linux/drivers/cpuidle/cpuidle-pseries.c
Gautham R. Shenoy 50741b70b0 cpuidle: pseries: Fixup CEDE0 latency only for POWER10 onwards
Commit d947fb4c965c ("cpuidle: pseries: Fixup exit latency for
CEDE(0)") sets the exit latency of CEDE(0) based on the latency values
of the Extended CEDE states advertised by the platform

On POWER9 LPARs, the firmwares advertise a very low value of 2us for
CEDE1 exit latency on a Dedicated LPAR. The latency advertized by the
PHYP hypervisor corresponds to the latency required to wakeup from the
underlying hardware idle state. However the wakeup latency from the
LPAR perspective should include

1. The time taken to transition the CPU from the Hypervisor into the
   LPAR post wakeup from platform idle state

2. Time taken to send the IPI from the source CPU (waker) to the idle
   target CPU (wakee).

1. can be measured via timer idle test, where we queue a timer, say
for 1ms, and enter the CEDE state. When the timer fires, in the timer
handler we compute how much extra timer over the expected 1ms have we
consumed. On a a POWER9 LPAR the numbers are

CEDE latency measured using a timer (numbers in ns)
N       Min      Median   Avg       90%ile  99%ile    Max    Stddev
400     2601     5677     5668.74    5917    6413     9299   455.01

1. and 2. combined can be determined by an IPI latency test where we
send an IPI to an idle CPU and in the handler compute the time
difference between when the IPI was sent and when the handler ran. We
see the following numbers on POWER9 LPAR.

CEDE latency measured using an IPI (numbers in ns)
N       Min      Median   Avg       90%ile  99%ile    Max    Stddev
400     711      7564     7369.43   8559    9514      9698   1200.01

Suppose, we consider the 99th percentile latency value measured using
the IPI to be the wakeup latency, the value would be 9.5us This is in
the ballpark of the default value of 10us.

Hence, use the exit latency of CEDE(0) based on the latency values
advertized by platform only from POWER10 onwards. The values
advertized on POWER10 platforms is more realistic and informed by the
latency measurements. For earlier platforms stick to the default value
of 10us. The fix was suggested by Michael Ellerman.

Fixes: d947fb4c965c ("cpuidle: pseries: Fixup exit latency for CEDE(0)")
Reported-by: Enrico Joedecke <joedecke@de.ibm.com>
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1626676399-15975-2-git-send-email-ego@linux.vnet.ibm.com
2021-08-03 22:33:19 +10:00

479 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* cpuidle-pseries - idle state cpuidle driver.
* Adapted from drivers/idle/intel_idle.c and
* drivers/acpi/processor_idle.c
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/cpuidle.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <asm/paca.h>
#include <asm/reg.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/runlatch.h>
#include <asm/idle.h>
#include <asm/plpar_wrappers.h>
#include <asm/rtas.h>
static struct cpuidle_driver pseries_idle_driver = {
.name = "pseries_idle",
.owner = THIS_MODULE,
};
static int max_idle_state __read_mostly;
static struct cpuidle_state *cpuidle_state_table __read_mostly;
static u64 snooze_timeout __read_mostly;
static bool snooze_timeout_en __read_mostly;
static int snooze_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
u64 snooze_exit_time;
set_thread_flag(TIF_POLLING_NRFLAG);
pseries_idle_prolog();
local_irq_enable();
snooze_exit_time = get_tb() + snooze_timeout;
while (!need_resched()) {
HMT_low();
HMT_very_low();
if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
/*
* Task has not woken up but we are exiting the polling
* loop anyway. Require a barrier after polling is
* cleared to order subsequent test of need_resched().
*/
clear_thread_flag(TIF_POLLING_NRFLAG);
smp_mb();
break;
}
}
HMT_medium();
clear_thread_flag(TIF_POLLING_NRFLAG);
local_irq_disable();
pseries_idle_epilog();
return index;
}
static void check_and_cede_processor(void)
{
/*
* Ensure our interrupt state is properly tracked,
* also checks if no interrupt has occurred while we
* were soft-disabled
*/
if (prep_irq_for_idle()) {
cede_processor();
#ifdef CONFIG_TRACE_IRQFLAGS
/* Ensure that H_CEDE returns with IRQs on */
if (WARN_ON(!(mfmsr() & MSR_EE)))
__hard_irq_enable();
#endif
}
}
/*
* XCEDE: Extended CEDE states discovered through the
* "ibm,get-systems-parameter" RTAS call with the token
* CEDE_LATENCY_TOKEN
*/
/*
* Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a
* table with all the parameters to ibm,get-system-parameters.
* CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency
* Settings Information.
*/
#define CEDE_LATENCY_TOKEN 45
/*
* If the platform supports the cede latency settings information system
* parameter it must provide the following information in the NULL terminated
* parameter string:
*
* a. The first byte is the length “N” of each cede latency setting record minus
* one (zero indicates a length of 1 byte).
*
* b. For each supported cede latency setting a cede latency setting record
* consisting of the first “N” bytes as per the following table.
*
* -----------------------------
* | Field | Field |
* | Name | Length |
* -----------------------------
* | Cede Latency | 1 Byte |
* | Specifier Value | |
* -----------------------------
* | Maximum wakeup | |
* | latency in | 8 Bytes |
* | tb-ticks | |
* -----------------------------
* | Responsive to | |
* | external | 1 Byte |
* | interrupts | |
* -----------------------------
*
* This version has cede latency record size = 10.
*
* The structure xcede_latency_payload represents a) and b) with
* xcede_latency_record representing the table in b).
*
* xcede_latency_parameter is what gets returned by
* ibm,get-systems-parameter RTAS call when made with
* CEDE_LATENCY_TOKEN.
*
* These structures are only used to represent the data obtained by the RTAS
* call. The data is in big-endian.
*/
struct xcede_latency_record {
u8 hint;
__be64 latency_ticks;
u8 wake_on_irqs;
} __packed;
// Make space for 16 records, which "should be enough".
struct xcede_latency_payload {
u8 record_size;
struct xcede_latency_record records[16];
} __packed;
struct xcede_latency_parameter {
__be16 payload_size;
struct xcede_latency_payload payload;
u8 null_char;
} __packed;
static unsigned int nr_xcede_records;
static struct xcede_latency_parameter xcede_latency_parameter __initdata;
static int __init parse_cede_parameters(void)
{
struct xcede_latency_payload *payload;
u32 total_xcede_records_size;
u8 xcede_record_size;
u16 payload_size;
int ret, i;
ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter),
sizeof(xcede_latency_parameter));
if (ret) {
pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n");
return ret;
}
payload_size = be16_to_cpu(xcede_latency_parameter.payload_size);
payload = &xcede_latency_parameter.payload;
xcede_record_size = payload->record_size + 1;
if (xcede_record_size != sizeof(struct xcede_latency_record)) {
pr_err("xcede: Expected record-size %lu. Observed size %u.\n",
sizeof(struct xcede_latency_record), xcede_record_size);
return -EINVAL;
}
pr_info("xcede: xcede_record_size = %d\n", xcede_record_size);
/*
* Since the payload_size includes the last NULL byte and the
* xcede_record_size, the remaining bytes correspond to array of all
* cede_latency settings.
*/
total_xcede_records_size = payload_size - 2;
nr_xcede_records = total_xcede_records_size / xcede_record_size;
for (i = 0; i < nr_xcede_records; i++) {
struct xcede_latency_record *record = &payload->records[i];
u64 latency_ticks = be64_to_cpu(record->latency_ticks);
u8 wake_on_irqs = record->wake_on_irqs;
u8 hint = record->hint;
pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n",
i, hint, latency_ticks, wake_on_irqs);
}
return 0;
}
#define NR_DEDICATED_STATES 2 /* snooze, CEDE */
static u8 cede_latency_hint[NR_DEDICATED_STATES];
static int dedicated_cede_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
u8 old_latency_hint;
pseries_idle_prolog();
get_lppaca()->donate_dedicated_cpu = 1;
old_latency_hint = get_lppaca()->cede_latency_hint;
get_lppaca()->cede_latency_hint = cede_latency_hint[index];
HMT_medium();
check_and_cede_processor();
local_irq_disable();
get_lppaca()->donate_dedicated_cpu = 0;
get_lppaca()->cede_latency_hint = old_latency_hint;
pseries_idle_epilog();
return index;
}
static int shared_cede_loop(struct cpuidle_device *dev,
struct cpuidle_driver *drv,
int index)
{
pseries_idle_prolog();
/*
* Yield the processor to the hypervisor. We return if
* an external interrupt occurs (which are driven prior
* to returning here) or if a prod occurs from another
* processor. When returning here, external interrupts
* are enabled.
*/
check_and_cede_processor();
local_irq_disable();
pseries_idle_epilog();
return index;
}
/*
* States for dedicated partition case.
*/
static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = {
{ /* Snooze */
.name = "snooze",
.desc = "snooze",
.exit_latency = 0,
.target_residency = 0,
.enter = &snooze_loop },
{ /* CEDE */
.name = "CEDE",
.desc = "CEDE",
.exit_latency = 10,
.target_residency = 100,
.enter = &dedicated_cede_loop },
};
/*
* States for shared partition case.
*/
static struct cpuidle_state shared_states[] = {
{ /* Snooze */
.name = "snooze",
.desc = "snooze",
.exit_latency = 0,
.target_residency = 0,
.enter = &snooze_loop },
{ /* Shared Cede */
.name = "Shared Cede",
.desc = "Shared Cede",
.exit_latency = 10,
.target_residency = 100,
.enter = &shared_cede_loop },
};
static int pseries_cpuidle_cpu_online(unsigned int cpu)
{
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
if (dev && cpuidle_get_driver()) {
cpuidle_pause_and_lock();
cpuidle_enable_device(dev);
cpuidle_resume_and_unlock();
}
return 0;
}
static int pseries_cpuidle_cpu_dead(unsigned int cpu)
{
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
if (dev && cpuidle_get_driver()) {
cpuidle_pause_and_lock();
cpuidle_disable_device(dev);
cpuidle_resume_and_unlock();
}
return 0;
}
/*
* pseries_cpuidle_driver_init()
*/
static int pseries_cpuidle_driver_init(void)
{
int idle_state;
struct cpuidle_driver *drv = &pseries_idle_driver;
drv->state_count = 0;
for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
/* Is the state not enabled? */
if (cpuidle_state_table[idle_state].enter == NULL)
continue;
drv->states[drv->state_count] = /* structure copy */
cpuidle_state_table[idle_state];
drv->state_count += 1;
}
return 0;
}
static void __init fixup_cede0_latency(void)
{
struct xcede_latency_payload *payload;
u64 min_latency_us;
int i;
min_latency_us = dedicated_states[1].exit_latency; // CEDE latency
if (parse_cede_parameters())
return;
pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n",
nr_xcede_records);
payload = &xcede_latency_parameter.payload;
for (i = 0; i < nr_xcede_records; i++) {
struct xcede_latency_record *record = &payload->records[i];
u64 latency_tb = be64_to_cpu(record->latency_ticks);
u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC);
if (latency_us == 0)
pr_warn("cpuidle: xcede record %d has an unrealistic latency of 0us.\n", i);
if (latency_us < min_latency_us)
min_latency_us = latency_us;
}
/*
* By default, we assume that CEDE(0) has exit latency 10us,
* since there is no way for us to query from the platform.
*
* However, if the wakeup latency of an Extended CEDE state is
* smaller than 10us, then we can be sure that CEDE(0)
* requires no more than that.
*
* Perform the fix-up.
*/
if (min_latency_us < dedicated_states[1].exit_latency) {
/*
* We set a minimum of 1us wakeup latency for cede0 to
* distinguish it from snooze
*/
u64 cede0_latency = 1;
if (min_latency_us > cede0_latency)
cede0_latency = min_latency_us - 1;
dedicated_states[1].exit_latency = cede0_latency;
dedicated_states[1].target_residency = 10 * (cede0_latency);
pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n",
cede0_latency);
}
}
/*
* pseries_idle_probe()
* Choose state table for shared versus dedicated partition
*/
static int pseries_idle_probe(void)
{
if (cpuidle_disable != IDLE_NO_OVERRIDE)
return -ENODEV;
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
/*
* Use local_paca instead of get_lppaca() since
* preemption is not disabled, and it is not required in
* fact, since lppaca_ptr does not need to be the value
* associated to the current CPU, it can be from any CPU.
*/
if (lppaca_shared_proc(local_paca->lppaca_ptr)) {
cpuidle_state_table = shared_states;
max_idle_state = ARRAY_SIZE(shared_states);
} else {
/*
* Use firmware provided latency values
* starting with POWER10 platforms. In the
* case that we are running on a POWER10
* platform but in an earlier compat mode, we
* can still use the firmware provided values.
*
* However, on platforms prior to POWER10, we
* cannot rely on the accuracy of the firmware
* provided latency values. On such platforms,
* go with the conservative default estimate
* of 10us.
*/
if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10))
fixup_cede0_latency();
cpuidle_state_table = dedicated_states;
max_idle_state = NR_DEDICATED_STATES;
}
} else
return -ENODEV;
if (max_idle_state > 1) {
snooze_timeout_en = true;
snooze_timeout = cpuidle_state_table[1].target_residency *
tb_ticks_per_usec;
}
return 0;
}
static int __init pseries_processor_idle_init(void)
{
int retval;
retval = pseries_idle_probe();
if (retval)
return retval;
pseries_cpuidle_driver_init();
retval = cpuidle_register(&pseries_idle_driver, NULL);
if (retval) {
printk(KERN_DEBUG "Registration of pseries driver failed.\n");
return retval;
}
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
"cpuidle/pseries:online",
pseries_cpuidle_cpu_online, NULL);
WARN_ON(retval < 0);
retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
"cpuidle/pseries:DEAD", NULL,
pseries_cpuidle_cpu_dead);
WARN_ON(retval < 0);
printk(KERN_DEBUG "pseries_idle_driver registered\n");
return 0;
}
device_initcall(pseries_processor_idle_init);