* Report the BAR size, not the ROM size */
|
|
info.size = pci_resource_len(pdev, info.index);
|
|
if (!info.size) {
|
|
/* Shadow ROMs appear as PCI option ROMs */
|
|
if (pdev->resource[PCI_ROM_RESOURCE].flags &
|
|
IORESOURCE_ROM_SHADOW)
|
|
info.size = 0x20000;
|
|
else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Is it really there? Enable memory decode for implicit access
|
|
* in pci_map_rom().
|
|
*/
|
|
cmd = vfio_pci_memory_lock_and_enable(vdev);
|
|
io = pci_map_rom(pdev, &size);
|
|
if (io) {
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ;
|
|
pci_unmap_rom(pdev, io);
|
|
} else {
|
|
info.size = 0;
|
|
}
|
|
vfio_pci_memory_unlock_and_restore(vdev, cmd);
|
|
|
|
break;
|
|
}
|
|
case VFIO_PCI_VGA_REGION_INDEX:
|
|
if (!vdev->has_vga)
|
|
return -EINVAL;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = 0xc0000;
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
|
|
break;
|
|
default: {
|
|
struct vfio_region_info_cap_type cap_type = {
|
|
.header.id = VFIO_REGION_INFO_CAP_TYPE,
|
|
.header.version = 1
|
|
};
|
|
|
|
if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
info.index = array_index_nospec(
|
|
info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
|
|
|
|
i = info.index - VFIO_PCI_NUM_REGIONS;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = vdev->region[i].size;
|
|
info.flags = vdev->region[i].flags;
|
|
|
|
cap_type.type = vdev->region[i].type;
|
|
cap_type.subtype = vdev->region[i].subtype;
|
|
|
|
ret = vfio_info_add_capability(&caps, &cap_type.header,
|
|
sizeof(cap_type));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vdev->region[i].ops->add_capability) {
|
|
ret = vdev->region[i].ops->add_capability(
|
|
vdev, &vdev->region[i], &caps);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (caps.size) {
|
|
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
|
|
if (info.argsz < sizeof(info) + caps.size) {
|
|
info.argsz = sizeof(info) + caps.size;
|
|
info.cap_offset = 0;
|
|
} else {
|
|
vfio_info_cap_shift(&caps, sizeof(info));
|
|
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
|
|
kfree(caps.buf);
|
|
return -EFAULT;
|
|
}
|
|
info.cap_offset = sizeof(*arg);
|
|
}
|
|
|
|
kfree(caps.buf);
|
|
}
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_irq_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_irq_info, count);
|
|
struct vfio_irq_info info;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
|
|
return -EINVAL;
|
|
|
|
switch (info.index) {
|
|
case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
|
|
case VFIO_PCI_REQ_IRQ_INDEX:
|
|
break;
|
|
case VFIO_PCI_ERR_IRQ_INDEX:
|
|
if (pci_is_pcie(vdev->pdev))
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
info.flags = VFIO_IRQ_INFO_EVENTFD;
|
|
|
|
info.count = vfio_pci_get_irq_count(vdev, info.index);
|
|
|
|
if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
|
|
info.flags |=
|
|
(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
|
|
else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
|
|
info.flags |= VFIO_IRQ_INFO_NORESIZE;
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
|
|
struct vfio_irq_set __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_irq_set, count);
|
|
struct vfio_irq_set hdr;
|
|
u8 *data = NULL;
|
|
int max, ret = 0;
|
|
size_t data_size = 0;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
max = vfio_pci_get_irq_count(vdev, hdr.index);
|
|
|
|
ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
|
|
&data_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (data_size) {
|
|
data = memdup_user(&arg->data, data_size);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
}
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
|
|
hdr.count, data);
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
kfree(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
|
|
void __user *arg)
|
|
{
|
|
int ret;
|
|
|
|
if (!vdev->reset_works)
|
|
return -EINVAL;
|
|
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
|
|
/*
|
|
* This function can be invoked while the power state is non-D0. If
|
|
* pci_try_reset_function() has been called while the power state is
|
|
* non-D0, then pci_try_reset_function() will internally set the power
|
|
* state to D0 without vfio driver involvement. For the devices which
|
|
* have NoSoftRst-, the reset function can cause the PCI config space
|
|
* reset without restoring the original state (saved locally in
|
|
* 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
ret = pci_try_reset_function(vdev->pdev);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_pci_hot_reset_info(
|
|
struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_hot_reset_info __user *arg)
|
|
{
|
|
unsigned long minsz =
|
|
offsetofend(struct vfio_pci_hot_reset_info, count);
|
|
struct vfio_pci_dependent_device *devices = NULL;
|
|
struct vfio_pci_hot_reset_info hdr;
|
|
struct vfio_pci_fill_info fill = {};
|
|
bool slot = false;
|
|
int ret, count = 0;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (hdr.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
hdr.flags = 0;
|
|
|
|
/* Can we do a slot or bus reset or neither? */
|
|
if (!pci_probe_reset_slot(vdev->pdev->slot))
|
|
slot = true;
|
|
else if (pci_probe_reset_bus(vdev->pdev->bus))
|
|
return -ENODEV;
|
|
|
|
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
|
|
&count, slot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (WARN_ON(!count)) /* Should always be at least one */
|
|
return -ERANGE;
|
|
|
|
if (count > (hdr.argsz - sizeof(hdr)) / sizeof(*devices)) {
|
|
hdr.count = count;
|
|
ret = -ENOSPC;
|
|
goto header;
|
|
}
|
|
|
|
devices = kcalloc(count, sizeof(*devices), GFP_KERNEL);
|
|
if (!devices)
|
|
return -ENOMEM;
|
|
|
|
fill.devices = devices;
|
|
fill.nr_devices = count;
|
|
fill.vdev = &vdev->vdev;
|
|
|
|
if (vfio_device_cdev_opened(&vdev->vdev))
|
|
fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
|
|
VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
|
|
|
|
mutex_lock(&vdev->vdev.dev_set->lock);
|
|
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
|
|
&fill, slot);
|
|
mutex_unlock(&vdev->vdev.dev_set->lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (copy_to_user(arg->devices, devices,
|
|
sizeof(*devices) * fill.count)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
hdr.count = fill.count;
|
|
hdr.flags = fill.flags;
|
|
|
|
header:
|
|
if (copy_to_user(arg, &hdr, minsz))
|
|
ret = -EFAULT;
|
|
out:
|
|
kfree(devices);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
|
|
int array_count, bool slot,
|
|
struct vfio_pci_hot_reset __user *arg)
|
|
{
|
|
int32_t *group_fds;
|
|
struct file **files;
|
|
struct vfio_pci_group_info info;
|
|
int file_idx, count = 0, ret = 0;
|
|
|
|
/*
|
|
* We can't let userspace give us an arbitrarily large buffer to copy,
|
|
* so verify how many we think there could be. Note groups can have
|
|
* multiple devices so one group per device is the max.
|
|
*/
|
|
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
|
|
&count, slot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (array_count > count)
|
|
return -EINVAL;
|
|
|
|
group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
|
|
files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
|
|
if (!group_fds || !files) {
|
|
kfree(group_fds);
|
|
kfree(files);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (copy_from_user(group_fds, arg->group_fds,
|
|
array_count * sizeof(*group_fds))) {
|
|
kfree(group_fds);
|
|
kfree(files);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Get the group file for each fd to ensure the group is held across
|
|
* the reset
|
|
*/
|
|
for (file_idx = 0; file_idx < array_count; file_idx++) {
|
|
struct file *file = fget(group_fds[file_idx]);
|
|
|
|
if (!file) {
|
|
ret = -EBADF;
|
|
break;
|
|
}
|
|
|
|
/* Ensure the FD is a vfio group FD.*/
|
|
if (!vfio_file_is_group(file)) {
|
|
fput(file);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
files[file_idx] = file;
|
|
}
|
|
|
|
kfree(group_fds);
|
|
|
|
/* release reference to groups on error */
|
|
if (ret)
|
|
goto hot_reset_release;
|
|
|
|
info.count = array_count;
|
|
info.files = files;
|
|
|
|
ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
|
|
|
|
hot_reset_release:
|
|
for (file_idx--; file_idx >= 0; file_idx--)
|
|
fput(files[file_idx]);
|
|
|
|
kfree(files);
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_hot_reset __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
|
|
struct vfio_pci_hot_reset hdr;
|
|
bool slot = false;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (hdr.argsz < minsz || hdr.flags)
|
|
return -EINVAL;
|
|
|
|
/* zero-length array is only for cdev opened devices */
|
|
if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
|
|
return -EINVAL;
|
|
|
|
/* Can we do a slot or bus reset or neither? */
|
|
if (!pci_probe_reset_slot(vdev->pdev->slot))
|
|
slot = true;
|
|
else if (pci_probe_reset_bus(vdev->pdev->bus))
|
|
return -ENODEV;
|
|
|
|
if (hdr.count)
|
|
return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
|
|
|
|
return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
|
|
vfio_iommufd_device_ictx(&vdev->vdev));
|
|
}
|
|
|
|
static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
|
|
struct vfio_device_ioeventfd __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
|
|
struct vfio_device_ioeventfd ioeventfd;
|
|
int count;
|
|
|
|
if (copy_from_user(&ioeventfd, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (ioeventfd.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
|
|
return -EINVAL;
|
|
|
|
count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
|
|
|
|
if (hweight8(count) != 1 || ioeventfd.fd < -1)
|
|
return -EINVAL;
|
|
|
|
return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
|
|
ioeventfd.fd);
|
|
}
|
|
|
|
long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
void __user *uarg = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case VFIO_DEVICE_GET_INFO:
|
|
return vfio_pci_ioctl_get_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_IRQ_INFO:
|
|
return vfio_pci_ioctl_get_irq_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
|
|
return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_REGION_INFO:
|
|
return vfio_pci_ioctl_get_region_info(vdev, uarg);
|
|
case VFIO_DEVICE_IOEVENTFD:
|
|
return vfio_pci_ioctl_ioeventfd(vdev, uarg);
|
|
case VFIO_DEVICE_PCI_HOT_RESET:
|
|
return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
|
|
case VFIO_DEVICE_RESET:
|
|
return vfio_pci_ioctl_reset(vdev, uarg);
|
|
case VFIO_DEVICE_SET_IRQS:
|
|
return vfio_pci_ioctl_set_irqs(vdev, uarg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
|
|
|
|
static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
|
|
uuid_t __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
uuid_t uuid;
|
|
int ret;
|
|
|
|
if (!vdev->vf_token)
|
|
return -ENOTTY;
|
|
/*
|
|
* We do not support GET of the VF Token UUID as this could
|
|
* expose the token of the previous device user.
|
|
*/
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
|
|
sizeof(uuid));
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
if (copy_from_user(&uuid, arg, sizeof(uuid)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&vdev->vf_token->lock);
|
|
uuid_copy(&vdev->vf_token->uuid, &uuid);
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
return 0;
|
|
}
|
|
|
|
int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
switch (flags & VFIO_DEVICE_FEATURE_MASK) {
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
|
|
return vfio_pci_core_pm_entry(device, flags, arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
|
|
return vfio_pci_core_pm_entry_with_wakeup(device, flags,
|
|
arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
|
|
return vfio_pci_core_pm_exit(device, flags, arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
|
|
return vfio_pci_core_feature_token(device, flags, arg, argsz);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
|
|
|
|
static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
|
|
size_t count, loff_t *ppos, bool iswrite)
|
|
{
|
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
|
int ret;
|
|
|
|
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
|
|
ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
|
|
if (ret) {
|
|
pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
|
|
ret);
|
|
return -EIO;
|
|
}
|
|
|
|
switch (index) {
|
|
case VFIO_PCI_CONFIG_REGION_INDEX:
|
|
ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
case VFIO_PCI_ROM_REGION_INDEX:
|
|
if (iswrite)
|
|
ret = -EINVAL;
|
|
else
|
|
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
|
|
break;
|
|
|
|
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
|
|
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
case VFIO_PCI_VGA_REGION_INDEX:
|
|
ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
default:
|
|
index -= VFIO_PCI_NUM_REGIONS;
|
|
ret = vdev->region[index].ops->rw(vdev, buf,
|
|
count, ppos, iswrite);
|
|
break;
|
|
}
|
|
|
|
pm_runtime_put(&vdev->pdev->dev);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
return vfio_pci_rw(vdev, buf, count, ppos, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_read);
|
|
|
|
ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_write);
|
|
|
|
static void vfio_pci_zap_bars(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct vfio_device *core_vdev = &vdev->vdev;
|
|
loff_t start = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_BAR0_REGION_INDEX);
|
|
loff_t end = VFIO_PCI_INDEX_TO_OFFSET(VFIO_PCI_ROM_REGION_INDEX);
|
|
loff_t len = end - start;
|
|
|
|
unmap_mapping_range(core_vdev->inode->i_mapping, start, len, true);
|
|
}
|
|
|
|
void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
|
|
{
|
|
down_write(&vdev->memory_lock);
|
|
vfio_pci_zap_bars(vdev);
|
|
}
|
|
|
|
u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
u16 cmd;
|
|
|
|
down_write(&vdev->memory_lock);
|
|
pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
|
|
if (!(cmd & PCI_COMMAND_MEMORY))
|
|
pci_write_config_word(vdev->pdev, PCI_COMMAND,
|
|
cmd | PCI_COMMAND_MEMORY);
|
|
|
|
return cmd;
|
|
}
|
|
|
|
void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
|
|
{
|
|
pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
|
|
static unsigned long vma_to_pfn(struct vm_area_struct *vma)
|
|
{
|
|
struct vfio_pci_core_device *vdev = vma->vm_private_data;
|
|
int index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
|
|
u64 pgoff;
|
|
|
|
pgoff = vma->vm_pgoff &
|
|
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
|
|
|
|
return (pci_resource_start(vdev->pdev, index) >> PAGE_SHIFT) + pgoff;
|
|
}
|
|
|
|
static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct vfio_pci_core_device *vdev = vma->vm_private_data;
|
|
unsigned long pfn, pgoff = vmf->pgoff - vma->vm_pgoff;
|
|
unsigned long addr = vma->vm_start;
|
|
vm_fault_t ret = VM_FAULT_SIGBUS;
|
|
|
|
pfn = vma_to_pfn(vma);
|
|
|
|
down_read(&vdev->memory_lock);
|
|
|
|
if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev))
|
|
goto out_unlock;
|
|
|
|
ret = vmf_insert_pfn(vma, vmf->address, pfn + pgoff);
|
|
if (ret & VM_FAULT_ERROR)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Pre-fault the remainder of the vma, abort further insertions and
|
|
* supress error if fault is encountered during pre-fault.
|
|
*/
|
|
for (; addr < vma->vm_end; addr += PAGE_SIZE, pfn++) {
|
|
if (addr == vmf->address)
|
|
continue;
|
|
|
|
if (vmf_insert_pfn(vma, addr, pfn) & VM_FAULT_ERROR)
|
|
break;
|
|
}
|
|
|
|
out_unlock:
|
|
up_read(&vdev->memory_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct vfio_pci_mmap_ops = {
|
|
.fault = vfio_pci_mmap_fault,
|
|
};
|
|
|
|
int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
unsigned int index;
|
|
u64 phys_len, req_len, pgoff, req_start;
|
|
int ret;
|
|
|
|
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
|
|
|
|
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
if (vma->vm_end < vma->vm_start)
|
|
return -EINVAL;
|
|
if ((vma->vm_flags & VM_SHARED) == 0)
|
|
return -EINVAL;
|
|
if (index >= VFIO_PCI_NUM_REGIONS) {
|
|
int regnum = index - VFIO_PCI_NUM_REGIONS;
|
|
struct vfio_pci_region *region = vdev->region + regnum;
|
|
|
|
if (region->ops && region->ops->mmap &&
|
|
(region->flags & VFIO_REGION_INFO_FLAG_MMAP))
|
|
return region->ops->mmap(vdev, region, vma);
|
|
return -EINVAL;
|
|
}
|
|
if (index >= VFIO_PCI_ROM_REGION_INDEX)
|
|
return -EINVAL;
|
|
if (!vdev->bar_mmap_supported[index])
|
|
return -EINVAL;
|
|
|
|
phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
|
|
req_len = vma->vm_end - vma->vm_start;
|
|
pgoff = vma->vm_pgoff &
|
|
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
|
|
req_start = pgoff << PAGE_SHIFT;
|
|
|
|
if (req_start + req_len > phys_len)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Even though we don't make use of the barmap for the mmap,
|
|
* we need to request the region and the barmap tracks that.
|
|
*/
|
|
if (!vdev->barmap[index]) {
|
|
ret = pci_request_selected_regions(pdev,
|
|
1 << index, "vfio-pci");
|
|
if (ret)
|
|
return ret;
|
|
|
|
vdev->barmap[index] = pci_iomap(pdev, index, 0);
|
|
if (!vdev->barmap[index]) {
|
|
pci_release_selected_regions(pdev, 1 << index);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
vma->vm_private_data = vdev;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
|
|
|
|
/*
|
|
* Set vm_flags now, they should not be changed in the fault handler.
|
|
* We want the same flags and page protection (decrypted above) as
|
|
* io_remap_pfn_range() would set.
|
|
*
|
|
* VM_ALLOW_ANY_UNCACHED: The VMA flag is implemented for ARM64,
|
|
* allowing KVM stage 2 device mapping attributes to use Normal-NC
|
|
* rather than DEVICE_nGnRE, which allows guest mappings
|
|
* supporting write-combining attributes (WC). ARM does not
|
|
* architecturally guarantee this is safe, and indeed some MMIO
|
|
* regions like the GICv2 VCPU interface can trigger uncontained
|
|
* faults if Normal-NC is used.
|
|
*
|
|
* To safely use VFIO in KVM the platform must guarantee full
|
|
* safety in the guest where no action taken against a MMIO
|
|
* mapping can trigger an uncontained failure. The assumption is
|
|
* that most VFIO PCI platforms support this for both mapping types,
|
|
* at least in common flows, based on some expectations of how
|
|
* PCI IP is integrated. Hence VM_ALLOW_ANY_UNCACHED is set in
|
|
* the VMA flags.
|
|
*/
|
|
vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED | VM_IO | VM_PFNMAP |
|
|
VM_DONTEXPAND | VM_DONTDUMP);
|
|
vma->vm_ops = &vfio_pci_mmap_ops;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
|
|
|
|
void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
if (vdev->req_trigger) {
|
|
if (!(count % 10))
|
|
pci_notice_ratelimited(pdev,
|
|
"Relaying device request to user (#%u)\n",
|
|
count);
|
|
eventfd_signal(vdev->req_trigger);
|
|
} else if (count == 0) {
|
|
pci_warn(pdev,
|
|
"No device request channel registered, blocked until released by user\n");
|
|
}
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_request);
|
|
|
|
static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
|
|
bool vf_token, uuid_t *uuid)
|
|
{
|
|
/*
|
|
* There's always some degree of trust or collaboration between SR-IOV
|
|
* PF and VFs, even if just that the PF hosts the SR-IOV capability and
|
|
* can disrupt VFs with a reset, but often the PF has more explicit
|
|
* access to deny service to the VF or access data passed through the
|
|
* VF. We therefore require an opt-in via a shared VF token (UUID) to
|
|
* represent this trust. This both prevents that a VF driver might
|
|
* assume the PF driver is a trusted, in-kernel driver, and also that
|
|
* a PF driver might be replaced with a rogue driver, unknown to in-use
|
|
* VF drivers.
|
|
*
|
|
* Therefore when presented with a VF, if the PF is a vfio device and
|
|
* it is bound to the vfio-pci driver, the user needs to provide a VF
|
|
* token to access the device, in the form of appending a vf_token to
|
|
* the device name, for example:
|
|
*
|
|
* "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
|
|
*
|
|
* When presented with a PF which has VFs in use, the user must also
|
|
* provide the current VF token to prove collaboration with existing
|
|
* VF users. If VFs are not in use, the VF token provided for the PF
|
|
* device will act to set the VF token.
|
|
*
|
|
* If the VF token is provided but unused, an error is generated.
|
|
*/
|
|
if (vdev->pdev->is_virtfn) {
|
|
struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
|
|
bool match;
|
|
|
|
if (!pf_vdev) {
|
|
if (!vf_token)
|
|
return 0; /* PF is not vfio-pci, no VF token */
|
|
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token incorrectly provided, PF not bound to vfio-pci\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!vf_token) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token required to access device\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
mutex_lock(&pf_vdev->vf_token->lock);
|
|
match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
|
|
mutex_unlock(&pf_vdev->vf_token->lock);
|
|
|
|
if (!match) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"Incorrect VF token provided for device\n");
|
|
return -EACCES;
|
|
}
|
|
} else if (vdev->vf_token) {
|
|
mutex_lock(&vdev->vf_token->lock);
|
|
if (vdev->vf_token->users) {
|
|
if (!vf_token) {
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token required to access device\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"Incorrect VF token provided for device\n");
|
|
return -EACCES;
|
|
}
|
|
} else if (vf_token) {
|
|
uuid_copy(&vdev->vf_token->uuid, uuid);
|
|
}
|
|
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
} else if (vf_token) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token incorrectly provided, not a PF or VF\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define VF_TOKEN_ARG "vf_token="
|
|
|
|
int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
bool vf_token = false;
|
|
uuid_t uuid;
|
|
int ret;
|
|
|
|
if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
|
|
return 0; /* No match */
|
|
|
|
if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
|
|
buf += strlen(pci_name(vdev->pdev));
|
|
|
|
if (*buf != ' ')
|
|
return 0; /* No match: non-whitespace after name */
|
|
|
|
while (*buf) {
|
|
if (*buf == ' ') {
|
|
buf++;
|
|
continue;
|
|
}
|
|
|
|
if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
|
|
strlen(VF_TOKEN_ARG))) {
|
|
buf += strlen(VF_TOKEN_ARG);
|
|
|
|
if (strlen(buf) < UUID_STRING_LEN)
|
|
return -EINVAL;
|
|
|
|
ret = uuid_parse(buf, &uuid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vf_token = true;
|
|
buf += UUID_STRING_LEN;
|
|
} else {
|
|
/* Unknown/duplicate option */
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 1; /* Match */
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_match);
|
|
|
|
static int vfio_pci_bus_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct vfio_pci_core_device *vdev = container_of(nb,
|
|
struct vfio_pci_core_device, nb);
|
|
struct device *dev = data;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pci_dev *physfn = pci_physfn(pdev);
|
|
|
|
if (action == BUS_NOTIFY_ADD_DEVICE &&
|
|
pdev->is_virtfn && physfn == vdev->pdev) {
|
|
pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
|
|
pci_name(pdev));
|
|
pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
|
|
vdev->vdev.ops->name);
|
|
WARN_ON(!pdev->driver_override);
|
|
} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
|
|
pdev->is_virtfn && physfn == vdev->pdev) {
|
|
struct pci_driver *drv = pci_dev_driver(pdev);
|
|
|
|
if (drv && drv != pci_dev_driver(vdev->pdev))
|
|
pci_warn(vdev->pdev,
|
|
"VF %s bound to driver %s while PF bound to driver %s\n",
|
|
pci_name(pdev), drv->name,
|
|
pci_dev_driver(vdev->pdev)->name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_pci_core_device *cur;
|
|
struct pci_dev *physfn;
|
|
int ret;
|
|
|
|
if (pdev->is_virtfn) {
|
|
/*
|
|
* If this VF was created by our vfio_pci_core_sriov_configure()
|
|
* then we can find the PF vfio_pci_core_device now, and due to
|
|
* the locking in pci_disable_sriov() it cannot change until
|
|
* this VF device driver is removed.
|
|
*/
|
|
physfn = pci_physfn(vdev->pdev);
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
|
|
if (cur->pdev == physfn) {
|
|
vdev->sriov_pf_core_dev = cur;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* Not a SRIOV PF */
|
|
if (!pdev->is_physfn)
|
|
return 0;
|
|
|
|
vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
|
|
if (!vdev->vf_token)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&vdev->vf_token->lock);
|
|
uuid_gen(&vdev->vf_token->uuid);
|
|
|
|
vdev->nb.notifier_call = vfio_pci_bus_notifier;
|
|
ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
|
|
if (ret) {
|
|
kfree(vdev->vf_token);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
if (!vdev->vf_token)
|
|
return;
|
|
|
|
bus_unregister_notifier(&pci_bus_type, &vdev->nb);
|
|
WARN_ON(vdev->vf_token->users);
|
|
mutex_destroy(&vdev->vf_token->lock);
|
|
kfree(vdev->vf_token);
|
|
}
|
|
|
|
static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret;
|
|
|
|
if (!vfio_pci_is_vga(pdev))
|
|
return 0;
|
|
|
|
ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vga_client_register(pdev, vfio_pci_set_decode);
|
|
if (ret)
|
|
return ret;
|
|
vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
|
|
return 0;
|
|
}
|
|
|
|
static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
|
|
if (!vfio_pci_is_vga(pdev))
|
|
return;
|
|
vga_client_unregister(pdev);
|
|
vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
|
|
VGA_RSRC_LEGACY_IO |
|
|
VGA_RSRC_LEGACY_MEM);
|
|
}
|
|
|
|
int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
vdev->pdev = to_pci_dev(core_vdev->dev);
|
|
vdev->irq_type = VFIO_PCI_NUM_IRQS;
|
|
mutex_init(&vdev->igate);
|
|
spin_lock_init(&vdev->irqlock);
|
|
mutex_init(&vdev->ioeventfds_lock);
|
|
INIT_LIST_HEAD(&vdev->dummy_resources_list);
|
|
INIT_LIST_HEAD(&vdev->ioeventfds_list);
|
|
INIT_LIST_HEAD(&vdev->sriov_pfs_item);
|
|
init_rwsem(&vdev->memory_lock);
|
|
xa_init(&vdev->ctx);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
|
|
|
|
void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
mutex_destroy(&vdev->igate);
|
|
mutex_destroy(&vdev->ioeventfds_lock);
|
|
kfree(vdev->region);
|
|
kfree(vdev->pm_save);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
|
|
|
|
int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int ret;
|
|
|
|
/* Drivers must set the vfio_pci_core_device to their drvdata */
|
|
if (WARN_ON(vdev != dev_get_drvdata(dev)))
|
|
return -EINVAL;
|
|
|
|
if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return -EINVAL;
|
|
|
|
if (vdev->vdev.mig_ops) {
|
|
if (!(vdev->vdev.mig_ops->migration_get_state &&
|
|
vdev->vdev.mig_ops->migration_set_state &&
|
|
vdev->vdev.mig_ops->migration_get_data_size) ||
|
|
!(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
|
|
vdev->vdev.log_ops->log_stop &&
|
|
vdev->vdev.log_ops->log_read_and_clear))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Prevent binding to PFs with VFs enabled, the VFs might be in use
|
|
* by the host or other users. We cannot capture the VFs if they
|
|
* already exist, nor can we track VF users. Disabling SR-IOV here
|
|
* would initiate removing the VFs, which would unbind the driver,
|
|
* which is prone to blocking if that VF is also in use by vfio-pci.
|
|
* Just reject these PFs and let the user sort it out.
|
|
*/
|
|
if (pci_num_vf(pdev)) {
|
|
pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (pci_is_root_bus(pdev->bus)) {
|
|
ret = vfio_assign_device_set(&vdev->vdev, vdev);
|
|
} else if (!pci_probe_reset_slot(pdev->slot)) {
|
|
ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
|
|
} else {
|
|
/*
|
|
* If there is no slot reset support for this device, the whole
|
|
* bus needs to be grouped together to support bus-wide resets.
|
|
*/
|
|
ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
ret = vfio_pci_vf_init(vdev);
|
|
if (ret)
|
|
return ret;
|
|
ret = vfio_pci_vga_init(vdev);
|
|
if (ret)
|
|
goto out_vf;
|
|
|
|
vfio_pci_probe_power_state(vdev);
|
|
|
|
/*
|
|
* pci-core sets the device power state to an unknown value at
|
|
* bootup and after being removed from a driver. The only
|
|
* transition it allows from this unknown state is to D0, which
|
|
* typically happens when a driver calls pci_enable_device().
|
|
* We're not ready to enable the device yet, but we do want to
|
|
* be able to get to D3. Therefore first do a D0 transition
|
|
* before enabling runtime PM.
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
dev->driver->pm = &vfio_pci_core_pm_ops;
|
|
pm_runtime_allow(dev);
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(dev);
|
|
|
|
ret = vfio_register_group_dev(&vdev->vdev);
|
|
if (ret)
|
|
goto out_power;
|
|
return 0;
|
|
|
|
out_power:
|
|
if (!disable_idle_d3)
|
|
pm_runtime_get_noresume(dev);
|
|
|
|
pm_runtime_forbid(dev);
|
|
out_vf:
|
|
vfio_pci_vf_uninit(vdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
|
|
|
|
void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
|
|
{
|
|
vfio_pci_core_sriov_configure(vdev, 0);
|
|
|
|
vfio_unregister_group_dev(&vdev->vdev);
|
|
|
|
vfio_pci_vf_uninit(vdev);
|
|
vfio_pci_vga_uninit(vdev);
|
|
|
|
if (!disable_idle_d3)
|
|
pm_runtime_get_noresume(&vdev->pdev->dev);
|
|
|
|
pm_runtime_forbid(&vdev->pdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
|
|
|
|
pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
if (vdev->err_trigger)
|
|
eventfd_signal(vdev->err_trigger);
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
|
|
return PCI_ERS_RESULT_CAN_RECOVER;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
|
|
|
|
int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
|
|
int nr_virtfn)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret = 0;
|
|
|
|
device_lock_assert(&pdev->dev);
|
|
|
|
if (nr_virtfn) {
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
/*
|
|
* The thread that adds the vdev to the list is the only thread
|
|
* that gets to call pci_enable_sriov() and we will only allow
|
|
* it to be called once without going through
|
|
* pci_disable_sriov()
|
|
*/
|
|
if (!list_empty(&vdev->sriov_pfs_item)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
|
|
/*
|
|
* The PF power state should always be higher than the VF power
|
|
* state. The PF can be in low power state either with runtime
|
|
* power management (when there is no user) or PCI_PM_CTRL
|
|
* register write by the user. If PF is in the low power state,
|
|
* then change the power state to D0 first before enabling
|
|
* SR-IOV. Also, this function can be called at any time, and
|
|
* userspace PCI_PM_CTRL write can race against this code path,
|
|
* so protect the same with 'memory_lock'.
|
|
*/
|
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
|
if (ret)
|
|
goto out_del;
|
|
|
|
down_write(&vdev->memory_lock);
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
ret = pci_enable_sriov(pdev, nr_virtfn);
|
|
up_write(&vdev->memory_lock);
|
|
if (ret) {
|
|
pm_runtime_put(&pdev->dev);
|
|
goto out_del;
|
|
}
|
|
return nr_virtfn;
|
|
}
|
|
|
|
if (pci_num_vf(pdev)) {
|
|
pci_disable_sriov(pdev);
|
|
pm_runtime_put(&pdev->dev);
|
|
}
|
|
|
|
out_del:
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
list_del_init(&vdev->sriov_pfs_item);
|
|
out_unlock:
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
|
|
|
|
const struct pci_error_handlers vfio_pci_core_err_handlers = {
|
|
.error_detected = vfio_pci_core_aer_err_detected,
|
|
};
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
|
|
|
|
static bool vfio_dev_in_groups(struct vfio_device *vdev,
|
|
struct vfio_pci_group_info *groups)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!groups)
|
|
return false;
|
|
|
|
for (i = 0; i < groups->count; i++)
|
|
if (vfio_file_has_dev(groups->files[i], vdev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_device_set *dev_set = data;
|
|
|
|
return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* vfio-core considers a group to be viable and will create a vfio_device even
|
|
* if some devices are bound to drivers like pci-stub or pcieport. Here we
|
|
* require all PCI devices to be inside our dev_set since that ensures they stay
|
|
* put and that every driver controlling the device can co-ordinate with the
|
|
* device reset.
|
|
*
|
|
* Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
|
|
* reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
|
|
*/
|
|
static struct pci_dev *
|
|
vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
lockdep_assert_held(&dev_set->lock);
|
|
|
|
/*
|
|
* By definition all PCI devices in the dev_set share the same PCI
|
|
* reset, so any pci_dev will have the same outcomes for
|
|
* pci_probe_reset_*() and pci_reset_bus().
|
|
*/
|
|
pdev = list_first_entry(&dev_set->device_list,
|
|
struct vfio_pci_core_device,
|
|
vdev.dev_set_list)->pdev;
|
|
|
|
/* pci_reset_bus() is supported */
|
|
if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
|
|
return NULL;
|
|
|
|
if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
|
|
dev_set,
|
|
!pci_probe_reset_slot(pdev->slot)))
|
|
return NULL;
|
|
return pdev;
|
|
}
|
|
|
|
static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
int ret;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
|
|
ret = pm_runtime_resume_and_get(&cur->pdev->dev);
|
|
if (ret)
|
|
goto unwind;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unwind:
|
|
list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
|
|
vdev.dev_set_list)
|
|
pm_runtime_put(&cur->pdev->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
|
|
struct vfio_pci_group_info *groups,
|
|
struct iommufd_ctx *iommufd_ctx)
|
|
{
|
|
struct vfio_pci_core_device *vdev;
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
mutex_lock(&dev_set->lock);
|
|
|
|
pdev = vfio_pci_dev_set_resettable(dev_set);
|
|
if (!pdev) {
|
|
ret = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* Some of the devices in the dev_set can be in the runtime suspended
|
|
* state. Increment the usage count for all the devices in the dev_set
|
|
* before reset and decrement the same after reset.
|
|
*/
|
|
ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list) {
|
|
bool owned;
|
|
|
|
/*
|
|
* Test whether all the affected devices can be reset by the
|
|
* user.
|
|
*
|
|
* If called from a group opened device and the user provides
|
|
* a set of groups, all the devices in the dev_set should be
|
|
* contained by the set of groups provided by the user.
|
|
*
|
|
* If called from a cdev opened device and the user provides
|
|
* a zero-length array, all the devices in the dev_set must
|
|
* be bound to the same iommufd_ctx as the input iommufd_ctx.
|
|
* If there is any device that has not been bound to any
|
|
* iommufd_ctx yet, check if its iommu_group has any device
|
|
* bound to the input iommufd_ctx. Such devices can be
|
|
* considered owned by the input iommufd_ctx as the device
|
|
* cannot be owned by another iommufd_ctx when its iommu_group
|
|
* is owned.
|
|
*
|
|
* Otherwise, reset is not allowed.
|
|
*/
|
|
if (iommufd_ctx) {
|
|
int devid = vfio_iommufd_get_dev_id(&vdev->vdev,
|
|
iommufd_ctx);
|
|
|
|
owned = (devid > 0 || devid == -ENOENT);
|
|
} else {
|
|
owned = vfio_dev_in_groups(&vdev->vdev, groups);
|
|
}
|
|
|
|
if (!owned) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Take the memory write lock for each device and zap BAR
|
|
* mappings to prevent the user accessing the device while in
|
|
* reset. Locking multiple devices is prone to deadlock,
|
|
* runaway and unwind if we hit contention.
|
|
*/
|
|
if (!down_write_trylock(&vdev->memory_lock)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
vfio_pci_zap_bars(vdev);
|
|
}
|
|
|
|
if (!list_entry_is_head(vdev,
|
|
&dev_set->device_list, vdev.dev_set_list)) {
|
|
vdev = list_prev_entry(vdev, vdev.dev_set_list);
|
|
goto err_undo;
|
|
}
|
|
|
|
/*
|
|
* The pci_reset_bus() will reset all the devices in the bus.
|
|
* The power state can be non-D0 for some of the devices in the bus.
|
|
* For these devices, the pci_reset_bus() will internally set
|
|
* the power state to D0 without vfio driver involvement.
|
|
* For the devices which have NoSoftRst-, the reset function can
|
|
* cause the PCI config space reset without restoring the original
|
|
* state (saved locally in 'vdev->pm_save').
|
|
*/
|
|
list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list)
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
ret = pci_reset_bus(pdev);
|
|
|
|
vdev = list_last_entry(&dev_set->device_list,
|
|
struct vfio_pci_core_device, vdev.dev_set_list);
|
|
|
|
err_undo:
|
|
list_for_each_entry_from_reverse(vdev, &dev_set->device_list,
|
|
vdev.dev_set_list)
|
|
up_write(&vdev->memory_lock);
|
|
|
|
list_for_each_entry(vdev, &dev_set->device_list, vdev.dev_set_list)
|
|
pm_runtime_put(&vdev->pdev->dev);
|
|
|
|
err_unlock:
|
|
mutex_unlock(&dev_set->lock);
|
|
return ret;
|
|
}
|
|
|
|
static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
bool needs_reset = false;
|
|
|
|
/* No other VFIO device in the set can be open. */
|
|
if (vfio_device_set_open_count(dev_set) > 1)
|
|
return false;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
|
|
needs_reset |= cur->needs_reset;
|
|
return needs_reset;
|
|
}
|
|
|
|
/*
|
|
* If a bus or slot reset is available for the provided dev_set and:
|
|
* - All of the devices affected by that bus or slot reset are unused
|
|
* - At least one of the affected devices is marked dirty via
|
|
* needs_reset (such as by lack of FLR support)
|
|
* Then attempt to perform that bus or slot reset.
|
|
*/
|
|
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
struct pci_dev *pdev;
|
|
bool reset_done = false;
|
|
|
|
if (!vfio_pci_dev_set_needs_reset(dev_set))
|
|
return;
|
|
|
|
pdev = vfio_pci_dev_set_resettable(dev_set);
|
|
if (!pdev)
|
|
return;
|
|
|
|
/*
|
|
* Some of the devices in the bus can be in the runtime suspended
|
|
* state. Increment the usage count for all the devices in the dev_set
|
|
* before reset and decrement the same after reset.
|
|
*/
|
|
if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
|
|
return;
|
|
|
|
if (!pci_reset_bus(pdev))
|
|
reset_done = true;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
|
|
if (reset_done)
|
|
cur->needs_reset = false;
|
|
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&cur->pdev->dev);
|
|
}
|
|
}
|
|
|
|
void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
|
|
bool is_disable_idle_d3)
|
|
{
|
|
nointxmask = is_nointxmask;
|
|
disable_vga = is_disable_vga;
|
|
disable_idle_d3 = is_disable_idle_d3;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
|
|
|
|
static void vfio_pci_core_cleanup(void)
|
|
{
|
|
vfio_pci_uninit_perm_bits();
|
|
}
|
|
|
|
static int __init vfio_pci_core_init(void)
|
|
{
|
|
/* Allocate shared config space permission data used by all devices */
|
|
return vfio_pci_init_perm_bits();
|
|
}
|
|
|
|
module_init(vfio_pci_core_init);
|
|
module_exit(vfio_pci_core_cleanup);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR(DRIVER_AUTHOR);
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|