mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-18 02:46:06 +00:00
0a31bd5f2b
This patch provides a new macro KMEM_CACHE(<struct>, <flags>) to simplify slab creation. KMEM_CACHE creates a slab with the name of the struct, with the size of the struct and with the alignment of the struct. Additional slab flags may be specified if necessary. Example struct test_slab { int a,b,c; struct list_head; } __cacheline_aligned_in_smp; test_slab_cache = KMEM_CACHE(test_slab, SLAB_PANIC) will create a new slab named "test_slab" of the size sizeof(struct test_slab) and aligned to the alignment of test slab. If it fails then we panic. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2255 lines
53 KiB
C
2255 lines
53 KiB
C
/*
|
|
* CFQ, or complete fairness queueing, disk scheduler.
|
|
*
|
|
* Based on ideas from a previously unfinished io
|
|
* scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
|
|
*
|
|
* Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/elevator.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/ioprio.h>
|
|
|
|
/*
|
|
* tunables
|
|
*/
|
|
static const int cfq_quantum = 4; /* max queue in one round of service */
|
|
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
|
|
static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
|
|
static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
|
|
|
|
static const int cfq_slice_sync = HZ / 10;
|
|
static int cfq_slice_async = HZ / 25;
|
|
static const int cfq_slice_async_rq = 2;
|
|
static int cfq_slice_idle = HZ / 125;
|
|
|
|
/*
|
|
* grace period before allowing idle class to get disk access
|
|
*/
|
|
#define CFQ_IDLE_GRACE (HZ / 10)
|
|
|
|
/*
|
|
* below this threshold, we consider thinktime immediate
|
|
*/
|
|
#define CFQ_MIN_TT (2)
|
|
|
|
#define CFQ_SLICE_SCALE (5)
|
|
|
|
#define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
|
|
#define RQ_CFQQ(rq) ((rq)->elevator_private2)
|
|
|
|
static struct kmem_cache *cfq_pool;
|
|
static struct kmem_cache *cfq_ioc_pool;
|
|
|
|
static DEFINE_PER_CPU(unsigned long, ioc_count);
|
|
static struct completion *ioc_gone;
|
|
|
|
#define CFQ_PRIO_LISTS IOPRIO_BE_NR
|
|
#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
|
|
#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
|
|
|
|
#define ASYNC (0)
|
|
#define SYNC (1)
|
|
|
|
#define sample_valid(samples) ((samples) > 80)
|
|
|
|
/*
|
|
* Most of our rbtree usage is for sorting with min extraction, so
|
|
* if we cache the leftmost node we don't have to walk down the tree
|
|
* to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
|
|
* move this into the elevator for the rq sorting as well.
|
|
*/
|
|
struct cfq_rb_root {
|
|
struct rb_root rb;
|
|
struct rb_node *left;
|
|
};
|
|
#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
|
|
|
|
/*
|
|
* Per block device queue structure
|
|
*/
|
|
struct cfq_data {
|
|
request_queue_t *queue;
|
|
|
|
/*
|
|
* rr list of queues with requests and the count of them
|
|
*/
|
|
struct cfq_rb_root service_tree;
|
|
unsigned int busy_queues;
|
|
|
|
int rq_in_driver;
|
|
int sync_flight;
|
|
int hw_tag;
|
|
|
|
/*
|
|
* idle window management
|
|
*/
|
|
struct timer_list idle_slice_timer;
|
|
struct work_struct unplug_work;
|
|
|
|
struct cfq_queue *active_queue;
|
|
struct cfq_io_context *active_cic;
|
|
|
|
struct timer_list idle_class_timer;
|
|
|
|
sector_t last_position;
|
|
unsigned long last_end_request;
|
|
|
|
/*
|
|
* tunables, see top of file
|
|
*/
|
|
unsigned int cfq_quantum;
|
|
unsigned int cfq_fifo_expire[2];
|
|
unsigned int cfq_back_penalty;
|
|
unsigned int cfq_back_max;
|
|
unsigned int cfq_slice[2];
|
|
unsigned int cfq_slice_async_rq;
|
|
unsigned int cfq_slice_idle;
|
|
|
|
struct list_head cic_list;
|
|
|
|
sector_t new_seek_mean;
|
|
u64 new_seek_total;
|
|
};
|
|
|
|
/*
|
|
* Per process-grouping structure
|
|
*/
|
|
struct cfq_queue {
|
|
/* reference count */
|
|
atomic_t ref;
|
|
/* parent cfq_data */
|
|
struct cfq_data *cfqd;
|
|
/* service_tree member */
|
|
struct rb_node rb_node;
|
|
/* service_tree key */
|
|
unsigned long rb_key;
|
|
/* sorted list of pending requests */
|
|
struct rb_root sort_list;
|
|
/* if fifo isn't expired, next request to serve */
|
|
struct request *next_rq;
|
|
/* requests queued in sort_list */
|
|
int queued[2];
|
|
/* currently allocated requests */
|
|
int allocated[2];
|
|
/* pending metadata requests */
|
|
int meta_pending;
|
|
/* fifo list of requests in sort_list */
|
|
struct list_head fifo;
|
|
|
|
unsigned long slice_end;
|
|
long slice_resid;
|
|
|
|
/* number of requests that are on the dispatch list or inside driver */
|
|
int dispatched;
|
|
|
|
/* io prio of this group */
|
|
unsigned short ioprio, org_ioprio;
|
|
unsigned short ioprio_class, org_ioprio_class;
|
|
|
|
/* various state flags, see below */
|
|
unsigned int flags;
|
|
|
|
sector_t last_request_pos;
|
|
};
|
|
|
|
enum cfqq_state_flags {
|
|
CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
|
|
CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
|
|
CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
|
|
CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
|
|
CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
|
|
CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
|
|
CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
|
|
CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
|
|
CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
|
|
CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
|
|
CFQ_CFQQ_FLAG_sync, /* synchronous queue */
|
|
};
|
|
|
|
#define CFQ_CFQQ_FNS(name) \
|
|
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
|
|
{ \
|
|
cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
|
|
} \
|
|
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
|
|
{ \
|
|
cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
|
|
} \
|
|
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
|
|
{ \
|
|
return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
|
|
}
|
|
|
|
CFQ_CFQQ_FNS(on_rr);
|
|
CFQ_CFQQ_FNS(wait_request);
|
|
CFQ_CFQQ_FNS(must_alloc);
|
|
CFQ_CFQQ_FNS(must_alloc_slice);
|
|
CFQ_CFQQ_FNS(must_dispatch);
|
|
CFQ_CFQQ_FNS(fifo_expire);
|
|
CFQ_CFQQ_FNS(idle_window);
|
|
CFQ_CFQQ_FNS(prio_changed);
|
|
CFQ_CFQQ_FNS(queue_new);
|
|
CFQ_CFQQ_FNS(slice_new);
|
|
CFQ_CFQQ_FNS(sync);
|
|
#undef CFQ_CFQQ_FNS
|
|
|
|
static void cfq_dispatch_insert(request_queue_t *, struct request *);
|
|
static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
|
|
struct task_struct *, gfp_t);
|
|
static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
|
|
struct io_context *);
|
|
|
|
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
|
|
int is_sync)
|
|
{
|
|
return cic->cfqq[!!is_sync];
|
|
}
|
|
|
|
static inline void cic_set_cfqq(struct cfq_io_context *cic,
|
|
struct cfq_queue *cfqq, int is_sync)
|
|
{
|
|
cic->cfqq[!!is_sync] = cfqq;
|
|
}
|
|
|
|
/*
|
|
* We regard a request as SYNC, if it's either a read or has the SYNC bit
|
|
* set (in which case it could also be direct WRITE).
|
|
*/
|
|
static inline int cfq_bio_sync(struct bio *bio)
|
|
{
|
|
if (bio_data_dir(bio) == READ || bio_sync(bio))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* scheduler run of queue, if there are requests pending and no one in the
|
|
* driver that will restart queueing
|
|
*/
|
|
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
|
|
{
|
|
if (cfqd->busy_queues)
|
|
kblockd_schedule_work(&cfqd->unplug_work);
|
|
}
|
|
|
|
static int cfq_queue_empty(request_queue_t *q)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
return !cfqd->busy_queues;
|
|
}
|
|
|
|
/*
|
|
* Scale schedule slice based on io priority. Use the sync time slice only
|
|
* if a queue is marked sync and has sync io queued. A sync queue with async
|
|
* io only, should not get full sync slice length.
|
|
*/
|
|
static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
|
|
unsigned short prio)
|
|
{
|
|
const int base_slice = cfqd->cfq_slice[sync];
|
|
|
|
WARN_ON(prio >= IOPRIO_BE_NR);
|
|
|
|
return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
|
|
}
|
|
|
|
static inline int
|
|
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
|
|
}
|
|
|
|
static inline void
|
|
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
|
|
}
|
|
|
|
/*
|
|
* We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
|
|
* isn't valid until the first request from the dispatch is activated
|
|
* and the slice time set.
|
|
*/
|
|
static inline int cfq_slice_used(struct cfq_queue *cfqq)
|
|
{
|
|
if (cfq_cfqq_slice_new(cfqq))
|
|
return 0;
|
|
if (time_before(jiffies, cfqq->slice_end))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Lifted from AS - choose which of rq1 and rq2 that is best served now.
|
|
* We choose the request that is closest to the head right now. Distance
|
|
* behind the head is penalized and only allowed to a certain extent.
|
|
*/
|
|
static struct request *
|
|
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
|
|
{
|
|
sector_t last, s1, s2, d1 = 0, d2 = 0;
|
|
unsigned long back_max;
|
|
#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
|
|
#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
|
|
unsigned wrap = 0; /* bit mask: requests behind the disk head? */
|
|
|
|
if (rq1 == NULL || rq1 == rq2)
|
|
return rq2;
|
|
if (rq2 == NULL)
|
|
return rq1;
|
|
|
|
if (rq_is_sync(rq1) && !rq_is_sync(rq2))
|
|
return rq1;
|
|
else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
|
|
return rq2;
|
|
if (rq_is_meta(rq1) && !rq_is_meta(rq2))
|
|
return rq1;
|
|
else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
|
|
return rq2;
|
|
|
|
s1 = rq1->sector;
|
|
s2 = rq2->sector;
|
|
|
|
last = cfqd->last_position;
|
|
|
|
/*
|
|
* by definition, 1KiB is 2 sectors
|
|
*/
|
|
back_max = cfqd->cfq_back_max * 2;
|
|
|
|
/*
|
|
* Strict one way elevator _except_ in the case where we allow
|
|
* short backward seeks which are biased as twice the cost of a
|
|
* similar forward seek.
|
|
*/
|
|
if (s1 >= last)
|
|
d1 = s1 - last;
|
|
else if (s1 + back_max >= last)
|
|
d1 = (last - s1) * cfqd->cfq_back_penalty;
|
|
else
|
|
wrap |= CFQ_RQ1_WRAP;
|
|
|
|
if (s2 >= last)
|
|
d2 = s2 - last;
|
|
else if (s2 + back_max >= last)
|
|
d2 = (last - s2) * cfqd->cfq_back_penalty;
|
|
else
|
|
wrap |= CFQ_RQ2_WRAP;
|
|
|
|
/* Found required data */
|
|
|
|
/*
|
|
* By doing switch() on the bit mask "wrap" we avoid having to
|
|
* check two variables for all permutations: --> faster!
|
|
*/
|
|
switch (wrap) {
|
|
case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
|
|
if (d1 < d2)
|
|
return rq1;
|
|
else if (d2 < d1)
|
|
return rq2;
|
|
else {
|
|
if (s1 >= s2)
|
|
return rq1;
|
|
else
|
|
return rq2;
|
|
}
|
|
|
|
case CFQ_RQ2_WRAP:
|
|
return rq1;
|
|
case CFQ_RQ1_WRAP:
|
|
return rq2;
|
|
case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
|
|
default:
|
|
/*
|
|
* Since both rqs are wrapped,
|
|
* start with the one that's further behind head
|
|
* (--> only *one* back seek required),
|
|
* since back seek takes more time than forward.
|
|
*/
|
|
if (s1 <= s2)
|
|
return rq1;
|
|
else
|
|
return rq2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The below is leftmost cache rbtree addon
|
|
*/
|
|
static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
|
|
{
|
|
if (!root->left)
|
|
root->left = rb_first(&root->rb);
|
|
|
|
return root->left;
|
|
}
|
|
|
|
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
|
|
{
|
|
if (root->left == n)
|
|
root->left = NULL;
|
|
|
|
rb_erase(n, &root->rb);
|
|
RB_CLEAR_NODE(n);
|
|
}
|
|
|
|
/*
|
|
* would be nice to take fifo expire time into account as well
|
|
*/
|
|
static struct request *
|
|
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct request *last)
|
|
{
|
|
struct rb_node *rbnext = rb_next(&last->rb_node);
|
|
struct rb_node *rbprev = rb_prev(&last->rb_node);
|
|
struct request *next = NULL, *prev = NULL;
|
|
|
|
BUG_ON(RB_EMPTY_NODE(&last->rb_node));
|
|
|
|
if (rbprev)
|
|
prev = rb_entry_rq(rbprev);
|
|
|
|
if (rbnext)
|
|
next = rb_entry_rq(rbnext);
|
|
else {
|
|
rbnext = rb_first(&cfqq->sort_list);
|
|
if (rbnext && rbnext != &last->rb_node)
|
|
next = rb_entry_rq(rbnext);
|
|
}
|
|
|
|
return cfq_choose_req(cfqd, next, prev);
|
|
}
|
|
|
|
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
|
|
struct cfq_queue *cfqq)
|
|
{
|
|
/*
|
|
* just an approximation, should be ok.
|
|
*/
|
|
return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
|
|
cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
|
|
}
|
|
|
|
/*
|
|
* The cfqd->service_tree holds all pending cfq_queue's that have
|
|
* requests waiting to be processed. It is sorted in the order that
|
|
* we will service the queues.
|
|
*/
|
|
static void cfq_service_tree_add(struct cfq_data *cfqd,
|
|
struct cfq_queue *cfqq, int add_front)
|
|
{
|
|
struct rb_node **p = &cfqd->service_tree.rb.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
unsigned long rb_key;
|
|
int left;
|
|
|
|
if (!add_front) {
|
|
rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
|
|
rb_key += cfqq->slice_resid;
|
|
cfqq->slice_resid = 0;
|
|
} else
|
|
rb_key = 0;
|
|
|
|
if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
|
|
/*
|
|
* same position, nothing more to do
|
|
*/
|
|
if (rb_key == cfqq->rb_key)
|
|
return;
|
|
|
|
cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
|
|
}
|
|
|
|
left = 1;
|
|
while (*p) {
|
|
struct cfq_queue *__cfqq;
|
|
struct rb_node **n;
|
|
|
|
parent = *p;
|
|
__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
|
|
|
|
/*
|
|
* sort RT queues first, we always want to give
|
|
* preference to them. IDLE queues goes to the back.
|
|
* after that, sort on the next service time.
|
|
*/
|
|
if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
|
|
n = &(*p)->rb_left;
|
|
else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
|
|
n = &(*p)->rb_right;
|
|
else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
|
|
n = &(*p)->rb_left;
|
|
else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
|
|
n = &(*p)->rb_right;
|
|
else if (rb_key < __cfqq->rb_key)
|
|
n = &(*p)->rb_left;
|
|
else
|
|
n = &(*p)->rb_right;
|
|
|
|
if (n == &(*p)->rb_right)
|
|
left = 0;
|
|
|
|
p = n;
|
|
}
|
|
|
|
if (left)
|
|
cfqd->service_tree.left = &cfqq->rb_node;
|
|
|
|
cfqq->rb_key = rb_key;
|
|
rb_link_node(&cfqq->rb_node, parent, p);
|
|
rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
|
|
}
|
|
|
|
/*
|
|
* Update cfqq's position in the service tree.
|
|
*/
|
|
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
/*
|
|
* Resorting requires the cfqq to be on the RR list already.
|
|
*/
|
|
if (cfq_cfqq_on_rr(cfqq))
|
|
cfq_service_tree_add(cfqd, cfqq, 0);
|
|
}
|
|
|
|
/*
|
|
* add to busy list of queues for service, trying to be fair in ordering
|
|
* the pending list according to last request service
|
|
*/
|
|
static inline void
|
|
cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
BUG_ON(cfq_cfqq_on_rr(cfqq));
|
|
cfq_mark_cfqq_on_rr(cfqq);
|
|
cfqd->busy_queues++;
|
|
|
|
cfq_resort_rr_list(cfqd, cfqq);
|
|
}
|
|
|
|
/*
|
|
* Called when the cfqq no longer has requests pending, remove it from
|
|
* the service tree.
|
|
*/
|
|
static inline void
|
|
cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
BUG_ON(!cfq_cfqq_on_rr(cfqq));
|
|
cfq_clear_cfqq_on_rr(cfqq);
|
|
|
|
if (!RB_EMPTY_NODE(&cfqq->rb_node))
|
|
cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
|
|
|
|
BUG_ON(!cfqd->busy_queues);
|
|
cfqd->busy_queues--;
|
|
}
|
|
|
|
/*
|
|
* rb tree support functions
|
|
*/
|
|
static inline void cfq_del_rq_rb(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
const int sync = rq_is_sync(rq);
|
|
|
|
BUG_ON(!cfqq->queued[sync]);
|
|
cfqq->queued[sync]--;
|
|
|
|
elv_rb_del(&cfqq->sort_list, rq);
|
|
|
|
if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
cfq_del_cfqq_rr(cfqd, cfqq);
|
|
}
|
|
|
|
static void cfq_add_rq_rb(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
struct request *__alias;
|
|
|
|
cfqq->queued[rq_is_sync(rq)]++;
|
|
|
|
/*
|
|
* looks a little odd, but the first insert might return an alias.
|
|
* if that happens, put the alias on the dispatch list
|
|
*/
|
|
while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
|
|
cfq_dispatch_insert(cfqd->queue, __alias);
|
|
|
|
if (!cfq_cfqq_on_rr(cfqq))
|
|
cfq_add_cfqq_rr(cfqd, cfqq);
|
|
|
|
/*
|
|
* check if this request is a better next-serve candidate
|
|
*/
|
|
cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
|
|
BUG_ON(!cfqq->next_rq);
|
|
}
|
|
|
|
static inline void
|
|
cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
|
|
{
|
|
elv_rb_del(&cfqq->sort_list, rq);
|
|
cfqq->queued[rq_is_sync(rq)]--;
|
|
cfq_add_rq_rb(rq);
|
|
}
|
|
|
|
static struct request *
|
|
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct cfq_io_context *cic;
|
|
struct cfq_queue *cfqq;
|
|
|
|
cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
|
|
if (!cic)
|
|
return NULL;
|
|
|
|
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
|
|
if (cfqq) {
|
|
sector_t sector = bio->bi_sector + bio_sectors(bio);
|
|
|
|
return elv_rb_find(&cfqq->sort_list, sector);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cfq_activate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
cfqd->rq_in_driver++;
|
|
|
|
/*
|
|
* If the depth is larger 1, it really could be queueing. But lets
|
|
* make the mark a little higher - idling could still be good for
|
|
* low queueing, and a low queueing number could also just indicate
|
|
* a SCSI mid layer like behaviour where limit+1 is often seen.
|
|
*/
|
|
if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
|
|
cfqd->hw_tag = 1;
|
|
|
|
cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
|
|
}
|
|
|
|
static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
|
|
WARN_ON(!cfqd->rq_in_driver);
|
|
cfqd->rq_in_driver--;
|
|
}
|
|
|
|
static void cfq_remove_request(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
if (cfqq->next_rq == rq)
|
|
cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
|
|
|
|
list_del_init(&rq->queuelist);
|
|
cfq_del_rq_rb(rq);
|
|
|
|
if (rq_is_meta(rq)) {
|
|
WARN_ON(!cfqq->meta_pending);
|
|
cfqq->meta_pending--;
|
|
}
|
|
}
|
|
|
|
static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct request *__rq;
|
|
|
|
__rq = cfq_find_rq_fmerge(cfqd, bio);
|
|
if (__rq && elv_rq_merge_ok(__rq, bio)) {
|
|
*req = __rq;
|
|
return ELEVATOR_FRONT_MERGE;
|
|
}
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
static void cfq_merged_request(request_queue_t *q, struct request *req,
|
|
int type)
|
|
{
|
|
if (type == ELEVATOR_FRONT_MERGE) {
|
|
struct cfq_queue *cfqq = RQ_CFQQ(req);
|
|
|
|
cfq_reposition_rq_rb(cfqq, req);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cfq_merged_requests(request_queue_t *q, struct request *rq,
|
|
struct request *next)
|
|
{
|
|
/*
|
|
* reposition in fifo if next is older than rq
|
|
*/
|
|
if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
|
|
time_before(next->start_time, rq->start_time))
|
|
list_move(&rq->queuelist, &next->queuelist);
|
|
|
|
cfq_remove_request(next);
|
|
}
|
|
|
|
static int cfq_allow_merge(request_queue_t *q, struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_io_context *cic;
|
|
struct cfq_queue *cfqq;
|
|
|
|
/*
|
|
* Disallow merge of a sync bio into an async request.
|
|
*/
|
|
if (cfq_bio_sync(bio) && !rq_is_sync(rq))
|
|
return 0;
|
|
|
|
/*
|
|
* Lookup the cfqq that this bio will be queued with. Allow
|
|
* merge only if rq is queued there.
|
|
*/
|
|
cic = cfq_cic_rb_lookup(cfqd, current->io_context);
|
|
if (!cic)
|
|
return 0;
|
|
|
|
cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
|
|
if (cfqq == RQ_CFQQ(rq))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
if (cfqq) {
|
|
/*
|
|
* stop potential idle class queues waiting service
|
|
*/
|
|
del_timer(&cfqd->idle_class_timer);
|
|
|
|
cfqq->slice_end = 0;
|
|
cfq_clear_cfqq_must_alloc_slice(cfqq);
|
|
cfq_clear_cfqq_fifo_expire(cfqq);
|
|
cfq_mark_cfqq_slice_new(cfqq);
|
|
cfq_clear_cfqq_queue_new(cfqq);
|
|
}
|
|
|
|
cfqd->active_queue = cfqq;
|
|
}
|
|
|
|
/*
|
|
* current cfqq expired its slice (or was too idle), select new one
|
|
*/
|
|
static void
|
|
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
int timed_out)
|
|
{
|
|
if (cfq_cfqq_wait_request(cfqq))
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
|
|
cfq_clear_cfqq_must_dispatch(cfqq);
|
|
cfq_clear_cfqq_wait_request(cfqq);
|
|
|
|
/*
|
|
* store what was left of this slice, if the queue idled/timed out
|
|
*/
|
|
if (timed_out && !cfq_cfqq_slice_new(cfqq))
|
|
cfqq->slice_resid = cfqq->slice_end - jiffies;
|
|
|
|
cfq_resort_rr_list(cfqd, cfqq);
|
|
|
|
if (cfqq == cfqd->active_queue)
|
|
cfqd->active_queue = NULL;
|
|
|
|
if (cfqd->active_cic) {
|
|
put_io_context(cfqd->active_cic->ioc);
|
|
cfqd->active_cic = NULL;
|
|
}
|
|
}
|
|
|
|
static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
|
|
{
|
|
struct cfq_queue *cfqq = cfqd->active_queue;
|
|
|
|
if (cfqq)
|
|
__cfq_slice_expired(cfqd, cfqq, timed_out);
|
|
}
|
|
|
|
/*
|
|
* Get next queue for service. Unless we have a queue preemption,
|
|
* we'll simply select the first cfqq in the service tree.
|
|
*/
|
|
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq;
|
|
struct rb_node *n;
|
|
|
|
if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
|
|
return NULL;
|
|
|
|
n = cfq_rb_first(&cfqd->service_tree);
|
|
cfqq = rb_entry(n, struct cfq_queue, rb_node);
|
|
|
|
if (cfq_class_idle(cfqq)) {
|
|
unsigned long end;
|
|
|
|
/*
|
|
* if we have idle queues and no rt or be queues had
|
|
* pending requests, either allow immediate service if
|
|
* the grace period has passed or arm the idle grace
|
|
* timer
|
|
*/
|
|
end = cfqd->last_end_request + CFQ_IDLE_GRACE;
|
|
if (time_before(jiffies, end)) {
|
|
mod_timer(&cfqd->idle_class_timer, end);
|
|
cfqq = NULL;
|
|
}
|
|
}
|
|
|
|
return cfqq;
|
|
}
|
|
|
|
/*
|
|
* Get and set a new active queue for service.
|
|
*/
|
|
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq;
|
|
|
|
cfqq = cfq_get_next_queue(cfqd);
|
|
__cfq_set_active_queue(cfqd, cfqq);
|
|
return cfqq;
|
|
}
|
|
|
|
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
|
|
struct request *rq)
|
|
{
|
|
if (rq->sector >= cfqd->last_position)
|
|
return rq->sector - cfqd->last_position;
|
|
else
|
|
return cfqd->last_position - rq->sector;
|
|
}
|
|
|
|
static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
|
|
{
|
|
struct cfq_io_context *cic = cfqd->active_cic;
|
|
|
|
if (!sample_valid(cic->seek_samples))
|
|
return 0;
|
|
|
|
return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
|
|
}
|
|
|
|
static int cfq_close_cooperator(struct cfq_data *cfq_data,
|
|
struct cfq_queue *cfqq)
|
|
{
|
|
/*
|
|
* We should notice if some of the queues are cooperating, eg
|
|
* working closely on the same area of the disk. In that case,
|
|
* we can group them together and don't waste time idling.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
|
|
|
|
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq = cfqd->active_queue;
|
|
struct cfq_io_context *cic;
|
|
unsigned long sl;
|
|
|
|
WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
|
|
WARN_ON(cfq_cfqq_slice_new(cfqq));
|
|
|
|
/*
|
|
* idle is disabled, either manually or by past process history
|
|
*/
|
|
if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
|
|
return;
|
|
|
|
/*
|
|
* task has exited, don't wait
|
|
*/
|
|
cic = cfqd->active_cic;
|
|
if (!cic || !cic->ioc->task)
|
|
return;
|
|
|
|
/*
|
|
* See if this prio level has a good candidate
|
|
*/
|
|
if (cfq_close_cooperator(cfqd, cfqq) &&
|
|
(sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
|
|
return;
|
|
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
cfq_mark_cfqq_wait_request(cfqq);
|
|
|
|
/*
|
|
* we don't want to idle for seeks, but we do want to allow
|
|
* fair distribution of slice time for a process doing back-to-back
|
|
* seeks. so allow a little bit of time for him to submit a new rq
|
|
*/
|
|
sl = cfqd->cfq_slice_idle;
|
|
if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
|
|
sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
|
|
|
|
mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
|
|
}
|
|
|
|
/*
|
|
* Move request from internal lists to the request queue dispatch list.
|
|
*/
|
|
static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
cfq_remove_request(rq);
|
|
cfqq->dispatched++;
|
|
elv_dispatch_sort(q, rq);
|
|
|
|
if (cfq_cfqq_sync(cfqq))
|
|
cfqd->sync_flight++;
|
|
}
|
|
|
|
/*
|
|
* return expired entry, or NULL to just start from scratch in rbtree
|
|
*/
|
|
static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
|
|
{
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
struct request *rq;
|
|
int fifo;
|
|
|
|
if (cfq_cfqq_fifo_expire(cfqq))
|
|
return NULL;
|
|
|
|
cfq_mark_cfqq_fifo_expire(cfqq);
|
|
|
|
if (list_empty(&cfqq->fifo))
|
|
return NULL;
|
|
|
|
fifo = cfq_cfqq_sync(cfqq);
|
|
rq = rq_entry_fifo(cfqq->fifo.next);
|
|
|
|
if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
|
|
return NULL;
|
|
|
|
return rq;
|
|
}
|
|
|
|
static inline int
|
|
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
const int base_rq = cfqd->cfq_slice_async_rq;
|
|
|
|
WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
|
|
|
|
return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
|
|
}
|
|
|
|
/*
|
|
* Select a queue for service. If we have a current active queue,
|
|
* check whether to continue servicing it, or retrieve and set a new one.
|
|
*/
|
|
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
|
|
{
|
|
struct cfq_queue *cfqq;
|
|
|
|
cfqq = cfqd->active_queue;
|
|
if (!cfqq)
|
|
goto new_queue;
|
|
|
|
/*
|
|
* The active queue has run out of time, expire it and select new.
|
|
*/
|
|
if (cfq_slice_used(cfqq))
|
|
goto expire;
|
|
|
|
/*
|
|
* The active queue has requests and isn't expired, allow it to
|
|
* dispatch.
|
|
*/
|
|
if (!RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
goto keep_queue;
|
|
|
|
/*
|
|
* No requests pending. If the active queue still has requests in
|
|
* flight or is idling for a new request, allow either of these
|
|
* conditions to happen (or time out) before selecting a new queue.
|
|
*/
|
|
if (timer_pending(&cfqd->idle_slice_timer) ||
|
|
(cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
|
|
cfqq = NULL;
|
|
goto keep_queue;
|
|
}
|
|
|
|
expire:
|
|
cfq_slice_expired(cfqd, 0);
|
|
new_queue:
|
|
cfqq = cfq_set_active_queue(cfqd);
|
|
keep_queue:
|
|
return cfqq;
|
|
}
|
|
|
|
/*
|
|
* Dispatch some requests from cfqq, moving them to the request queue
|
|
* dispatch list.
|
|
*/
|
|
static int
|
|
__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
int max_dispatch)
|
|
{
|
|
int dispatched = 0;
|
|
|
|
BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
|
|
|
|
do {
|
|
struct request *rq;
|
|
|
|
/*
|
|
* follow expired path, else get first next available
|
|
*/
|
|
if ((rq = cfq_check_fifo(cfqq)) == NULL)
|
|
rq = cfqq->next_rq;
|
|
|
|
/*
|
|
* finally, insert request into driver dispatch list
|
|
*/
|
|
cfq_dispatch_insert(cfqd->queue, rq);
|
|
|
|
dispatched++;
|
|
|
|
if (!cfqd->active_cic) {
|
|
atomic_inc(&RQ_CIC(rq)->ioc->refcount);
|
|
cfqd->active_cic = RQ_CIC(rq);
|
|
}
|
|
|
|
if (RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
break;
|
|
|
|
} while (dispatched < max_dispatch);
|
|
|
|
/*
|
|
* expire an async queue immediately if it has used up its slice. idle
|
|
* queue always expire after 1 dispatch round.
|
|
*/
|
|
if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
|
|
dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
|
|
cfq_class_idle(cfqq))) {
|
|
cfqq->slice_end = jiffies + 1;
|
|
cfq_slice_expired(cfqd, 0);
|
|
}
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
|
|
{
|
|
int dispatched = 0;
|
|
|
|
while (cfqq->next_rq) {
|
|
cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
|
|
dispatched++;
|
|
}
|
|
|
|
BUG_ON(!list_empty(&cfqq->fifo));
|
|
return dispatched;
|
|
}
|
|
|
|
/*
|
|
* Drain our current requests. Used for barriers and when switching
|
|
* io schedulers on-the-fly.
|
|
*/
|
|
static int cfq_forced_dispatch(struct cfq_data *cfqd)
|
|
{
|
|
int dispatched = 0;
|
|
struct rb_node *n;
|
|
|
|
while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
|
|
struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
|
|
|
|
dispatched += __cfq_forced_dispatch_cfqq(cfqq);
|
|
}
|
|
|
|
cfq_slice_expired(cfqd, 0);
|
|
|
|
BUG_ON(cfqd->busy_queues);
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
static int cfq_dispatch_requests(request_queue_t *q, int force)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq;
|
|
int dispatched;
|
|
|
|
if (!cfqd->busy_queues)
|
|
return 0;
|
|
|
|
if (unlikely(force))
|
|
return cfq_forced_dispatch(cfqd);
|
|
|
|
dispatched = 0;
|
|
while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
|
|
int max_dispatch;
|
|
|
|
max_dispatch = cfqd->cfq_quantum;
|
|
if (cfq_class_idle(cfqq))
|
|
max_dispatch = 1;
|
|
|
|
if (cfqq->dispatched >= max_dispatch) {
|
|
if (cfqd->busy_queues > 1)
|
|
break;
|
|
if (cfqq->dispatched >= 4 * max_dispatch)
|
|
break;
|
|
}
|
|
|
|
if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
|
|
break;
|
|
|
|
cfq_clear_cfqq_must_dispatch(cfqq);
|
|
cfq_clear_cfqq_wait_request(cfqq);
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
|
|
dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
|
|
}
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
/*
|
|
* task holds one reference to the queue, dropped when task exits. each rq
|
|
* in-flight on this queue also holds a reference, dropped when rq is freed.
|
|
*
|
|
* queue lock must be held here.
|
|
*/
|
|
static void cfq_put_queue(struct cfq_queue *cfqq)
|
|
{
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
|
|
BUG_ON(atomic_read(&cfqq->ref) <= 0);
|
|
|
|
if (!atomic_dec_and_test(&cfqq->ref))
|
|
return;
|
|
|
|
BUG_ON(rb_first(&cfqq->sort_list));
|
|
BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
|
|
BUG_ON(cfq_cfqq_on_rr(cfqq));
|
|
|
|
if (unlikely(cfqd->active_queue == cfqq)) {
|
|
__cfq_slice_expired(cfqd, cfqq, 0);
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
|
|
kmem_cache_free(cfq_pool, cfqq);
|
|
}
|
|
|
|
static void cfq_free_io_context(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *__cic;
|
|
struct rb_node *n;
|
|
int freed = 0;
|
|
|
|
ioc->ioc_data = NULL;
|
|
|
|
while ((n = rb_first(&ioc->cic_root)) != NULL) {
|
|
__cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
rb_erase(&__cic->rb_node, &ioc->cic_root);
|
|
kmem_cache_free(cfq_ioc_pool, __cic);
|
|
freed++;
|
|
}
|
|
|
|
elv_ioc_count_mod(ioc_count, -freed);
|
|
|
|
if (ioc_gone && !elv_ioc_count_read(ioc_count))
|
|
complete(ioc_gone);
|
|
}
|
|
|
|
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
if (unlikely(cfqq == cfqd->active_queue)) {
|
|
__cfq_slice_expired(cfqd, cfqq, 0);
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
|
|
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
list_del_init(&cic->queue_list);
|
|
smp_wmb();
|
|
cic->key = NULL;
|
|
|
|
if (cic->cfqq[ASYNC]) {
|
|
cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
|
|
cic->cfqq[ASYNC] = NULL;
|
|
}
|
|
|
|
if (cic->cfqq[SYNC]) {
|
|
cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
|
|
cic->cfqq[SYNC] = NULL;
|
|
}
|
|
}
|
|
|
|
static void cfq_exit_single_io_context(struct cfq_io_context *cic)
|
|
{
|
|
struct cfq_data *cfqd = cic->key;
|
|
|
|
if (cfqd) {
|
|
request_queue_t *q = cfqd->queue;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
__cfq_exit_single_io_context(cfqd, cic);
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The process that ioc belongs to has exited, we need to clean up
|
|
* and put the internal structures we have that belongs to that process.
|
|
*/
|
|
static void cfq_exit_io_context(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *__cic;
|
|
struct rb_node *n;
|
|
|
|
ioc->ioc_data = NULL;
|
|
|
|
/*
|
|
* put the reference this task is holding to the various queues
|
|
*/
|
|
n = rb_first(&ioc->cic_root);
|
|
while (n != NULL) {
|
|
__cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
|
|
cfq_exit_single_io_context(__cic);
|
|
n = rb_next(n);
|
|
}
|
|
}
|
|
|
|
static struct cfq_io_context *
|
|
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
|
|
{
|
|
struct cfq_io_context *cic;
|
|
|
|
cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
|
|
if (cic) {
|
|
memset(cic, 0, sizeof(*cic));
|
|
cic->last_end_request = jiffies;
|
|
INIT_LIST_HEAD(&cic->queue_list);
|
|
cic->dtor = cfq_free_io_context;
|
|
cic->exit = cfq_exit_io_context;
|
|
elv_ioc_count_inc(ioc_count);
|
|
}
|
|
|
|
return cic;
|
|
}
|
|
|
|
static void cfq_init_prio_data(struct cfq_queue *cfqq)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int ioprio_class;
|
|
|
|
if (!cfq_cfqq_prio_changed(cfqq))
|
|
return;
|
|
|
|
ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
|
|
switch (ioprio_class) {
|
|
default:
|
|
printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
|
|
case IOPRIO_CLASS_NONE:
|
|
/*
|
|
* no prio set, place us in the middle of the BE classes
|
|
*/
|
|
cfqq->ioprio = task_nice_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
break;
|
|
case IOPRIO_CLASS_RT:
|
|
cfqq->ioprio = task_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_RT;
|
|
break;
|
|
case IOPRIO_CLASS_BE:
|
|
cfqq->ioprio = task_ioprio(tsk);
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
break;
|
|
case IOPRIO_CLASS_IDLE:
|
|
cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
|
|
cfqq->ioprio = 7;
|
|
cfq_clear_cfqq_idle_window(cfqq);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* keep track of original prio settings in case we have to temporarily
|
|
* elevate the priority of this queue
|
|
*/
|
|
cfqq->org_ioprio = cfqq->ioprio;
|
|
cfqq->org_ioprio_class = cfqq->ioprio_class;
|
|
cfq_clear_cfqq_prio_changed(cfqq);
|
|
}
|
|
|
|
static inline void changed_ioprio(struct cfq_io_context *cic)
|
|
{
|
|
struct cfq_data *cfqd = cic->key;
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
|
|
if (unlikely(!cfqd))
|
|
return;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
cfqq = cic->cfqq[ASYNC];
|
|
if (cfqq) {
|
|
struct cfq_queue *new_cfqq;
|
|
new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
|
|
GFP_ATOMIC);
|
|
if (new_cfqq) {
|
|
cic->cfqq[ASYNC] = new_cfqq;
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
}
|
|
|
|
cfqq = cic->cfqq[SYNC];
|
|
if (cfqq)
|
|
cfq_mark_cfqq_prio_changed(cfqq);
|
|
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
static void cfq_ioc_set_ioprio(struct io_context *ioc)
|
|
{
|
|
struct cfq_io_context *cic;
|
|
struct rb_node *n;
|
|
|
|
ioc->ioprio_changed = 0;
|
|
|
|
n = rb_first(&ioc->cic_root);
|
|
while (n != NULL) {
|
|
cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
|
|
changed_ioprio(cic);
|
|
n = rb_next(n);
|
|
}
|
|
}
|
|
|
|
static struct cfq_queue *
|
|
cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct cfq_queue *cfqq, *new_cfqq = NULL;
|
|
struct cfq_io_context *cic;
|
|
|
|
retry:
|
|
cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
|
|
/* cic always exists here */
|
|
cfqq = cic_to_cfqq(cic, is_sync);
|
|
|
|
if (!cfqq) {
|
|
if (new_cfqq) {
|
|
cfqq = new_cfqq;
|
|
new_cfqq = NULL;
|
|
} else if (gfp_mask & __GFP_WAIT) {
|
|
/*
|
|
* Inform the allocator of the fact that we will
|
|
* just repeat this allocation if it fails, to allow
|
|
* the allocator to do whatever it needs to attempt to
|
|
* free memory.
|
|
*/
|
|
spin_unlock_irq(cfqd->queue->queue_lock);
|
|
new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
|
|
spin_lock_irq(cfqd->queue->queue_lock);
|
|
goto retry;
|
|
} else {
|
|
cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
|
|
if (!cfqq)
|
|
goto out;
|
|
}
|
|
|
|
memset(cfqq, 0, sizeof(*cfqq));
|
|
|
|
RB_CLEAR_NODE(&cfqq->rb_node);
|
|
INIT_LIST_HEAD(&cfqq->fifo);
|
|
|
|
atomic_set(&cfqq->ref, 0);
|
|
cfqq->cfqd = cfqd;
|
|
|
|
if (is_sync) {
|
|
cfq_mark_cfqq_idle_window(cfqq);
|
|
cfq_mark_cfqq_sync(cfqq);
|
|
}
|
|
|
|
cfq_mark_cfqq_prio_changed(cfqq);
|
|
cfq_mark_cfqq_queue_new(cfqq);
|
|
|
|
cfq_init_prio_data(cfqq);
|
|
}
|
|
|
|
if (new_cfqq)
|
|
kmem_cache_free(cfq_pool, new_cfqq);
|
|
|
|
atomic_inc(&cfqq->ref);
|
|
out:
|
|
WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
|
|
return cfqq;
|
|
}
|
|
|
|
/*
|
|
* We drop cfq io contexts lazily, so we may find a dead one.
|
|
*/
|
|
static void
|
|
cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
|
|
{
|
|
WARN_ON(!list_empty(&cic->queue_list));
|
|
|
|
if (ioc->ioc_data == cic)
|
|
ioc->ioc_data = NULL;
|
|
|
|
rb_erase(&cic->rb_node, &ioc->cic_root);
|
|
kmem_cache_free(cfq_ioc_pool, cic);
|
|
elv_ioc_count_dec(ioc_count);
|
|
}
|
|
|
|
static struct cfq_io_context *
|
|
cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
|
|
{
|
|
struct rb_node *n;
|
|
struct cfq_io_context *cic;
|
|
void *k, *key = cfqd;
|
|
|
|
if (unlikely(!ioc))
|
|
return NULL;
|
|
|
|
/*
|
|
* we maintain a last-hit cache, to avoid browsing over the tree
|
|
*/
|
|
cic = ioc->ioc_data;
|
|
if (cic && cic->key == cfqd)
|
|
return cic;
|
|
|
|
restart:
|
|
n = ioc->cic_root.rb_node;
|
|
while (n) {
|
|
cic = rb_entry(n, struct cfq_io_context, rb_node);
|
|
/* ->key must be copied to avoid race with cfq_exit_queue() */
|
|
k = cic->key;
|
|
if (unlikely(!k)) {
|
|
cfq_drop_dead_cic(ioc, cic);
|
|
goto restart;
|
|
}
|
|
|
|
if (key < k)
|
|
n = n->rb_left;
|
|
else if (key > k)
|
|
n = n->rb_right;
|
|
else {
|
|
ioc->ioc_data = cic;
|
|
return cic;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
struct rb_node **p;
|
|
struct rb_node *parent;
|
|
struct cfq_io_context *__cic;
|
|
unsigned long flags;
|
|
void *k;
|
|
|
|
cic->ioc = ioc;
|
|
cic->key = cfqd;
|
|
|
|
restart:
|
|
parent = NULL;
|
|
p = &ioc->cic_root.rb_node;
|
|
while (*p) {
|
|
parent = *p;
|
|
__cic = rb_entry(parent, struct cfq_io_context, rb_node);
|
|
/* ->key must be copied to avoid race with cfq_exit_queue() */
|
|
k = __cic->key;
|
|
if (unlikely(!k)) {
|
|
cfq_drop_dead_cic(ioc, __cic);
|
|
goto restart;
|
|
}
|
|
|
|
if (cic->key < k)
|
|
p = &(*p)->rb_left;
|
|
else if (cic->key > k)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(&cic->rb_node, parent, p);
|
|
rb_insert_color(&cic->rb_node, &ioc->cic_root);
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
list_add(&cic->queue_list, &cfqd->cic_list);
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Setup general io context and cfq io context. There can be several cfq
|
|
* io contexts per general io context, if this process is doing io to more
|
|
* than one device managed by cfq.
|
|
*/
|
|
static struct cfq_io_context *
|
|
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
|
|
{
|
|
struct io_context *ioc = NULL;
|
|
struct cfq_io_context *cic;
|
|
|
|
might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
|
|
ioc = get_io_context(gfp_mask, cfqd->queue->node);
|
|
if (!ioc)
|
|
return NULL;
|
|
|
|
cic = cfq_cic_rb_lookup(cfqd, ioc);
|
|
if (cic)
|
|
goto out;
|
|
|
|
cic = cfq_alloc_io_context(cfqd, gfp_mask);
|
|
if (cic == NULL)
|
|
goto err;
|
|
|
|
cfq_cic_link(cfqd, ioc, cic);
|
|
out:
|
|
smp_read_barrier_depends();
|
|
if (unlikely(ioc->ioprio_changed))
|
|
cfq_ioc_set_ioprio(ioc);
|
|
|
|
return cic;
|
|
err:
|
|
put_io_context(ioc);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
|
|
{
|
|
unsigned long elapsed = jiffies - cic->last_end_request;
|
|
unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
|
|
|
|
cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
|
|
cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
|
|
cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
|
|
}
|
|
|
|
static void
|
|
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
|
|
struct request *rq)
|
|
{
|
|
sector_t sdist;
|
|
u64 total;
|
|
|
|
if (cic->last_request_pos < rq->sector)
|
|
sdist = rq->sector - cic->last_request_pos;
|
|
else
|
|
sdist = cic->last_request_pos - rq->sector;
|
|
|
|
if (!cic->seek_samples) {
|
|
cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
|
|
cfqd->new_seek_mean = cfqd->new_seek_total / 256;
|
|
}
|
|
|
|
/*
|
|
* Don't allow the seek distance to get too large from the
|
|
* odd fragment, pagein, etc
|
|
*/
|
|
if (cic->seek_samples <= 60) /* second&third seek */
|
|
sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
|
|
else
|
|
sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
|
|
|
|
cic->seek_samples = (7*cic->seek_samples + 256) / 8;
|
|
cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
|
|
total = cic->seek_total + (cic->seek_samples/2);
|
|
do_div(total, cic->seek_samples);
|
|
cic->seek_mean = (sector_t)total;
|
|
}
|
|
|
|
/*
|
|
* Disable idle window if the process thinks too long or seeks so much that
|
|
* it doesn't matter
|
|
*/
|
|
static void
|
|
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct cfq_io_context *cic)
|
|
{
|
|
int enable_idle;
|
|
|
|
if (!cfq_cfqq_sync(cfqq))
|
|
return;
|
|
|
|
enable_idle = cfq_cfqq_idle_window(cfqq);
|
|
|
|
if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
|
|
(cfqd->hw_tag && CIC_SEEKY(cic)))
|
|
enable_idle = 0;
|
|
else if (sample_valid(cic->ttime_samples)) {
|
|
if (cic->ttime_mean > cfqd->cfq_slice_idle)
|
|
enable_idle = 0;
|
|
else
|
|
enable_idle = 1;
|
|
}
|
|
|
|
if (enable_idle)
|
|
cfq_mark_cfqq_idle_window(cfqq);
|
|
else
|
|
cfq_clear_cfqq_idle_window(cfqq);
|
|
}
|
|
|
|
/*
|
|
* Check if new_cfqq should preempt the currently active queue. Return 0 for
|
|
* no or if we aren't sure, a 1 will cause a preempt.
|
|
*/
|
|
static int
|
|
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
|
|
struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq;
|
|
|
|
cfqq = cfqd->active_queue;
|
|
if (!cfqq)
|
|
return 0;
|
|
|
|
if (cfq_slice_used(cfqq))
|
|
return 1;
|
|
|
|
if (cfq_class_idle(new_cfqq))
|
|
return 0;
|
|
|
|
if (cfq_class_idle(cfqq))
|
|
return 1;
|
|
|
|
/*
|
|
* if the new request is sync, but the currently running queue is
|
|
* not, let the sync request have priority.
|
|
*/
|
|
if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
|
|
return 1;
|
|
|
|
/*
|
|
* So both queues are sync. Let the new request get disk time if
|
|
* it's a metadata request and the current queue is doing regular IO.
|
|
*/
|
|
if (rq_is_meta(rq) && !cfqq->meta_pending)
|
|
return 1;
|
|
|
|
if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
|
|
return 0;
|
|
|
|
/*
|
|
* if this request is as-good as one we would expect from the
|
|
* current cfqq, let it preempt
|
|
*/
|
|
if (cfq_rq_close(cfqd, rq))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* cfqq preempts the active queue. if we allowed preempt with no slice left,
|
|
* let it have half of its nominal slice.
|
|
*/
|
|
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
|
|
{
|
|
cfq_slice_expired(cfqd, 1);
|
|
|
|
/*
|
|
* Put the new queue at the front of the of the current list,
|
|
* so we know that it will be selected next.
|
|
*/
|
|
BUG_ON(!cfq_cfqq_on_rr(cfqq));
|
|
|
|
cfq_service_tree_add(cfqd, cfqq, 1);
|
|
|
|
cfqq->slice_end = 0;
|
|
cfq_mark_cfqq_slice_new(cfqq);
|
|
}
|
|
|
|
/*
|
|
* Called when a new fs request (rq) is added (to cfqq). Check if there's
|
|
* something we should do about it
|
|
*/
|
|
static void
|
|
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
|
|
struct request *rq)
|
|
{
|
|
struct cfq_io_context *cic = RQ_CIC(rq);
|
|
|
|
if (rq_is_meta(rq))
|
|
cfqq->meta_pending++;
|
|
|
|
cfq_update_io_thinktime(cfqd, cic);
|
|
cfq_update_io_seektime(cfqd, cic, rq);
|
|
cfq_update_idle_window(cfqd, cfqq, cic);
|
|
|
|
cic->last_request_pos = rq->sector + rq->nr_sectors;
|
|
cfqq->last_request_pos = cic->last_request_pos;
|
|
|
|
if (cfqq == cfqd->active_queue) {
|
|
/*
|
|
* if we are waiting for a request for this queue, let it rip
|
|
* immediately and flag that we must not expire this queue
|
|
* just now
|
|
*/
|
|
if (cfq_cfqq_wait_request(cfqq)) {
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
del_timer(&cfqd->idle_slice_timer);
|
|
blk_start_queueing(cfqd->queue);
|
|
}
|
|
} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
|
|
/*
|
|
* not the active queue - expire current slice if it is
|
|
* idle and has expired it's mean thinktime or this new queue
|
|
* has some old slice time left and is of higher priority
|
|
*/
|
|
cfq_preempt_queue(cfqd, cfqq);
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
blk_start_queueing(cfqd->queue);
|
|
}
|
|
}
|
|
|
|
static void cfq_insert_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
cfq_init_prio_data(cfqq);
|
|
|
|
cfq_add_rq_rb(rq);
|
|
|
|
list_add_tail(&rq->queuelist, &cfqq->fifo);
|
|
|
|
cfq_rq_enqueued(cfqd, cfqq, rq);
|
|
}
|
|
|
|
static void cfq_completed_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
struct cfq_data *cfqd = cfqq->cfqd;
|
|
const int sync = rq_is_sync(rq);
|
|
unsigned long now;
|
|
|
|
now = jiffies;
|
|
|
|
WARN_ON(!cfqd->rq_in_driver);
|
|
WARN_ON(!cfqq->dispatched);
|
|
cfqd->rq_in_driver--;
|
|
cfqq->dispatched--;
|
|
|
|
if (cfq_cfqq_sync(cfqq))
|
|
cfqd->sync_flight--;
|
|
|
|
if (!cfq_class_idle(cfqq))
|
|
cfqd->last_end_request = now;
|
|
|
|
if (sync)
|
|
RQ_CIC(rq)->last_end_request = now;
|
|
|
|
/*
|
|
* If this is the active queue, check if it needs to be expired,
|
|
* or if we want to idle in case it has no pending requests.
|
|
*/
|
|
if (cfqd->active_queue == cfqq) {
|
|
if (cfq_cfqq_slice_new(cfqq)) {
|
|
cfq_set_prio_slice(cfqd, cfqq);
|
|
cfq_clear_cfqq_slice_new(cfqq);
|
|
}
|
|
if (cfq_slice_used(cfqq))
|
|
cfq_slice_expired(cfqd, 1);
|
|
else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
|
|
cfq_arm_slice_timer(cfqd);
|
|
}
|
|
|
|
if (!cfqd->rq_in_driver)
|
|
cfq_schedule_dispatch(cfqd);
|
|
}
|
|
|
|
/*
|
|
* we temporarily boost lower priority queues if they are holding fs exclusive
|
|
* resources. they are boosted to normal prio (CLASS_BE/4)
|
|
*/
|
|
static void cfq_prio_boost(struct cfq_queue *cfqq)
|
|
{
|
|
if (has_fs_excl()) {
|
|
/*
|
|
* boost idle prio on transactions that would lock out other
|
|
* users of the filesystem
|
|
*/
|
|
if (cfq_class_idle(cfqq))
|
|
cfqq->ioprio_class = IOPRIO_CLASS_BE;
|
|
if (cfqq->ioprio > IOPRIO_NORM)
|
|
cfqq->ioprio = IOPRIO_NORM;
|
|
} else {
|
|
/*
|
|
* check if we need to unboost the queue
|
|
*/
|
|
if (cfqq->ioprio_class != cfqq->org_ioprio_class)
|
|
cfqq->ioprio_class = cfqq->org_ioprio_class;
|
|
if (cfqq->ioprio != cfqq->org_ioprio)
|
|
cfqq->ioprio = cfqq->org_ioprio;
|
|
}
|
|
}
|
|
|
|
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
|
|
{
|
|
if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
|
|
!cfq_cfqq_must_alloc_slice(cfqq)) {
|
|
cfq_mark_cfqq_must_alloc_slice(cfqq);
|
|
return ELV_MQUEUE_MUST;
|
|
}
|
|
|
|
return ELV_MQUEUE_MAY;
|
|
}
|
|
|
|
static int cfq_may_queue(request_queue_t *q, int rw)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct task_struct *tsk = current;
|
|
struct cfq_io_context *cic;
|
|
struct cfq_queue *cfqq;
|
|
|
|
/*
|
|
* don't force setup of a queue from here, as a call to may_queue
|
|
* does not necessarily imply that a request actually will be queued.
|
|
* so just lookup a possibly existing queue, or return 'may queue'
|
|
* if that fails
|
|
*/
|
|
cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
|
|
if (!cic)
|
|
return ELV_MQUEUE_MAY;
|
|
|
|
cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
|
|
if (cfqq) {
|
|
cfq_init_prio_data(cfqq);
|
|
cfq_prio_boost(cfqq);
|
|
|
|
return __cfq_may_queue(cfqq);
|
|
}
|
|
|
|
return ELV_MQUEUE_MAY;
|
|
}
|
|
|
|
/*
|
|
* queue lock held here
|
|
*/
|
|
static void cfq_put_request(struct request *rq)
|
|
{
|
|
struct cfq_queue *cfqq = RQ_CFQQ(rq);
|
|
|
|
if (cfqq) {
|
|
const int rw = rq_data_dir(rq);
|
|
|
|
BUG_ON(!cfqq->allocated[rw]);
|
|
cfqq->allocated[rw]--;
|
|
|
|
put_io_context(RQ_CIC(rq)->ioc);
|
|
|
|
rq->elevator_private = NULL;
|
|
rq->elevator_private2 = NULL;
|
|
|
|
cfq_put_queue(cfqq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate cfq data structures associated with this request.
|
|
*/
|
|
static int
|
|
cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
|
|
{
|
|
struct cfq_data *cfqd = q->elevator->elevator_data;
|
|
struct task_struct *tsk = current;
|
|
struct cfq_io_context *cic;
|
|
const int rw = rq_data_dir(rq);
|
|
const int is_sync = rq_is_sync(rq);
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
|
|
might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
|
|
cic = cfq_get_io_context(cfqd, gfp_mask);
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
|
|
if (!cic)
|
|
goto queue_fail;
|
|
|
|
cfqq = cic_to_cfqq(cic, is_sync);
|
|
if (!cfqq) {
|
|
cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
|
|
|
|
if (!cfqq)
|
|
goto queue_fail;
|
|
|
|
cic_set_cfqq(cic, cfqq, is_sync);
|
|
}
|
|
|
|
cfqq->allocated[rw]++;
|
|
cfq_clear_cfqq_must_alloc(cfqq);
|
|
atomic_inc(&cfqq->ref);
|
|
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
|
|
rq->elevator_private = cic;
|
|
rq->elevator_private2 = cfqq;
|
|
return 0;
|
|
|
|
queue_fail:
|
|
if (cic)
|
|
put_io_context(cic->ioc);
|
|
|
|
cfq_schedule_dispatch(cfqd);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
return 1;
|
|
}
|
|
|
|
static void cfq_kick_queue(struct work_struct *work)
|
|
{
|
|
struct cfq_data *cfqd =
|
|
container_of(work, struct cfq_data, unplug_work);
|
|
request_queue_t *q = cfqd->queue;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
blk_start_queueing(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Timer running if the active_queue is currently idling inside its time slice
|
|
*/
|
|
static void cfq_idle_slice_timer(unsigned long data)
|
|
{
|
|
struct cfq_data *cfqd = (struct cfq_data *) data;
|
|
struct cfq_queue *cfqq;
|
|
unsigned long flags;
|
|
int timed_out = 1;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
if ((cfqq = cfqd->active_queue) != NULL) {
|
|
timed_out = 0;
|
|
|
|
/*
|
|
* expired
|
|
*/
|
|
if (cfq_slice_used(cfqq))
|
|
goto expire;
|
|
|
|
/*
|
|
* only expire and reinvoke request handler, if there are
|
|
* other queues with pending requests
|
|
*/
|
|
if (!cfqd->busy_queues)
|
|
goto out_cont;
|
|
|
|
/*
|
|
* not expired and it has a request pending, let it dispatch
|
|
*/
|
|
if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
|
|
cfq_mark_cfqq_must_dispatch(cfqq);
|
|
goto out_kick;
|
|
}
|
|
}
|
|
expire:
|
|
cfq_slice_expired(cfqd, timed_out);
|
|
out_kick:
|
|
cfq_schedule_dispatch(cfqd);
|
|
out_cont:
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Timer running if an idle class queue is waiting for service
|
|
*/
|
|
static void cfq_idle_class_timer(unsigned long data)
|
|
{
|
|
struct cfq_data *cfqd = (struct cfq_data *) data;
|
|
unsigned long flags, end;
|
|
|
|
spin_lock_irqsave(cfqd->queue->queue_lock, flags);
|
|
|
|
/*
|
|
* race with a non-idle queue, reset timer
|
|
*/
|
|
end = cfqd->last_end_request + CFQ_IDLE_GRACE;
|
|
if (!time_after_eq(jiffies, end))
|
|
mod_timer(&cfqd->idle_class_timer, end);
|
|
else
|
|
cfq_schedule_dispatch(cfqd);
|
|
|
|
spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
|
|
}
|
|
|
|
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
|
|
{
|
|
del_timer_sync(&cfqd->idle_slice_timer);
|
|
del_timer_sync(&cfqd->idle_class_timer);
|
|
blk_sync_queue(cfqd->queue);
|
|
}
|
|
|
|
static void cfq_exit_queue(elevator_t *e)
|
|
{
|
|
struct cfq_data *cfqd = e->elevator_data;
|
|
request_queue_t *q = cfqd->queue;
|
|
|
|
cfq_shutdown_timer_wq(cfqd);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
if (cfqd->active_queue)
|
|
__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
|
|
|
|
while (!list_empty(&cfqd->cic_list)) {
|
|
struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
|
|
struct cfq_io_context,
|
|
queue_list);
|
|
|
|
__cfq_exit_single_io_context(cfqd, cic);
|
|
}
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
cfq_shutdown_timer_wq(cfqd);
|
|
|
|
kfree(cfqd);
|
|
}
|
|
|
|
static void *cfq_init_queue(request_queue_t *q)
|
|
{
|
|
struct cfq_data *cfqd;
|
|
|
|
cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
|
|
if (!cfqd)
|
|
return NULL;
|
|
|
|
memset(cfqd, 0, sizeof(*cfqd));
|
|
|
|
cfqd->service_tree = CFQ_RB_ROOT;
|
|
INIT_LIST_HEAD(&cfqd->cic_list);
|
|
|
|
cfqd->queue = q;
|
|
|
|
init_timer(&cfqd->idle_slice_timer);
|
|
cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
|
|
cfqd->idle_slice_timer.data = (unsigned long) cfqd;
|
|
|
|
init_timer(&cfqd->idle_class_timer);
|
|
cfqd->idle_class_timer.function = cfq_idle_class_timer;
|
|
cfqd->idle_class_timer.data = (unsigned long) cfqd;
|
|
|
|
INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
|
|
|
|
cfqd->cfq_quantum = cfq_quantum;
|
|
cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
|
|
cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
|
|
cfqd->cfq_back_max = cfq_back_max;
|
|
cfqd->cfq_back_penalty = cfq_back_penalty;
|
|
cfqd->cfq_slice[0] = cfq_slice_async;
|
|
cfqd->cfq_slice[1] = cfq_slice_sync;
|
|
cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
|
|
cfqd->cfq_slice_idle = cfq_slice_idle;
|
|
|
|
return cfqd;
|
|
}
|
|
|
|
static void cfq_slab_kill(void)
|
|
{
|
|
if (cfq_pool)
|
|
kmem_cache_destroy(cfq_pool);
|
|
if (cfq_ioc_pool)
|
|
kmem_cache_destroy(cfq_ioc_pool);
|
|
}
|
|
|
|
static int __init cfq_slab_setup(void)
|
|
{
|
|
cfq_pool = KMEM_CACHE(cfq_queue, 0);
|
|
if (!cfq_pool)
|
|
goto fail;
|
|
|
|
cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
|
|
if (!cfq_ioc_pool)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
cfq_slab_kill();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* sysfs parts below -->
|
|
*/
|
|
static ssize_t
|
|
cfq_var_show(unsigned int var, char *page)
|
|
{
|
|
return sprintf(page, "%d\n", var);
|
|
}
|
|
|
|
static ssize_t
|
|
cfq_var_store(unsigned int *var, const char *page, size_t count)
|
|
{
|
|
char *p = (char *) page;
|
|
|
|
*var = simple_strtoul(p, &p, 10);
|
|
return count;
|
|
}
|
|
|
|
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
|
|
static ssize_t __FUNC(elevator_t *e, char *page) \
|
|
{ \
|
|
struct cfq_data *cfqd = e->elevator_data; \
|
|
unsigned int __data = __VAR; \
|
|
if (__CONV) \
|
|
__data = jiffies_to_msecs(__data); \
|
|
return cfq_var_show(__data, (page)); \
|
|
}
|
|
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
|
|
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
|
|
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
|
|
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
|
|
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
|
|
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
|
|
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
|
|
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
|
|
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
|
|
#undef SHOW_FUNCTION
|
|
|
|
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
|
|
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
|
|
{ \
|
|
struct cfq_data *cfqd = e->elevator_data; \
|
|
unsigned int __data; \
|
|
int ret = cfq_var_store(&__data, (page), count); \
|
|
if (__data < (MIN)) \
|
|
__data = (MIN); \
|
|
else if (__data > (MAX)) \
|
|
__data = (MAX); \
|
|
if (__CONV) \
|
|
*(__PTR) = msecs_to_jiffies(__data); \
|
|
else \
|
|
*(__PTR) = __data; \
|
|
return ret; \
|
|
}
|
|
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
|
|
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
|
|
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
|
|
#undef STORE_FUNCTION
|
|
|
|
#define CFQ_ATTR(name) \
|
|
__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
|
|
|
|
static struct elv_fs_entry cfq_attrs[] = {
|
|
CFQ_ATTR(quantum),
|
|
CFQ_ATTR(fifo_expire_sync),
|
|
CFQ_ATTR(fifo_expire_async),
|
|
CFQ_ATTR(back_seek_max),
|
|
CFQ_ATTR(back_seek_penalty),
|
|
CFQ_ATTR(slice_sync),
|
|
CFQ_ATTR(slice_async),
|
|
CFQ_ATTR(slice_async_rq),
|
|
CFQ_ATTR(slice_idle),
|
|
__ATTR_NULL
|
|
};
|
|
|
|
static struct elevator_type iosched_cfq = {
|
|
.ops = {
|
|
.elevator_merge_fn = cfq_merge,
|
|
.elevator_merged_fn = cfq_merged_request,
|
|
.elevator_merge_req_fn = cfq_merged_requests,
|
|
.elevator_allow_merge_fn = cfq_allow_merge,
|
|
.elevator_dispatch_fn = cfq_dispatch_requests,
|
|
.elevator_add_req_fn = cfq_insert_request,
|
|
.elevator_activate_req_fn = cfq_activate_request,
|
|
.elevator_deactivate_req_fn = cfq_deactivate_request,
|
|
.elevator_queue_empty_fn = cfq_queue_empty,
|
|
.elevator_completed_req_fn = cfq_completed_request,
|
|
.elevator_former_req_fn = elv_rb_former_request,
|
|
.elevator_latter_req_fn = elv_rb_latter_request,
|
|
.elevator_set_req_fn = cfq_set_request,
|
|
.elevator_put_req_fn = cfq_put_request,
|
|
.elevator_may_queue_fn = cfq_may_queue,
|
|
.elevator_init_fn = cfq_init_queue,
|
|
.elevator_exit_fn = cfq_exit_queue,
|
|
.trim = cfq_free_io_context,
|
|
},
|
|
.elevator_attrs = cfq_attrs,
|
|
.elevator_name = "cfq",
|
|
.elevator_owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cfq_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* could be 0 on HZ < 1000 setups
|
|
*/
|
|
if (!cfq_slice_async)
|
|
cfq_slice_async = 1;
|
|
if (!cfq_slice_idle)
|
|
cfq_slice_idle = 1;
|
|
|
|
if (cfq_slab_setup())
|
|
return -ENOMEM;
|
|
|
|
ret = elv_register(&iosched_cfq);
|
|
if (ret)
|
|
cfq_slab_kill();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit cfq_exit(void)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(all_gone);
|
|
elv_unregister(&iosched_cfq);
|
|
ioc_gone = &all_gone;
|
|
/* ioc_gone's update must be visible before reading ioc_count */
|
|
smp_wmb();
|
|
if (elv_ioc_count_read(ioc_count))
|
|
wait_for_completion(ioc_gone);
|
|
synchronize_rcu();
|
|
cfq_slab_kill();
|
|
}
|
|
|
|
module_init(cfq_init);
|
|
module_exit(cfq_exit);
|
|
|
|
MODULE_AUTHOR("Jens Axboe");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
|