linux/rust/kernel/alloc.rs
Danilo Krummrich 5a888c28e3 rust: alloc: add module allocator_test
`Allocator`s, such as `Kmalloc`, will be used by e.g. `Box` and `Vec` in
subsequent patches, and hence this dependency propagates throughout the
whole kernel.

Add the `allocator_test` module that provides an empty implementation
for all `Allocator`s in the kernel, such that we don't break the
`rusttest` make target in subsequent patches.

Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
Link: https://lore.kernel.org/r/20241004154149.93856-8-dakr@kernel.org
[ Added missing `_old_layout` parameter as discussed. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-10-15 22:56:59 +02:00

204 lines
7.8 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Extensions to the [`alloc`] crate.
#[cfg(not(any(test, testlib)))]
pub mod allocator;
pub mod box_ext;
pub mod vec_ext;
#[cfg(any(test, testlib))]
pub mod allocator_test;
#[cfg(any(test, testlib))]
pub use self::allocator_test as allocator;
/// Indicates an allocation error.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct AllocError;
use core::{alloc::Layout, ptr::NonNull};
/// Flags to be used when allocating memory.
///
/// They can be combined with the operators `|`, `&`, and `!`.
///
/// Values can be used from the [`flags`] module.
#[derive(Clone, Copy)]
pub struct Flags(u32);
impl Flags {
/// Get the raw representation of this flag.
pub(crate) fn as_raw(self) -> u32 {
self.0
}
}
impl core::ops::BitOr for Flags {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl core::ops::BitAnd for Flags {
type Output = Self;
fn bitand(self, rhs: Self) -> Self::Output {
Self(self.0 & rhs.0)
}
}
impl core::ops::Not for Flags {
type Output = Self;
fn not(self) -> Self::Output {
Self(!self.0)
}
}
/// Allocation flags.
///
/// These are meant to be used in functions that can allocate memory.
pub mod flags {
use super::Flags;
/// Zeroes out the allocated memory.
///
/// This is normally or'd with other flags.
pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
/// Allow the allocation to be in high memory.
///
/// Allocations in high memory may not be mapped into the kernel's address space, so this can't
/// be used with `kmalloc` and other similar methods.
///
/// This is normally or'd with other flags.
pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
/// Users can not sleep and need the allocation to succeed.
///
/// A lower watermark is applied to allow access to "atomic reserves". The current
/// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
/// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
/// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
/// for direct access but can direct reclaim.
pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
/// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
/// For kernel allocations that should not stall for direct reclaim, start physical IO or
/// use any filesystem callback. It is very likely to fail to allocate memory, even for very
/// small allocations.
pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
}
/// The kernel's [`Allocator`] trait.
///
/// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
/// via [`Layout`].
///
/// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
/// an object instance.
///
/// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
/// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
/// of `self` parameter.
///
/// # Safety
///
/// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
///
/// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
/// function of the same type.
///
/// - Implementers must ensure that all trait functions abide by the guarantees documented in the
/// `# Guarantees` sections.
pub unsafe trait Allocator {
/// Allocate memory based on `layout` and `flags`.
///
/// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
/// constraints (i.e. minimum size and alignment as specified by `layout`).
///
/// This function is equivalent to `realloc` when called with `None`.
///
/// # Guarantees
///
/// When the return value is `Ok(ptr)`, then `ptr` is
/// - valid for reads and writes for `layout.size()` bytes, until it is passed to
/// [`Allocator::free`] or [`Allocator::realloc`],
/// - aligned to `layout.align()`,
///
/// Additionally, `Flags` are honored as documented in
/// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
// SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
// new memory allocation.
unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
}
/// Re-allocate an existing memory allocation to satisfy the requested `layout`.
///
/// If the requested size is zero, `realloc` behaves equivalent to `free`.
///
/// If the requested size is larger than the size of the existing allocation, a successful call
/// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
/// may also be larger.
///
/// If the requested size is smaller than the size of the existing allocation, `realloc` may or
/// may not shrink the buffer; this is implementation specific to the allocator.
///
/// On allocation failure, the existing buffer, if any, remains valid.
///
/// The buffer is represented as `NonNull<[u8]>`.
///
/// # Safety
///
/// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
/// created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
/// pointer returned by this [`Allocator`].
/// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
/// `old_layout` is ignored.
/// - `old_layout` must match the `Layout` the allocation has been created with.
///
/// # Guarantees
///
/// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
/// it additionally guarantees that:
/// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
/// and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
/// p[0..min(layout.size(), old_layout.size())]`.
/// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
unsafe fn realloc(
ptr: Option<NonNull<u8>>,
layout: Layout,
old_layout: Layout,
flags: Flags,
) -> Result<NonNull<[u8]>, AllocError>;
/// Free an existing memory allocation.
///
/// # Safety
///
/// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
/// if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
/// [`Allocator`].
/// - `layout` must match the `Layout` the allocation has been created with.
/// - The memory allocation at `ptr` must never again be read from or written to.
unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
// SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
// allocator. We are passing a `Layout` with the smallest possible alignment, so it is
// smaller than or equal to the alignment previously used with this allocation.
let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
}
}
#[allow(dead_code)]
/// Returns a properly aligned dangling pointer from the given `layout`.
pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
let ptr = layout.align() as *mut u8;
// SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
unsafe { NonNull::new_unchecked(ptr) }
}