linux/drivers/media/i2c/vgxy61.c
Benjamin Mugnier 15765ff714 media: i2c: vgxy61: Fix device name
Rename 'st-vgxy61' to 'vgxy61', dropping the vendor prefix to follow the
same naming scheme as the vast majority of device drivers.
The device tree binding does not fall into binding rename exceptions and
therefore must not be changed. Keep its legacy name.

Signed-off-by: Benjamin Mugnier <benjamin.mugnier@foss.st.com>
Acked-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
2024-06-15 11:16:40 +02:00

1896 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for VGXY61 global shutter sensor family driver
*
* Copyright (C) 2022 STMicroelectronics SA
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>
#include <asm/unaligned.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-cci.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define VGXY61_REG_MODEL_ID CCI_REG16_LE(0x0000)
#define VG5661_MODEL_ID 0x5661
#define VG5761_MODEL_ID 0x5761
#define VGXY61_REG_REVISION CCI_REG16_LE(0x0002)
#define VGXY61_REG_FWPATCH_REVISION CCI_REG16_LE(0x0014)
#define VGXY61_REG_FWPATCH_START_ADDR CCI_REG8(0x2000)
#define VGXY61_REG_SYSTEM_FSM CCI_REG8(0x0020)
#define VGXY61_SYSTEM_FSM_SW_STBY 0x03
#define VGXY61_SYSTEM_FSM_STREAMING 0x04
#define VGXY61_REG_NVM CCI_REG8(0x0023)
#define VGXY61_NVM_OK 0x04
#define VGXY61_REG_STBY CCI_REG8(0x0201)
#define VGXY61_STBY_NO_REQ 0
#define VGXY61_STBY_REQ_TMP_READ BIT(2)
#define VGXY61_REG_STREAMING CCI_REG8(0x0202)
#define VGXY61_STREAMING_NO_REQ 0
#define VGXY61_STREAMING_REQ_STOP BIT(0)
#define VGXY61_STREAMING_REQ_START BIT(1)
#define VGXY61_REG_EXT_CLOCK CCI_REG32_LE(0x0220)
#define VGXY61_REG_CLK_PLL_PREDIV CCI_REG8(0x0224)
#define VGXY61_REG_CLK_SYS_PLL_MULT CCI_REG8(0x0225)
#define VGXY61_REG_GPIO_0_CTRL CCI_REG8(0x0236)
#define VGXY61_REG_GPIO_1_CTRL CCI_REG8(0x0237)
#define VGXY61_REG_GPIO_2_CTRL CCI_REG8(0x0238)
#define VGXY61_REG_GPIO_3_CTRL CCI_REG8(0x0239)
#define VGXY61_REG_SIGNALS_POLARITY_CTRL CCI_REG8(0x023b)
#define VGXY61_REG_LINE_LENGTH CCI_REG16_LE(0x0300)
#define VGXY61_REG_ORIENTATION CCI_REG8(0x0302)
#define VGXY61_REG_VT_CTRL CCI_REG8(0x0304)
#define VGXY61_REG_FORMAT_CTRL CCI_REG8(0x0305)
#define VGXY61_REG_OIF_CTRL CCI_REG16_LE(0x0306)
#define VGXY61_REG_OIF_ROI0_CTRL CCI_REG8(0x030a)
#define VGXY61_REG_ROI0_START_H CCI_REG16_LE(0x0400)
#define VGXY61_REG_ROI0_START_V CCI_REG16_LE(0x0402)
#define VGXY61_REG_ROI0_END_H CCI_REG16_LE(0x0404)
#define VGXY61_REG_ROI0_END_V CCI_REG16_LE(0x0406)
#define VGXY61_REG_PATGEN_CTRL CCI_REG32_LE(0x0440)
#define VGXY61_PATGEN_LONG_ENABLE BIT(16)
#define VGXY61_PATGEN_SHORT_ENABLE BIT(0)
#define VGXY61_PATGEN_LONG_TYPE_SHIFT 18
#define VGXY61_PATGEN_SHORT_TYPE_SHIFT 4
#define VGXY61_REG_FRAME_CONTENT_CTRL CCI_REG8(0x0478)
#define VGXY61_REG_COARSE_EXPOSURE_LONG CCI_REG16_LE(0x0500)
#define VGXY61_REG_COARSE_EXPOSURE_SHORT CCI_REG16_LE(0x0504)
#define VGXY61_REG_ANALOG_GAIN CCI_REG8(0x0508)
#define VGXY61_REG_DIGITAL_GAIN_LONG CCI_REG16_LE(0x050a)
#define VGXY61_REG_DIGITAL_GAIN_SHORT CCI_REG16_LE(0x0512)
#define VGXY61_REG_FRAME_LENGTH CCI_REG16_LE(0x051a)
#define VGXY61_REG_SIGNALS_CTRL CCI_REG16_LE(0x0522)
#define VGXY61_SIGNALS_GPIO_ID_SHIFT 4
#define VGXY61_REG_READOUT_CTRL CCI_REG8(0x0530)
#define VGXY61_REG_HDR_CTRL CCI_REG8(0x0532)
#define VGXY61_REG_PATGEN_LONG_DATA_GR CCI_REG16_LE(0x092c)
#define VGXY61_REG_PATGEN_LONG_DATA_R CCI_REG16_LE(0x092e)
#define VGXY61_REG_PATGEN_LONG_DATA_B CCI_REG16_LE(0x0930)
#define VGXY61_REG_PATGEN_LONG_DATA_GB CCI_REG16_LE(0x0932)
#define VGXY61_REG_PATGEN_SHORT_DATA_GR CCI_REG16_LE(0x0950)
#define VGXY61_REG_PATGEN_SHORT_DATA_R CCI_REG16_LE(0x0952)
#define VGXY61_REG_PATGEN_SHORT_DATA_B CCI_REG16_LE(0x0954)
#define VGXY61_REG_PATGEN_SHORT_DATA_GB CCI_REG16_LE(0x0956)
#define VGXY61_REG_BYPASS_CTRL CCI_REG8(0x0a60)
#define VGX661_WIDTH 1464
#define VGX661_HEIGHT 1104
#define VGX761_WIDTH 1944
#define VGX761_HEIGHT 1204
#define VGX661_DEFAULT_MODE 1
#define VGX761_DEFAULT_MODE 1
#define VGX661_SHORT_ROT_TERM 93
#define VGX761_SHORT_ROT_TERM 90
#define VGXY61_EXPOS_ROT_TERM 66
#define VGXY61_WRITE_MULTIPLE_CHUNK_MAX 16
#define VGXY61_NB_GPIOS 4
#define VGXY61_NB_POLARITIES 5
#define VGXY61_FRAME_LENGTH_DEF 1313
#define VGXY61_MIN_FRAME_LENGTH 1288
#define VGXY61_MIN_EXPOSURE 10
#define VGXY61_HDR_LINEAR_RATIO 10
#define VGXY61_TIMEOUT_MS 500
#define VGXY61_MEDIA_BUS_FMT_DEF MEDIA_BUS_FMT_Y8_1X8
#define VGXY61_FWPATCH_REVISION_MAJOR 2
#define VGXY61_FWPATCH_REVISION_MINOR 0
#define VGXY61_FWPATCH_REVISION_MICRO 5
static const u8 patch_array[] = {
0xbf, 0x00, 0x05, 0x20, 0x06, 0x01, 0xe0, 0xe0, 0x04, 0x80, 0xe6, 0x45,
0xed, 0x6f, 0xfe, 0xff, 0x14, 0x80, 0x1f, 0x84, 0x10, 0x42, 0x05, 0x7c,
0x01, 0xc4, 0x1e, 0x80, 0xb6, 0x42, 0x00, 0xe0, 0x1e, 0x82, 0x1e, 0xc0,
0x93, 0xdd, 0xc3, 0xc1, 0x0c, 0x04, 0x00, 0xfa, 0x86, 0x0d, 0x70, 0xe1,
0x04, 0x98, 0x15, 0x00, 0x28, 0xe0, 0x14, 0x02, 0x08, 0xfc, 0x15, 0x40,
0x28, 0xe0, 0x98, 0x58, 0xe0, 0xef, 0x04, 0x98, 0x0e, 0x04, 0x00, 0xf0,
0x15, 0x00, 0x28, 0xe0, 0x19, 0xc8, 0x15, 0x40, 0x28, 0xe0, 0xc6, 0x41,
0xfc, 0xe0, 0x14, 0x80, 0x1f, 0x84, 0x14, 0x02, 0xa0, 0xfc, 0x1e, 0x80,
0x14, 0x80, 0x14, 0x02, 0x80, 0xfb, 0x14, 0x02, 0xe0, 0xfc, 0x1e, 0x80,
0x14, 0xc0, 0x1f, 0x84, 0x14, 0x02, 0xa4, 0xfc, 0x1e, 0xc0, 0x14, 0xc0,
0x14, 0x02, 0x80, 0xfb, 0x14, 0x02, 0xe4, 0xfc, 0x1e, 0xc0, 0x0c, 0x0c,
0x00, 0xf2, 0x93, 0xdd, 0x86, 0x00, 0xf8, 0xe0, 0x04, 0x80, 0xc6, 0x03,
0x70, 0xe1, 0x0e, 0x84, 0x93, 0xdd, 0xc3, 0xc1, 0x0c, 0x04, 0x00, 0xfa,
0x6b, 0x80, 0x06, 0x40, 0x6c, 0xe1, 0x04, 0x80, 0x09, 0x00, 0xe0, 0xe0,
0x0b, 0xa1, 0x95, 0x84, 0x05, 0x0c, 0x1c, 0xe0, 0x86, 0x02, 0xf9, 0x60,
0xe0, 0xcf, 0x78, 0x6e, 0x80, 0xef, 0x25, 0x0c, 0x18, 0xe0, 0x05, 0x4c,
0x1c, 0xe0, 0x86, 0x02, 0xf9, 0x60, 0xe0, 0xcf, 0x0b, 0x84, 0xd8, 0x6d,
0x80, 0xef, 0x05, 0x4c, 0x18, 0xe0, 0x04, 0xd8, 0x0b, 0xa5, 0x95, 0x84,
0x05, 0x0c, 0x2c, 0xe0, 0x06, 0x02, 0x01, 0x60, 0xe0, 0xce, 0x18, 0x6d,
0x80, 0xef, 0x25, 0x0c, 0x30, 0xe0, 0x05, 0x4c, 0x2c, 0xe0, 0x06, 0x02,
0x01, 0x60, 0xe0, 0xce, 0x0b, 0x84, 0x78, 0x6c, 0x80, 0xef, 0x05, 0x4c,
0x30, 0xe0, 0x0c, 0x0c, 0x00, 0xf2, 0x93, 0xdd, 0x46, 0x01, 0x70, 0xe1,
0x08, 0x80, 0x0b, 0xa1, 0x08, 0x5c, 0x00, 0xda, 0x06, 0x01, 0x68, 0xe1,
0x04, 0x80, 0x4a, 0x40, 0x84, 0xe0, 0x08, 0x5c, 0x00, 0x9a, 0x06, 0x01,
0xe0, 0xe0, 0x04, 0x80, 0x15, 0x00, 0x60, 0xe0, 0x19, 0xc4, 0x15, 0x40,
0x60, 0xe0, 0x15, 0x00, 0x78, 0xe0, 0x19, 0xc4, 0x15, 0x40, 0x78, 0xe0,
0x93, 0xdd, 0xc3, 0xc1, 0x46, 0x01, 0x70, 0xe1, 0x08, 0x80, 0x0b, 0xa1,
0x08, 0x5c, 0x00, 0xda, 0x06, 0x01, 0x68, 0xe1, 0x04, 0x80, 0x4a, 0x40,
0x84, 0xe0, 0x08, 0x5c, 0x00, 0x9a, 0x06, 0x01, 0xe0, 0xe0, 0x14, 0x80,
0x25, 0x02, 0x54, 0xe0, 0x29, 0xc4, 0x25, 0x42, 0x54, 0xe0, 0x24, 0x80,
0x35, 0x04, 0x6c, 0xe0, 0x39, 0xc4, 0x35, 0x44, 0x6c, 0xe0, 0x25, 0x02,
0x64, 0xe0, 0x29, 0xc4, 0x25, 0x42, 0x64, 0xe0, 0x04, 0x80, 0x15, 0x00,
0x7c, 0xe0, 0x19, 0xc4, 0x15, 0x40, 0x7c, 0xe0, 0x93, 0xdd, 0xc3, 0xc1,
0x4c, 0x04, 0x7c, 0xfa, 0x86, 0x40, 0x98, 0xe0, 0x14, 0x80, 0x1b, 0xa1,
0x06, 0x00, 0x00, 0xc0, 0x08, 0x42, 0x38, 0xdc, 0x08, 0x64, 0xa0, 0xef,
0x86, 0x42, 0x3c, 0xe0, 0x68, 0x49, 0x80, 0xef, 0x6b, 0x80, 0x78, 0x53,
0xc8, 0xef, 0xc6, 0x54, 0x6c, 0xe1, 0x7b, 0x80, 0xb5, 0x14, 0x0c, 0xf8,
0x05, 0x14, 0x14, 0xf8, 0x1a, 0xac, 0x8a, 0x80, 0x0b, 0x90, 0x38, 0x55,
0x80, 0xef, 0x1a, 0xae, 0x17, 0xc2, 0x03, 0x82, 0x88, 0x65, 0x80, 0xef,
0x1b, 0x80, 0x0b, 0x8e, 0x68, 0x65, 0x80, 0xef, 0x9b, 0x80, 0x0b, 0x8c,
0x08, 0x65, 0x80, 0xef, 0x6b, 0x80, 0x0b, 0x92, 0x1b, 0x8c, 0x98, 0x64,
0x80, 0xef, 0x1a, 0xec, 0x9b, 0x80, 0x0b, 0x90, 0x95, 0x54, 0x10, 0xe0,
0xa8, 0x53, 0x80, 0xef, 0x1a, 0xee, 0x17, 0xc2, 0x03, 0x82, 0xf8, 0x63,
0x80, 0xef, 0x1b, 0x80, 0x0b, 0x8e, 0xd8, 0x63, 0x80, 0xef, 0x1b, 0x8c,
0x68, 0x63, 0x80, 0xef, 0x6b, 0x80, 0x0b, 0x92, 0x65, 0x54, 0x14, 0xe0,
0x08, 0x65, 0x84, 0xef, 0x68, 0x63, 0x80, 0xef, 0x7b, 0x80, 0x0b, 0x8c,
0xa8, 0x64, 0x84, 0xef, 0x08, 0x63, 0x80, 0xef, 0x14, 0xe8, 0x46, 0x44,
0x94, 0xe1, 0x24, 0x88, 0x4a, 0x4e, 0x04, 0xe0, 0x14, 0xea, 0x1a, 0x04,
0x08, 0xe0, 0x0a, 0x40, 0x84, 0xed, 0x0c, 0x04, 0x00, 0xe2, 0x4a, 0x40,
0x04, 0xe0, 0x19, 0x16, 0xc0, 0xe0, 0x0a, 0x40, 0x84, 0xed, 0x21, 0x54,
0x60, 0xe0, 0x0c, 0x04, 0x00, 0xe2, 0x1b, 0xa5, 0x0e, 0xea, 0x01, 0x89,
0x21, 0x54, 0x64, 0xe0, 0x7e, 0xe8, 0x65, 0x82, 0x1b, 0xa7, 0x26, 0x00,
0x00, 0x80, 0xa5, 0x82, 0x1b, 0xa9, 0x65, 0x82, 0x1b, 0xa3, 0x01, 0x85,
0x16, 0x00, 0x00, 0xc0, 0x01, 0x54, 0x04, 0xf8, 0x06, 0xaa, 0x01, 0x83,
0x06, 0xa8, 0x65, 0x81, 0x06, 0xa8, 0x01, 0x54, 0x04, 0xf8, 0x01, 0x83,
0x06, 0xaa, 0x09, 0x14, 0x18, 0xf8, 0x0b, 0xa1, 0x05, 0x84, 0xc6, 0x42,
0xd4, 0xe0, 0x14, 0x84, 0x01, 0x83, 0x01, 0x54, 0x60, 0xe0, 0x01, 0x54,
0x64, 0xe0, 0x0b, 0x02, 0x90, 0xe0, 0x10, 0x02, 0x90, 0xe5, 0x01, 0x54,
0x88, 0xe0, 0xb5, 0x81, 0xc6, 0x40, 0xd4, 0xe0, 0x14, 0x80, 0x0b, 0x02,
0xe0, 0xe4, 0x10, 0x02, 0x31, 0x66, 0x02, 0xc0, 0x01, 0x54, 0x88, 0xe0,
0x1a, 0x84, 0x29, 0x14, 0x10, 0xe0, 0x1c, 0xaa, 0x2b, 0xa1, 0xf5, 0x82,
0x25, 0x14, 0x10, 0xf8, 0x2b, 0x04, 0xa8, 0xe0, 0x20, 0x44, 0x0d, 0x70,
0x03, 0xc0, 0x2b, 0xa1, 0x04, 0x00, 0x80, 0x9a, 0x02, 0x40, 0x84, 0x90,
0x03, 0x54, 0x04, 0x80, 0x4c, 0x0c, 0x7c, 0xf2, 0x93, 0xdd, 0x00, 0x00,
0x02, 0xa9, 0x00, 0x00, 0x64, 0x4a, 0x40, 0x00, 0x08, 0x2d, 0x58, 0xe0,
0xa8, 0x98, 0x40, 0x00, 0x28, 0x07, 0x34, 0xe0, 0x05, 0xb9, 0x00, 0x00,
0x28, 0x00, 0x41, 0x05, 0x88, 0x00, 0x41, 0x3c, 0x98, 0x00, 0x41, 0x52,
0x04, 0x01, 0x41, 0x79, 0x3c, 0x01, 0x41, 0x6a, 0x3d, 0xfe, 0x00, 0x00,
};
static const char * const vgxy61_test_pattern_menu[] = {
"Disabled",
"Solid",
"Colorbar",
"Gradbar",
"Hgrey",
"Vgrey",
"Dgrey",
"PN28",
};
static const char * const vgxy61_hdr_mode_menu[] = {
"HDR linearize",
"HDR substraction",
"No HDR",
};
static const char * const vgxy61_supply_name[] = {
"VCORE",
"VDDIO",
"VANA",
};
static const s64 link_freq[] = {
/*
* MIPI output freq is 804Mhz / 2, as it uses both rising edge and
* falling edges to send data
*/
402000000ULL
};
enum vgxy61_bin_mode {
VGXY61_BIN_MODE_NORMAL,
VGXY61_BIN_MODE_DIGITAL_X2,
VGXY61_BIN_MODE_DIGITAL_X4,
};
enum vgxy61_hdr_mode {
VGXY61_HDR_LINEAR,
VGXY61_HDR_SUB,
VGXY61_NO_HDR,
};
enum vgxy61_strobe_mode {
VGXY61_STROBE_DISABLED,
VGXY61_STROBE_LONG,
VGXY61_STROBE_ENABLED,
};
struct vgxy61_mode_info {
u32 width;
u32 height;
enum vgxy61_bin_mode bin_mode;
struct v4l2_rect crop;
};
struct vgxy61_fmt_desc {
u32 code;
u8 bpp;
u8 data_type;
};
static const struct vgxy61_fmt_desc vgxy61_supported_codes[] = {
{
.code = MEDIA_BUS_FMT_Y8_1X8,
.bpp = 8,
.data_type = MIPI_CSI2_DT_RAW8,
},
{
.code = MEDIA_BUS_FMT_Y10_1X10,
.bpp = 10,
.data_type = MIPI_CSI2_DT_RAW10,
},
{
.code = MEDIA_BUS_FMT_Y12_1X12,
.bpp = 12,
.data_type = MIPI_CSI2_DT_RAW12,
},
{
.code = MEDIA_BUS_FMT_Y14_1X14,
.bpp = 14,
.data_type = MIPI_CSI2_DT_RAW14,
},
{
.code = MEDIA_BUS_FMT_Y16_1X16,
.bpp = 16,
.data_type = MIPI_CSI2_DT_RAW16,
},
};
static const struct vgxy61_mode_info vgx661_mode_data[] = {
{
.width = VGX661_WIDTH,
.height = VGX661_HEIGHT,
.bin_mode = VGXY61_BIN_MODE_NORMAL,
.crop = {
.left = 0,
.top = 0,
.width = VGX661_WIDTH,
.height = VGX661_HEIGHT,
},
},
{
.width = 1280,
.height = 720,
.bin_mode = VGXY61_BIN_MODE_NORMAL,
.crop = {
.left = 92,
.top = 192,
.width = 1280,
.height = 720,
},
},
{
.width = 640,
.height = 480,
.bin_mode = VGXY61_BIN_MODE_DIGITAL_X2,
.crop = {
.left = 92,
.top = 72,
.width = 1280,
.height = 960,
},
},
{
.width = 320,
.height = 240,
.bin_mode = VGXY61_BIN_MODE_DIGITAL_X4,
.crop = {
.left = 92,
.top = 72,
.width = 1280,
.height = 960,
},
},
};
static const struct vgxy61_mode_info vgx761_mode_data[] = {
{
.width = VGX761_WIDTH,
.height = VGX761_HEIGHT,
.bin_mode = VGXY61_BIN_MODE_NORMAL,
.crop = {
.left = 0,
.top = 0,
.width = VGX761_WIDTH,
.height = VGX761_HEIGHT,
},
},
{
.width = 1920,
.height = 1080,
.bin_mode = VGXY61_BIN_MODE_NORMAL,
.crop = {
.left = 12,
.top = 62,
.width = 1920,
.height = 1080,
},
},
{
.width = 1280,
.height = 720,
.bin_mode = VGXY61_BIN_MODE_NORMAL,
.crop = {
.left = 332,
.top = 242,
.width = 1280,
.height = 720,
},
},
{
.width = 640,
.height = 480,
.bin_mode = VGXY61_BIN_MODE_DIGITAL_X2,
.crop = {
.left = 332,
.top = 122,
.width = 1280,
.height = 960,
},
},
{
.width = 320,
.height = 240,
.bin_mode = VGXY61_BIN_MODE_DIGITAL_X4,
.crop = {
.left = 332,
.top = 122,
.width = 1280,
.height = 960,
},
},
};
struct vgxy61_dev {
struct i2c_client *i2c_client;
struct regmap *regmap;
struct v4l2_subdev sd;
struct media_pad pad;
struct regulator_bulk_data supplies[ARRAY_SIZE(vgxy61_supply_name)];
struct gpio_desc *reset_gpio;
struct clk *xclk;
u32 clk_freq;
u16 id;
u16 sensor_width;
u16 sensor_height;
u16 oif_ctrl;
unsigned int nb_of_lane;
u32 data_rate_in_mbps;
u32 pclk;
u16 line_length;
u16 rot_term;
bool gpios_polarity;
/* Lock to protect all members below */
struct mutex lock;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *pixel_rate_ctrl;
struct v4l2_ctrl *expo_ctrl;
struct v4l2_ctrl *vblank_ctrl;
struct v4l2_ctrl *vflip_ctrl;
struct v4l2_ctrl *hflip_ctrl;
bool streaming;
struct v4l2_mbus_framefmt fmt;
const struct vgxy61_mode_info *sensor_modes;
unsigned int sensor_modes_nb;
const struct vgxy61_mode_info *default_mode;
const struct vgxy61_mode_info *current_mode;
bool hflip;
bool vflip;
enum vgxy61_hdr_mode hdr;
u16 expo_long;
u16 expo_short;
u16 expo_max;
u16 expo_min;
u16 vblank;
u16 vblank_min;
u16 frame_length;
u16 digital_gain;
u8 analog_gain;
enum vgxy61_strobe_mode strobe_mode;
u32 pattern;
};
static u8 get_bpp_by_code(__u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(vgxy61_supported_codes); i++) {
if (vgxy61_supported_codes[i].code == code)
return vgxy61_supported_codes[i].bpp;
}
/* Should never happen */
WARN(1, "Unsupported code %d. default to 8 bpp", code);
return 8;
}
static u8 get_data_type_by_code(__u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(vgxy61_supported_codes); i++) {
if (vgxy61_supported_codes[i].code == code)
return vgxy61_supported_codes[i].data_type;
}
/* Should never happen */
WARN(1, "Unsupported code %d. default to MIPI_CSI2_DT_RAW8 data type",
code);
return MIPI_CSI2_DT_RAW8;
}
static void compute_pll_parameters_by_freq(u32 freq, u8 *prediv, u8 *mult)
{
const unsigned int predivs[] = {1, 2, 4};
unsigned int i;
/*
* Freq range is [6Mhz-27Mhz] already checked.
* Output of divider should be in [6Mhz-12Mhz[.
*/
for (i = 0; i < ARRAY_SIZE(predivs); i++) {
*prediv = predivs[i];
if (freq / *prediv < 12 * HZ_PER_MHZ)
break;
}
WARN_ON(i == ARRAY_SIZE(predivs));
/*
* Target freq is 804Mhz. Don't change this as it will impact image
* quality.
*/
*mult = ((804 * HZ_PER_MHZ) * (*prediv) + freq / 2) / freq;
}
static s32 get_pixel_rate(struct vgxy61_dev *sensor)
{
return div64_u64((u64)sensor->data_rate_in_mbps * sensor->nb_of_lane,
get_bpp_by_code(sensor->fmt.code));
}
static inline struct vgxy61_dev *to_vgxy61_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct vgxy61_dev, sd);
}
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct vgxy61_dev,
ctrl_handler)->sd;
}
static unsigned int get_chunk_size(struct vgxy61_dev *sensor)
{
struct i2c_adapter *adapter = sensor->i2c_client->adapter;
int max_write_len = VGXY61_WRITE_MULTIPLE_CHUNK_MAX;
if (adapter->quirks && adapter->quirks->max_write_len)
max_write_len = adapter->quirks->max_write_len - 2;
max_write_len = min(max_write_len, VGXY61_WRITE_MULTIPLE_CHUNK_MAX);
return max(max_write_len, 1);
}
static int vgxy61_write_array(struct vgxy61_dev *sensor, u32 reg,
unsigned int nb, const u8 *array)
{
const unsigned int chunk_size = get_chunk_size(sensor);
int ret;
unsigned int sz;
while (nb) {
sz = min(nb, chunk_size);
ret = regmap_bulk_write(sensor->regmap, CCI_REG_ADDR(reg),
array, sz);
if (ret < 0)
return ret;
nb -= sz;
reg += sz;
array += sz;
}
return 0;
}
static int vgxy61_poll_reg(struct vgxy61_dev *sensor, u32 reg, u8 poll_val,
unsigned int timeout_ms)
{
const unsigned int loop_delay_ms = 10;
u64 val;
int ret;
return read_poll_timeout(cci_read, ret,
((ret < 0) || (val == poll_val)),
loop_delay_ms * 1000, timeout_ms * 1000,
false, sensor->regmap, reg, &val, NULL);
}
static int vgxy61_wait_state(struct vgxy61_dev *sensor, int state,
unsigned int timeout_ms)
{
return vgxy61_poll_reg(sensor, VGXY61_REG_SYSTEM_FSM, state,
timeout_ms);
}
static int vgxy61_check_bw(struct vgxy61_dev *sensor)
{
/*
* Simplification of time needed to send short packets and for the MIPI
* to add transition times (EoT, LPS, and SoT packet delimiters) needed
* by the protocol to go in low power between 2 packets of data. This
* is a mipi IP constant for the sensor.
*/
const unsigned int mipi_margin = 1056;
unsigned int binning_scale = sensor->current_mode->crop.height /
sensor->current_mode->height;
u8 bpp = get_bpp_by_code(sensor->fmt.code);
unsigned int max_bit_per_line;
unsigned int bit_per_line;
u64 line_rate;
line_rate = sensor->nb_of_lane * (u64)sensor->data_rate_in_mbps *
sensor->line_length;
max_bit_per_line = div64_u64(line_rate, sensor->pclk) - mipi_margin;
bit_per_line = (bpp * sensor->current_mode->width) / binning_scale;
return bit_per_line > max_bit_per_line ? -EINVAL : 0;
}
static int vgxy61_apply_exposure(struct vgxy61_dev *sensor)
{
int ret = 0;
/* We first set expo to zero to avoid forbidden parameters couple */
cci_write(sensor->regmap, VGXY61_REG_COARSE_EXPOSURE_SHORT, 0, &ret);
cci_write(sensor->regmap, VGXY61_REG_COARSE_EXPOSURE_LONG,
sensor->expo_long, &ret);
cci_write(sensor->regmap, VGXY61_REG_COARSE_EXPOSURE_SHORT,
sensor->expo_short, &ret);
return ret;
}
static int vgxy61_get_regulators(struct vgxy61_dev *sensor)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(vgxy61_supply_name); i++)
sensor->supplies[i].supply = vgxy61_supply_name[i];
return devm_regulator_bulk_get(&sensor->i2c_client->dev,
ARRAY_SIZE(vgxy61_supply_name),
sensor->supplies);
}
static int vgxy61_apply_reset(struct vgxy61_dev *sensor)
{
gpiod_set_value_cansleep(sensor->reset_gpio, 0);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(sensor->reset_gpio, 1);
usleep_range(5000, 10000);
gpiod_set_value_cansleep(sensor->reset_gpio, 0);
usleep_range(40000, 100000);
return vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY,
VGXY61_TIMEOUT_MS);
}
static void vgxy61_fill_framefmt(struct vgxy61_dev *sensor,
const struct vgxy61_mode_info *mode,
struct v4l2_mbus_framefmt *fmt, u32 code)
{
fmt->code = code;
fmt->width = mode->width;
fmt->height = mode->height;
fmt->colorspace = V4L2_COLORSPACE_RAW;
fmt->field = V4L2_FIELD_NONE;
fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt->quantization = V4L2_QUANTIZATION_DEFAULT;
fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT;
}
static int vgxy61_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
const struct vgxy61_mode_info **new_mode)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
const struct vgxy61_mode_info *mode;
unsigned int index;
for (index = 0; index < ARRAY_SIZE(vgxy61_supported_codes); index++) {
if (vgxy61_supported_codes[index].code == fmt->code)
break;
}
if (index == ARRAY_SIZE(vgxy61_supported_codes))
index = 0;
mode = v4l2_find_nearest_size(sensor->sensor_modes,
sensor->sensor_modes_nb, width, height,
fmt->width, fmt->height);
if (new_mode)
*new_mode = mode;
vgxy61_fill_framefmt(sensor, mode, fmt,
vgxy61_supported_codes[index].code);
return 0;
}
static int vgxy61_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_selection *sel)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
sel->r = sensor->current_mode->crop;
return 0;
case V4L2_SEL_TGT_NATIVE_SIZE:
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.top = 0;
sel->r.left = 0;
sel->r.width = sensor->sensor_width;
sel->r.height = sensor->sensor_height;
return 0;
}
return -EINVAL;
}
static int vgxy61_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(vgxy61_supported_codes))
return -EINVAL;
code->code = vgxy61_supported_codes[code->index].code;
return 0;
}
static int vgxy61_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
struct v4l2_mbus_framefmt *fmt;
mutex_lock(&sensor->lock);
if (format->which == V4L2_SUBDEV_FORMAT_TRY)
fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
else
fmt = &sensor->fmt;
format->format = *fmt;
mutex_unlock(&sensor->lock);
return 0;
}
static u16 vgxy61_get_vblank_min(struct vgxy61_dev *sensor,
enum vgxy61_hdr_mode hdr)
{
u16 min_vblank = VGXY61_MIN_FRAME_LENGTH -
sensor->current_mode->crop.height;
/* Ensure the first rule of thumb can't be negative */
u16 min_vblank_hdr = VGXY61_MIN_EXPOSURE + sensor->rot_term + 1;
if (hdr != VGXY61_NO_HDR)
return max(min_vblank, min_vblank_hdr);
return min_vblank;
}
static int vgxy61_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
if (fse->index >= sensor->sensor_modes_nb)
return -EINVAL;
fse->min_width = sensor->sensor_modes[fse->index].width;
fse->max_width = fse->min_width;
fse->min_height = sensor->sensor_modes[fse->index].height;
fse->max_height = fse->min_height;
return 0;
}
static int vgxy61_update_analog_gain(struct vgxy61_dev *sensor, u32 target)
{
sensor->analog_gain = target;
if (sensor->streaming)
return cci_write(sensor->regmap, VGXY61_REG_ANALOG_GAIN, target,
NULL);
return 0;
}
static int vgxy61_apply_digital_gain(struct vgxy61_dev *sensor,
u32 digital_gain)
{
int ret = 0;
/*
* For a monochrome version, configuring DIGITAL_GAIN_LONG_CH0 and
* DIGITAL_GAIN_SHORT_CH0 is enough to configure the gain of all
* four sub pixels.
*/
cci_write(sensor->regmap, VGXY61_REG_DIGITAL_GAIN_LONG, digital_gain,
&ret);
cci_write(sensor->regmap, VGXY61_REG_DIGITAL_GAIN_SHORT, digital_gain,
&ret);
return ret;
}
static int vgxy61_update_digital_gain(struct vgxy61_dev *sensor, u32 target)
{
sensor->digital_gain = target;
if (sensor->streaming)
return vgxy61_apply_digital_gain(sensor, sensor->digital_gain);
return 0;
}
static int vgxy61_apply_patgen(struct vgxy61_dev *sensor, u32 index)
{
static const u8 index2val[] = {
0x0, 0x1, 0x2, 0x3, 0x10, 0x11, 0x12, 0x13
};
u32 pattern = index2val[index];
u32 reg = (pattern << VGXY61_PATGEN_LONG_TYPE_SHIFT) |
(pattern << VGXY61_PATGEN_SHORT_TYPE_SHIFT);
if (pattern)
reg |= VGXY61_PATGEN_LONG_ENABLE | VGXY61_PATGEN_SHORT_ENABLE;
return cci_write(sensor->regmap, VGXY61_REG_PATGEN_CTRL, reg, NULL);
}
static int vgxy61_update_patgen(struct vgxy61_dev *sensor, u32 pattern)
{
sensor->pattern = pattern;
if (sensor->streaming)
return vgxy61_apply_patgen(sensor, sensor->pattern);
return 0;
}
static int vgxy61_apply_gpiox_strobe_mode(struct vgxy61_dev *sensor,
enum vgxy61_strobe_mode mode,
unsigned int idx)
{
static const u8 index2val[] = {0x0, 0x1, 0x3};
u16 mask, val;
mask = 0xf << (idx * VGXY61_SIGNALS_GPIO_ID_SHIFT);
val = index2val[mode] << (idx * VGXY61_SIGNALS_GPIO_ID_SHIFT);
return cci_update_bits(sensor->regmap, VGXY61_REG_SIGNALS_CTRL,
mask, val, NULL);
}
static int vgxy61_update_gpios_strobe_mode(struct vgxy61_dev *sensor,
enum vgxy61_hdr_mode hdr)
{
unsigned int i;
int ret;
switch (hdr) {
case VGXY61_HDR_LINEAR:
sensor->strobe_mode = VGXY61_STROBE_ENABLED;
break;
case VGXY61_HDR_SUB:
case VGXY61_NO_HDR:
sensor->strobe_mode = VGXY61_STROBE_LONG;
break;
default:
/* Should never happen */
WARN_ON(true);
break;
}
if (!sensor->streaming)
return 0;
for (i = 0; i < VGXY61_NB_GPIOS; i++) {
ret = vgxy61_apply_gpiox_strobe_mode(sensor,
sensor->strobe_mode,
i);
if (ret)
return ret;
}
return 0;
}
static int vgxy61_update_gpios_strobe_polarity(struct vgxy61_dev *sensor,
bool polarity)
{
int ret = 0;
if (sensor->streaming)
return -EBUSY;
cci_write(sensor->regmap, VGXY61_REG_GPIO_0_CTRL, polarity << 1, &ret);
cci_write(sensor->regmap, VGXY61_REG_GPIO_1_CTRL, polarity << 1, &ret);
cci_write(sensor->regmap, VGXY61_REG_GPIO_2_CTRL, polarity << 1, &ret);
cci_write(sensor->regmap, VGXY61_REG_GPIO_3_CTRL, polarity << 1, &ret);
cci_write(sensor->regmap, VGXY61_REG_SIGNALS_POLARITY_CTRL, polarity,
&ret);
return ret;
}
static u32 vgxy61_get_expo_long_max(struct vgxy61_dev *sensor,
unsigned int short_expo_ratio)
{
u32 first_rot_max_expo, second_rot_max_expo, third_rot_max_expo;
/* Apply sensor's rules of thumb */
/*
* Short exposure + height must be less than frame length to avoid bad
* pixel line at the botom of the image
*/
first_rot_max_expo =
((sensor->frame_length - sensor->current_mode->crop.height -
sensor->rot_term) * short_expo_ratio) - 1;
/*
* Total exposition time must be less than frame length to avoid sensor
* crash
*/
second_rot_max_expo =
(((sensor->frame_length - VGXY61_EXPOS_ROT_TERM) *
short_expo_ratio) / (short_expo_ratio + 1)) - 1;
/*
* Short exposure times 71 must be less than frame length to avoid
* sensor crash
*/
third_rot_max_expo = (sensor->frame_length / 71) * short_expo_ratio;
/* Take the minimum from all rules */
return min(min(first_rot_max_expo, second_rot_max_expo),
third_rot_max_expo);
}
static int vgxy61_update_exposure(struct vgxy61_dev *sensor, u16 new_expo_long,
enum vgxy61_hdr_mode hdr)
{
struct i2c_client *client = sensor->i2c_client;
u16 new_expo_short = 0;
u16 expo_short_max = 0;
u16 expo_long_min = VGXY61_MIN_EXPOSURE;
u16 expo_long_max = 0;
/* Compute short exposure according to hdr mode and long exposure */
switch (hdr) {
case VGXY61_HDR_LINEAR:
/*
* Take ratio into account for minimal exposures in
* VGXY61_HDR_LINEAR
*/
expo_long_min = VGXY61_MIN_EXPOSURE * VGXY61_HDR_LINEAR_RATIO;
new_expo_long = max(expo_long_min, new_expo_long);
expo_long_max =
vgxy61_get_expo_long_max(sensor,
VGXY61_HDR_LINEAR_RATIO);
expo_short_max = (expo_long_max +
(VGXY61_HDR_LINEAR_RATIO / 2)) /
VGXY61_HDR_LINEAR_RATIO;
new_expo_short = (new_expo_long +
(VGXY61_HDR_LINEAR_RATIO / 2)) /
VGXY61_HDR_LINEAR_RATIO;
break;
case VGXY61_HDR_SUB:
new_expo_long = max(expo_long_min, new_expo_long);
expo_long_max = vgxy61_get_expo_long_max(sensor, 1);
/* Short and long are the same in VGXY61_HDR_SUB */
expo_short_max = expo_long_max;
new_expo_short = new_expo_long;
break;
case VGXY61_NO_HDR:
new_expo_long = max(expo_long_min, new_expo_long);
/*
* As short expo is 0 here, only the second rule of thumb
* applies, see vgxy61_get_expo_long_max for more
*/
expo_long_max = sensor->frame_length - VGXY61_EXPOS_ROT_TERM;
break;
default:
/* Should never happen */
WARN_ON(true);
break;
}
/* If this happens, something is wrong with formulas */
WARN_ON(expo_long_min > expo_long_max);
if (new_expo_long > expo_long_max) {
dev_warn(&client->dev, "Exposure %d too high, clamping to %d\n",
new_expo_long, expo_long_max);
new_expo_long = expo_long_max;
new_expo_short = expo_short_max;
}
sensor->expo_long = new_expo_long;
sensor->expo_short = new_expo_short;
sensor->expo_max = expo_long_max;
sensor->expo_min = expo_long_min;
if (sensor->streaming)
return vgxy61_apply_exposure(sensor);
return 0;
}
static int vgxy61_apply_framelength(struct vgxy61_dev *sensor)
{
return cci_write(sensor->regmap, VGXY61_REG_FRAME_LENGTH,
sensor->frame_length, NULL);
}
static int vgxy61_update_vblank(struct vgxy61_dev *sensor, u16 vblank,
enum vgxy61_hdr_mode hdr)
{
int ret;
sensor->vblank_min = vgxy61_get_vblank_min(sensor, hdr);
sensor->vblank = max(sensor->vblank_min, vblank);
sensor->frame_length = sensor->current_mode->crop.height +
sensor->vblank;
/* Update exposure according to vblank */
ret = vgxy61_update_exposure(sensor, sensor->expo_long, hdr);
if (ret)
return ret;
if (sensor->streaming)
return vgxy61_apply_framelength(sensor);
return 0;
}
static int vgxy61_apply_hdr(struct vgxy61_dev *sensor,
enum vgxy61_hdr_mode index)
{
static const u8 index2val[] = {0x1, 0x4, 0xa};
return cci_write(sensor->regmap, VGXY61_REG_HDR_CTRL, index2val[index],
NULL);
}
static int vgxy61_update_hdr(struct vgxy61_dev *sensor,
enum vgxy61_hdr_mode index)
{
int ret;
/*
* vblank and short exposure change according to HDR mode, do it first
* as it can violate sensors 'rule of thumbs' and therefore will require
* to change the long exposure.
*/
ret = vgxy61_update_vblank(sensor, sensor->vblank, index);
if (ret)
return ret;
/* Update strobe mode according to HDR */
ret = vgxy61_update_gpios_strobe_mode(sensor, index);
if (ret)
return ret;
sensor->hdr = index;
if (sensor->streaming)
return vgxy61_apply_hdr(sensor, sensor->hdr);
return 0;
}
static int vgxy61_apply_settings(struct vgxy61_dev *sensor)
{
int ret;
unsigned int i;
ret = vgxy61_apply_hdr(sensor, sensor->hdr);
if (ret)
return ret;
ret = vgxy61_apply_framelength(sensor);
if (ret)
return ret;
ret = vgxy61_apply_exposure(sensor);
if (ret)
return ret;
ret = cci_write(sensor->regmap, VGXY61_REG_ANALOG_GAIN,
sensor->analog_gain, NULL);
if (ret)
return ret;
ret = vgxy61_apply_digital_gain(sensor, sensor->digital_gain);
if (ret)
return ret;
ret = cci_write(sensor->regmap, VGXY61_REG_ORIENTATION,
sensor->hflip | (sensor->vflip << 1), NULL);
if (ret)
return ret;
ret = vgxy61_apply_patgen(sensor, sensor->pattern);
if (ret)
return ret;
for (i = 0; i < VGXY61_NB_GPIOS; i++) {
ret = vgxy61_apply_gpiox_strobe_mode(sensor,
sensor->strobe_mode, i);
if (ret)
return ret;
}
return 0;
}
static int vgxy61_stream_enable(struct vgxy61_dev *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->sd);
const struct v4l2_rect *crop = &sensor->current_mode->crop;
int ret = 0;
ret = vgxy61_check_bw(sensor);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(&client->dev);
if (ret)
return ret;
cci_write(sensor->regmap, VGXY61_REG_FORMAT_CTRL,
get_bpp_by_code(sensor->fmt.code), &ret);
cci_write(sensor->regmap, VGXY61_REG_OIF_ROI0_CTRL,
get_data_type_by_code(sensor->fmt.code), &ret);
cci_write(sensor->regmap, VGXY61_REG_READOUT_CTRL,
sensor->current_mode->bin_mode, &ret);
cci_write(sensor->regmap, VGXY61_REG_ROI0_START_H, crop->left, &ret);
cci_write(sensor->regmap, VGXY61_REG_ROI0_END_H,
crop->left + crop->width - 1, &ret);
cci_write(sensor->regmap, VGXY61_REG_ROI0_START_V, crop->top, &ret);
cci_write(sensor->regmap, VGXY61_REG_ROI0_END_V,
crop->top + crop->height - 1, &ret);
if (ret)
goto err_rpm_put;
ret = vgxy61_apply_settings(sensor);
if (ret)
goto err_rpm_put;
ret = cci_write(sensor->regmap, VGXY61_REG_STREAMING,
VGXY61_STREAMING_REQ_START, NULL);
if (ret)
goto err_rpm_put;
ret = vgxy61_poll_reg(sensor, VGXY61_REG_STREAMING,
VGXY61_STREAMING_NO_REQ, VGXY61_TIMEOUT_MS);
if (ret)
goto err_rpm_put;
ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_STREAMING,
VGXY61_TIMEOUT_MS);
if (ret)
goto err_rpm_put;
/* vflip and hflip cannot change during streaming */
__v4l2_ctrl_grab(sensor->vflip_ctrl, true);
__v4l2_ctrl_grab(sensor->hflip_ctrl, true);
return 0;
err_rpm_put:
pm_runtime_put(&client->dev);
return ret;
}
static int vgxy61_stream_disable(struct vgxy61_dev *sensor)
{
struct i2c_client *client = v4l2_get_subdevdata(&sensor->sd);
int ret;
ret = cci_write(sensor->regmap, VGXY61_REG_STREAMING,
VGXY61_STREAMING_REQ_STOP, NULL);
if (ret)
goto err_str_dis;
ret = vgxy61_poll_reg(sensor, VGXY61_REG_STREAMING,
VGXY61_STREAMING_NO_REQ, 2000);
if (ret)
goto err_str_dis;
ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY,
VGXY61_TIMEOUT_MS);
if (ret)
goto err_str_dis;
__v4l2_ctrl_grab(sensor->vflip_ctrl, false);
__v4l2_ctrl_grab(sensor->hflip_ctrl, false);
err_str_dis:
if (ret)
WARN(1, "Can't disable stream");
pm_runtime_put(&client->dev);
return ret;
}
static int vgxy61_s_stream(struct v4l2_subdev *sd, int enable)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
int ret = 0;
mutex_lock(&sensor->lock);
ret = enable ? vgxy61_stream_enable(sensor) :
vgxy61_stream_disable(sensor);
if (!ret)
sensor->streaming = enable;
mutex_unlock(&sensor->lock);
return ret;
}
static int vgxy61_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
const struct vgxy61_mode_info *new_mode;
struct v4l2_mbus_framefmt *fmt;
int ret;
mutex_lock(&sensor->lock);
if (sensor->streaming) {
ret = -EBUSY;
goto out;
}
ret = vgxy61_try_fmt_internal(sd, &format->format, &new_mode);
if (ret)
goto out;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
fmt = v4l2_subdev_state_get_format(sd_state, 0);
*fmt = format->format;
} else if (sensor->current_mode != new_mode ||
sensor->fmt.code != format->format.code) {
fmt = &sensor->fmt;
*fmt = format->format;
sensor->current_mode = new_mode;
/* Reset vblank and framelength to default */
ret = vgxy61_update_vblank(sensor,
VGXY61_FRAME_LENGTH_DEF -
new_mode->crop.height,
sensor->hdr);
/* Update controls to reflect new mode */
__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_ctrl,
get_pixel_rate(sensor));
__v4l2_ctrl_modify_range(sensor->vblank_ctrl,
sensor->vblank_min,
0xffff - new_mode->crop.height,
1, sensor->vblank);
__v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, sensor->vblank);
__v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min,
sensor->expo_max, 1,
sensor->expo_long);
}
out:
mutex_unlock(&sensor->lock);
return ret;
}
static int vgxy61_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
struct v4l2_subdev_format fmt = { 0 };
vgxy61_fill_framefmt(sensor, sensor->current_mode, &fmt.format,
VGXY61_MEDIA_BUS_FMT_DEF);
return vgxy61_set_fmt(sd, sd_state, &fmt);
}
static int vgxy61_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
const struct vgxy61_mode_info *cur_mode = sensor->current_mode;
int ret;
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
ret = vgxy61_update_exposure(sensor, ctrl->val, sensor->hdr);
ctrl->val = sensor->expo_long;
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = vgxy61_update_analog_gain(sensor, ctrl->val);
break;
case V4L2_CID_DIGITAL_GAIN:
ret = vgxy61_update_digital_gain(sensor, ctrl->val);
break;
case V4L2_CID_VFLIP:
case V4L2_CID_HFLIP:
if (sensor->streaming) {
ret = -EBUSY;
break;
}
if (ctrl->id == V4L2_CID_VFLIP)
sensor->vflip = ctrl->val;
if (ctrl->id == V4L2_CID_HFLIP)
sensor->hflip = ctrl->val;
ret = 0;
break;
case V4L2_CID_TEST_PATTERN:
ret = vgxy61_update_patgen(sensor, ctrl->val);
break;
case V4L2_CID_HDR_SENSOR_MODE:
ret = vgxy61_update_hdr(sensor, ctrl->val);
/* Update vblank and exposure controls to match new hdr */
__v4l2_ctrl_modify_range(sensor->vblank_ctrl,
sensor->vblank_min,
0xffff - cur_mode->crop.height,
1, sensor->vblank);
__v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min,
sensor->expo_max, 1,
sensor->expo_long);
break;
case V4L2_CID_VBLANK:
ret = vgxy61_update_vblank(sensor, ctrl->val, sensor->hdr);
/* Update exposure control to match new vblank */
__v4l2_ctrl_modify_range(sensor->expo_ctrl, sensor->expo_min,
sensor->expo_max, 1,
sensor->expo_long);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct v4l2_ctrl_ops vgxy61_ctrl_ops = {
.s_ctrl = vgxy61_s_ctrl,
};
static int vgxy61_init_controls(struct vgxy61_dev *sensor)
{
const struct v4l2_ctrl_ops *ops = &vgxy61_ctrl_ops;
struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler;
const struct vgxy61_mode_info *cur_mode = sensor->current_mode;
struct v4l2_fwnode_device_properties props;
struct v4l2_ctrl *ctrl;
int ret;
v4l2_ctrl_handler_init(hdl, 16);
/* We can use our own mutex for the ctrl lock */
hdl->lock = &sensor->lock;
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, 0, 0x1c, 1,
sensor->analog_gain);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN, 0, 0xfff, 1,
sensor->digital_gain);
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(vgxy61_test_pattern_menu) - 1,
0, 0, vgxy61_test_pattern_menu);
ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 0,
sensor->line_length, 1,
sensor->line_length - cur_mode->width);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ,
ARRAY_SIZE(link_freq) - 1, 0, link_freq);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_HDR_SENSOR_MODE,
ARRAY_SIZE(vgxy61_hdr_mode_menu) - 1, 0,
VGXY61_NO_HDR, vgxy61_hdr_mode_menu);
/*
* Keep a pointer to these controls as we need to update them when
* setting the format
*/
sensor->pixel_rate_ctrl = v4l2_ctrl_new_std(hdl, ops,
V4L2_CID_PIXEL_RATE, 1,
INT_MAX, 1,
get_pixel_rate(sensor));
if (sensor->pixel_rate_ctrl)
sensor->pixel_rate_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
sensor->expo_min,
sensor->expo_max, 1,
sensor->expo_long);
sensor->vblank_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK,
sensor->vblank_min,
0xffff - cur_mode->crop.height,
1, sensor->vblank);
sensor->vflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP,
0, 1, 1, sensor->vflip);
sensor->hflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP,
0, 1, 1, sensor->hflip);
if (hdl->error) {
ret = hdl->error;
goto free_ctrls;
}
ret = v4l2_fwnode_device_parse(&sensor->i2c_client->dev, &props);
if (ret)
goto free_ctrls;
ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &props);
if (ret)
goto free_ctrls;
sensor->sd.ctrl_handler = hdl;
return 0;
free_ctrls:
v4l2_ctrl_handler_free(hdl);
return ret;
}
static const struct v4l2_subdev_core_ops vgxy61_core_ops = {
.subscribe_event = v4l2_ctrl_subdev_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static const struct v4l2_subdev_video_ops vgxy61_video_ops = {
.s_stream = vgxy61_s_stream,
};
static const struct v4l2_subdev_pad_ops vgxy61_pad_ops = {
.enum_mbus_code = vgxy61_enum_mbus_code,
.get_fmt = vgxy61_get_fmt,
.set_fmt = vgxy61_set_fmt,
.get_selection = vgxy61_get_selection,
.enum_frame_size = vgxy61_enum_frame_size,
};
static const struct v4l2_subdev_ops vgxy61_subdev_ops = {
.core = &vgxy61_core_ops,
.video = &vgxy61_video_ops,
.pad = &vgxy61_pad_ops,
};
static const struct v4l2_subdev_internal_ops vgxy61_internal_ops = {
.init_state = vgxy61_init_state,
};
static const struct media_entity_operations vgxy61_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int vgxy61_tx_from_ep(struct vgxy61_dev *sensor,
struct fwnode_handle *handle)
{
struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
struct i2c_client *client = sensor->i2c_client;
u32 log2phy[VGXY61_NB_POLARITIES] = {~0, ~0, ~0, ~0, ~0};
u32 phy2log[VGXY61_NB_POLARITIES] = {~0, ~0, ~0, ~0, ~0};
int polarities[VGXY61_NB_POLARITIES] = {0, 0, 0, 0, 0};
int l_nb;
unsigned int p, l, i;
int ret;
ret = v4l2_fwnode_endpoint_alloc_parse(handle, &ep);
if (ret)
return -EINVAL;
l_nb = ep.bus.mipi_csi2.num_data_lanes;
if (l_nb != 1 && l_nb != 2 && l_nb != 4) {
dev_err(&client->dev, "invalid data lane number %d\n", l_nb);
goto error_ep;
}
/* Build log2phy, phy2log and polarities from ep info */
log2phy[0] = ep.bus.mipi_csi2.clock_lane;
phy2log[log2phy[0]] = 0;
for (l = 1; l < l_nb + 1; l++) {
log2phy[l] = ep.bus.mipi_csi2.data_lanes[l - 1];
phy2log[log2phy[l]] = l;
}
/*
* Then fill remaining slots for every physical slot to have something
* valid for hardware stuff.
*/
for (p = 0; p < VGXY61_NB_POLARITIES; p++) {
if (phy2log[p] != ~0)
continue;
phy2log[p] = l;
log2phy[l] = p;
l++;
}
for (l = 0; l < l_nb + 1; l++)
polarities[l] = ep.bus.mipi_csi2.lane_polarities[l];
if (log2phy[0] != 0) {
dev_err(&client->dev, "clk lane must be map to physical lane 0\n");
goto error_ep;
}
sensor->oif_ctrl = (polarities[4] << 15) + ((phy2log[4] - 1) << 13) +
(polarities[3] << 12) + ((phy2log[3] - 1) << 10) +
(polarities[2] << 9) + ((phy2log[2] - 1) << 7) +
(polarities[1] << 6) + ((phy2log[1] - 1) << 4) +
(polarities[0] << 3) +
l_nb;
sensor->nb_of_lane = l_nb;
dev_dbg(&client->dev, "tx uses %d lanes", l_nb);
for (i = 0; i < VGXY61_NB_POLARITIES; i++) {
dev_dbg(&client->dev, "log2phy[%d] = %d\n", i, log2phy[i]);
dev_dbg(&client->dev, "phy2log[%d] = %d\n", i, phy2log[i]);
dev_dbg(&client->dev, "polarity[%d] = %d\n", i, polarities[i]);
}
dev_dbg(&client->dev, "oif_ctrl = 0x%04x\n", sensor->oif_ctrl);
v4l2_fwnode_endpoint_free(&ep);
return 0;
error_ep:
v4l2_fwnode_endpoint_free(&ep);
return -EINVAL;
}
static int vgxy61_configure(struct vgxy61_dev *sensor)
{
u32 sensor_freq;
u8 prediv, mult;
u64 line_length;
int ret = 0;
compute_pll_parameters_by_freq(sensor->clk_freq, &prediv, &mult);
sensor_freq = (mult * sensor->clk_freq) / prediv;
/* Frequency to data rate is 1:1 ratio for MIPI */
sensor->data_rate_in_mbps = sensor_freq;
/* Video timing ISP path (pixel clock) requires 804/5 mhz = 160 mhz */
sensor->pclk = sensor_freq / 5;
cci_read(sensor->regmap, VGXY61_REG_LINE_LENGTH, &line_length, &ret);
if (ret < 0)
return ret;
sensor->line_length = (u16)line_length;
cci_write(sensor->regmap, VGXY61_REG_EXT_CLOCK, sensor->clk_freq, &ret);
cci_write(sensor->regmap, VGXY61_REG_CLK_PLL_PREDIV, prediv, &ret);
cci_write(sensor->regmap, VGXY61_REG_CLK_SYS_PLL_MULT, mult, &ret);
cci_write(sensor->regmap, VGXY61_REG_OIF_CTRL, sensor->oif_ctrl, &ret);
cci_write(sensor->regmap, VGXY61_REG_FRAME_CONTENT_CTRL, 0, &ret);
cci_write(sensor->regmap, VGXY61_REG_BYPASS_CTRL, 4, &ret);
if (ret)
return ret;
vgxy61_update_gpios_strobe_polarity(sensor, sensor->gpios_polarity);
/* Set pattern generator solid to middle value */
cci_write(sensor->regmap, VGXY61_REG_PATGEN_LONG_DATA_GR, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_LONG_DATA_R, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_LONG_DATA_B, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_LONG_DATA_GB, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_SHORT_DATA_GR, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_SHORT_DATA_R, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_SHORT_DATA_B, 0x800, &ret);
cci_write(sensor->regmap, VGXY61_REG_PATGEN_SHORT_DATA_GB, 0x800, &ret);
if (ret)
return ret;
return 0;
}
static int vgxy61_patch(struct vgxy61_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
u64 patch;
int ret;
ret = vgxy61_write_array(sensor, VGXY61_REG_FWPATCH_START_ADDR,
sizeof(patch_array), patch_array);
cci_write(sensor->regmap, VGXY61_REG_STBY, 0x10, &ret);
if (ret)
return ret;
ret = vgxy61_poll_reg(sensor, VGXY61_REG_STBY, 0, VGXY61_TIMEOUT_MS);
cci_read(sensor->regmap, VGXY61_REG_FWPATCH_REVISION, &patch, &ret);
if (ret < 0)
return ret;
if (patch != (VGXY61_FWPATCH_REVISION_MAJOR << 12) +
(VGXY61_FWPATCH_REVISION_MINOR << 8) +
VGXY61_FWPATCH_REVISION_MICRO) {
dev_err(&client->dev,
"bad patch version expected %d.%d.%d got %u.%u.%u\n",
VGXY61_FWPATCH_REVISION_MAJOR,
VGXY61_FWPATCH_REVISION_MINOR,
VGXY61_FWPATCH_REVISION_MICRO,
(u16)patch >> 12, ((u16)patch >> 8) & 0x0f, (u16)patch & 0xff);
return -ENODEV;
}
dev_dbg(&client->dev, "patch %u.%u.%u applied\n",
(u16)patch >> 12, ((u16)patch >> 8) & 0x0f, (u16)patch & 0xff);
return 0;
}
static int vgxy61_detect_cut_version(struct vgxy61_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
u64 device_rev;
int ret;
ret = cci_read(sensor->regmap, VGXY61_REG_REVISION, &device_rev, NULL);
if (ret < 0)
return ret;
switch (device_rev >> 8) {
case 0xA:
dev_dbg(&client->dev, "Cut1 detected\n");
dev_err(&client->dev, "Cut1 not supported by this driver\n");
return -ENODEV;
case 0xB:
dev_dbg(&client->dev, "Cut2 detected\n");
return 0;
case 0xC:
dev_dbg(&client->dev, "Cut3 detected\n");
return 0;
default:
dev_err(&client->dev, "Unable to detect cut version\n");
return -ENODEV;
}
}
static int vgxy61_detect(struct vgxy61_dev *sensor)
{
struct i2c_client *client = sensor->i2c_client;
u64 st, id = 0;
int ret;
ret = cci_read(sensor->regmap, VGXY61_REG_MODEL_ID, &id, NULL);
if (ret < 0)
return ret;
if (id != VG5661_MODEL_ID && id != VG5761_MODEL_ID) {
dev_warn(&client->dev, "Unsupported sensor id %x\n", (u16)id);
return -ENODEV;
}
dev_dbg(&client->dev, "detected sensor id = 0x%04x\n", (u16)id);
sensor->id = id;
ret = vgxy61_wait_state(sensor, VGXY61_SYSTEM_FSM_SW_STBY,
VGXY61_TIMEOUT_MS);
if (ret)
return ret;
ret = cci_read(sensor->regmap, VGXY61_REG_NVM, &st, NULL);
if (ret < 0)
return st;
if (st != VGXY61_NVM_OK)
dev_warn(&client->dev, "Bad nvm state got %u\n", (u8)st);
ret = vgxy61_detect_cut_version(sensor);
if (ret)
return ret;
return 0;
}
/* Power/clock management functions */
static int vgxy61_power_on(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(vgxy61_supply_name),
sensor->supplies);
if (ret) {
dev_err(&client->dev, "failed to enable regulators %d\n", ret);
return ret;
}
ret = clk_prepare_enable(sensor->xclk);
if (ret) {
dev_err(&client->dev, "failed to enable clock %d\n", ret);
goto disable_bulk;
}
if (sensor->reset_gpio) {
ret = vgxy61_apply_reset(sensor);
if (ret) {
dev_err(&client->dev, "sensor reset failed %d\n", ret);
goto disable_clock;
}
}
ret = vgxy61_detect(sensor);
if (ret) {
dev_err(&client->dev, "sensor detect failed %d\n", ret);
goto disable_clock;
}
ret = vgxy61_patch(sensor);
if (ret) {
dev_err(&client->dev, "sensor patch failed %d\n", ret);
goto disable_clock;
}
ret = vgxy61_configure(sensor);
if (ret) {
dev_err(&client->dev, "sensor configuration failed %d\n", ret);
goto disable_clock;
}
return 0;
disable_clock:
clk_disable_unprepare(sensor->xclk);
disable_bulk:
regulator_bulk_disable(ARRAY_SIZE(vgxy61_supply_name),
sensor->supplies);
return ret;
}
static int vgxy61_power_off(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
clk_disable_unprepare(sensor->xclk);
regulator_bulk_disable(ARRAY_SIZE(vgxy61_supply_name),
sensor->supplies);
return 0;
}
static void vgxy61_fill_sensor_param(struct vgxy61_dev *sensor)
{
if (sensor->id == VG5761_MODEL_ID) {
sensor->sensor_width = VGX761_WIDTH;
sensor->sensor_height = VGX761_HEIGHT;
sensor->sensor_modes = vgx761_mode_data;
sensor->sensor_modes_nb = ARRAY_SIZE(vgx761_mode_data);
sensor->default_mode = &vgx761_mode_data[VGX761_DEFAULT_MODE];
sensor->rot_term = VGX761_SHORT_ROT_TERM;
} else if (sensor->id == VG5661_MODEL_ID) {
sensor->sensor_width = VGX661_WIDTH;
sensor->sensor_height = VGX661_HEIGHT;
sensor->sensor_modes = vgx661_mode_data;
sensor->sensor_modes_nb = ARRAY_SIZE(vgx661_mode_data);
sensor->default_mode = &vgx661_mode_data[VGX661_DEFAULT_MODE];
sensor->rot_term = VGX661_SHORT_ROT_TERM;
} else {
/* Should never happen */
WARN_ON(true);
}
sensor->current_mode = sensor->default_mode;
}
static int vgxy61_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct fwnode_handle *handle;
struct vgxy61_dev *sensor;
int ret;
sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
if (!sensor)
return -ENOMEM;
sensor->i2c_client = client;
sensor->streaming = false;
sensor->hdr = VGXY61_NO_HDR;
sensor->expo_long = 200;
sensor->expo_short = 0;
sensor->hflip = false;
sensor->vflip = false;
sensor->analog_gain = 0;
sensor->digital_gain = 256;
sensor->regmap = devm_cci_regmap_init_i2c(client, 16);
if (IS_ERR(sensor->regmap)) {
ret = PTR_ERR(sensor->regmap);
return dev_err_probe(dev, ret, "Failed to init regmap\n");
}
handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, 0);
if (!handle) {
dev_err(dev, "handle node not found\n");
return -EINVAL;
}
ret = vgxy61_tx_from_ep(sensor, handle);
fwnode_handle_put(handle);
if (ret) {
dev_err(dev, "Failed to parse handle %d\n", ret);
return ret;
}
sensor->xclk = devm_clk_get(dev, NULL);
if (IS_ERR(sensor->xclk)) {
dev_err(dev, "failed to get xclk\n");
return PTR_ERR(sensor->xclk);
}
sensor->clk_freq = clk_get_rate(sensor->xclk);
if (sensor->clk_freq < 6 * HZ_PER_MHZ ||
sensor->clk_freq > 27 * HZ_PER_MHZ) {
dev_err(dev, "Only 6Mhz-27Mhz clock range supported. provide %lu MHz\n",
sensor->clk_freq / HZ_PER_MHZ);
return -EINVAL;
}
sensor->gpios_polarity =
device_property_read_bool(dev, "st,strobe-gpios-polarity");
v4l2_i2c_subdev_init(&sensor->sd, client, &vgxy61_subdev_ops);
sensor->sd.internal_ops = &vgxy61_internal_ops;
sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
sensor->sd.entity.ops = &vgxy61_subdev_entity_ops;
sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_HIGH);
ret = vgxy61_get_regulators(sensor);
if (ret) {
dev_err(&client->dev, "failed to get regulators %d\n", ret);
return ret;
}
ret = vgxy61_power_on(dev);
if (ret)
return ret;
vgxy61_fill_sensor_param(sensor);
vgxy61_fill_framefmt(sensor, sensor->current_mode, &sensor->fmt,
VGXY61_MEDIA_BUS_FMT_DEF);
mutex_init(&sensor->lock);
ret = vgxy61_update_hdr(sensor, sensor->hdr);
if (ret)
goto error_power_off;
ret = vgxy61_init_controls(sensor);
if (ret) {
dev_err(&client->dev, "controls initialization failed %d\n",
ret);
goto error_power_off;
}
ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad);
if (ret) {
dev_err(&client->dev, "pads init failed %d\n", ret);
goto error_handler_free;
}
/* Enable runtime PM and turn off the device */
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
ret = v4l2_async_register_subdev(&sensor->sd);
if (ret) {
dev_err(&client->dev, "async subdev register failed %d\n", ret);
goto error_pm_runtime;
}
pm_runtime_set_autosuspend_delay(&client->dev, 1000);
pm_runtime_use_autosuspend(&client->dev);
dev_dbg(&client->dev, "vgxy61 probe successfully\n");
return 0;
error_pm_runtime:
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
media_entity_cleanup(&sensor->sd.entity);
error_handler_free:
v4l2_ctrl_handler_free(sensor->sd.ctrl_handler);
error_power_off:
mutex_destroy(&sensor->lock);
vgxy61_power_off(dev);
return ret;
}
static void vgxy61_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct vgxy61_dev *sensor = to_vgxy61_dev(sd);
v4l2_async_unregister_subdev(&sensor->sd);
mutex_destroy(&sensor->lock);
media_entity_cleanup(&sensor->sd.entity);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
vgxy61_power_off(&client->dev);
pm_runtime_set_suspended(&client->dev);
}
static const struct of_device_id vgxy61_dt_ids[] = {
{ .compatible = "st,st-vgxy61" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, vgxy61_dt_ids);
static const struct dev_pm_ops vgxy61_pm_ops = {
SET_RUNTIME_PM_OPS(vgxy61_power_off, vgxy61_power_on, NULL)
};
static struct i2c_driver vgxy61_i2c_driver = {
.driver = {
.name = "vgxy61",
.of_match_table = vgxy61_dt_ids,
.pm = &vgxy61_pm_ops,
},
.probe = vgxy61_probe,
.remove = vgxy61_remove,
};
module_i2c_driver(vgxy61_i2c_driver);
MODULE_AUTHOR("Benjamin Mugnier <benjamin.mugnier@foss.st.com>");
MODULE_AUTHOR("Mickael Guene <mickael.guene@st.com>");
MODULE_AUTHOR("Sylvain Petinot <sylvain.petinot@foss.st.com>");
MODULE_DESCRIPTION("VGXY61 camera subdev driver");
MODULE_LICENSE("GPL");