linux/fs/proc/thread_self.c
Al Viro 680baacbca new ->follow_link() and ->put_link() calling conventions
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body.  Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks.  Stored pointer
is ignored in all cases except the last one.

Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().

b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is.  In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-05-10 22:19:45 -04:00

84 lines
2.2 KiB
C

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/pid_namespace.h>
#include "internal.h"
/*
* /proc/thread_self:
*/
static int proc_thread_self_readlink(struct dentry *dentry, char __user *buffer,
int buflen)
{
struct pid_namespace *ns = dentry->d_sb->s_fs_info;
pid_t tgid = task_tgid_nr_ns(current, ns);
pid_t pid = task_pid_nr_ns(current, ns);
char tmp[PROC_NUMBUF + 6 + PROC_NUMBUF];
if (!pid)
return -ENOENT;
sprintf(tmp, "%d/task/%d", tgid, pid);
return readlink_copy(buffer, buflen, tmp);
}
static const char *proc_thread_self_follow_link(struct dentry *dentry, void **cookie, struct nameidata *nd)
{
struct pid_namespace *ns = dentry->d_sb->s_fs_info;
pid_t tgid = task_tgid_nr_ns(current, ns);
pid_t pid = task_pid_nr_ns(current, ns);
char *name;
if (!pid)
return ERR_PTR(-ENOENT);
name = kmalloc(PROC_NUMBUF + 6 + PROC_NUMBUF, GFP_KERNEL);
if (!name)
return ERR_PTR(-ENOMEM);
sprintf(name, "%d/task/%d", tgid, pid);
return *cookie = name;
}
static const struct inode_operations proc_thread_self_inode_operations = {
.readlink = proc_thread_self_readlink,
.follow_link = proc_thread_self_follow_link,
.put_link = kfree_put_link,
};
static unsigned thread_self_inum;
int proc_setup_thread_self(struct super_block *s)
{
struct inode *root_inode = d_inode(s->s_root);
struct pid_namespace *ns = s->s_fs_info;
struct dentry *thread_self;
mutex_lock(&root_inode->i_mutex);
thread_self = d_alloc_name(s->s_root, "thread-self");
if (thread_self) {
struct inode *inode = new_inode_pseudo(s);
if (inode) {
inode->i_ino = thread_self_inum;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_mode = S_IFLNK | S_IRWXUGO;
inode->i_uid = GLOBAL_ROOT_UID;
inode->i_gid = GLOBAL_ROOT_GID;
inode->i_op = &proc_thread_self_inode_operations;
d_add(thread_self, inode);
} else {
dput(thread_self);
thread_self = ERR_PTR(-ENOMEM);
}
} else {
thread_self = ERR_PTR(-ENOMEM);
}
mutex_unlock(&root_inode->i_mutex);
if (IS_ERR(thread_self)) {
pr_err("proc_fill_super: can't allocate /proc/thread_self\n");
return PTR_ERR(thread_self);
}
ns->proc_thread_self = thread_self;
return 0;
}
void __init proc_thread_self_init(void)
{
proc_alloc_inum(&thread_self_inum);
}