mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-13 00:29:50 +00:00
43c9fad942
- ACPICA update to upstream revision 20150515 including basic support for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO, XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM, FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore, Lv Zheng). - ACPI device power management core code update to follow ACPI 6 which reflects the ACPI device power management implementation in Windows (Rafael J Wysocki). - Rework of the backlight interface selection logic to reduce the number of kernel command line options and improve the handling of DMI quirks that may be involved in that and to make the code generally more straightforward (Hans de Goede). - Fixes for the ACPI Embedded Controller (EC) driver related to the handling of EC transactions (Lv Zheng). - Fix for a regression related to the ACPI resources management and resulting from a recent change of ACPI initialization code ordering (Rafael J Wysocki). - Fix for a system initialization regression related to ACPI introduced during the 3.14 cycle and caused by running the code that switches the platform over to the ACPI mode too early in the initialization sequence (Rafael J Wysocki). - Support for the ACPI _CCA device configuration object related to DMA cache coherence (Suravee Suthikulpanit). - ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov). - ACPI battery driver cleanups (Luis Henriques, Mathias Krause). - ACPI processor driver cleanups (Hanjun Guo). - Cleanups and documentation update related to the ACPI device properties interface based on _DSD (Rafael J Wysocki). - ACPI device power management fixes (Rafael J Wysocki). - Assorted cleanups related to ACPI (Dominik Brodowski. Fabian Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki). - Fix for a long-standing issue causing General Protection Faults to be generated occasionally on return to user space after resume from ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar). - Fix to make the suspend core code return -EBUSY consistently in all cases when system suspend is aborted due to wakeup detection (Ruchi Kandoi). - Support for automated device wakeup IRQ handling allowing drivers to make their PM support more starightforward (Tony Lindgren). - New tracepoints for suspend-to-idle tracing and rework of the prepare/complete callbacks tracing in the PM core (Todd E Brandt, Rafael J Wysocki). - Wakeup sources framework enhancements (Jin Qian). - New macro for noirq system PM callbacks (Grygorii Strashko). - Assorted cleanups related to system suspend (Rafael J Wysocki). - cpuidle core cleanups to make the code more efficient (Rafael J Wysocki). - powernv/pseries cpuidle driver update (Shilpasri G Bhat). - cpufreq core fixes related to CPU online/offline that should reduce the overhead of these operations quite a bit, unless the CPU in question is physically going away (Viresh Kumar, Saravana Kannan). - Serialization of cpufreq governor callbacks to avoid race conditions in some cases (Viresh Kumar). - intel_pstate driver fixes and cleanups (Doug Smythies, Prarit Bhargava, Joe Konno). - cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep Holla, Felipe Balbi, Tang Yuantian). - Assorted cleanups in cpufreq drivers and core (Shailendra Verma, Fabian Frederick, Wang Long). - New Device Tree bindings for representing Operating Performance Points (Viresh Kumar). - Updates for the common clock operations support code in the PM core (Rajendra Nayak, Geert Uytterhoeven). - PM domains core code update (Geert Uytterhoeven). - Intel Knights Landing support for the RAPL (Running Average Power Limit) power capping driver (Dasaratharaman Chandramouli). - Fixes related to the floor frequency setting on Atom SoCs in the RAPL power capping driver (Ajay Thomas). - Runtime PM framework documentation update (Ben Dooks). - cpupower tool fix (Herton R Krzesinski). / -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABCAAGBQJViJdWAAoJEILEb/54YlRx/9gP/3gHoFevNRycvn0VpKqdufCI Mxy2LBBLlfyW2uD3+NvqvA2WWSo0Cs/LgXa04eAVxPdU7k48s8w+54U23wSouzjW gfwAmuHxzDR8v0h8X3h6BxNzmkIQHtmDcQlA/cZdHejY/UUw01yxRGNUUZDNbxlm WXn2nmlBLmGqXTYq0fpBV+3jicUghJqHHsBCqa3VR2yQioHMJG01F4UZMqYTZunN OIvDUghxByKz6alzdCqlLl1Y0exV6vwWUAzBsl1qHqmHu/bWFSZn3ujNNVrjqHhw Kl7/8dC2pQkv3Zo3gEVvfQ0onotwWZxGHzPQRdvmxvRnBunQVCi/wynx90yABX/r PPb/iBNV0mZskbF0zb0GZT3ZZWGA8Z0p3o5JQv2jV4m62qTzx8w50Y5kbn9N1WT+ 5bre7AVbVAlGonWszcS9iE+6TOboRz9OD1CCwPFXHItFutlBkau+1hHfFoLM0o9n LhpGuyszT/EUa1BHkLzuCckFqO2DpbF3N2CKmuTekw0CdgdsvRL2pRByuerk3j7R WQhlcvBq5YH6j43AuoEZKp8r1iN8oG/iqlrMYQaYWrW9hJaoQOoU8dGJxp/e7gKN r/qeYjETI+tIsjCbtH5WQzzxDI3gPISAYAtfqs7G34EEo+Lwp6kyRUAF4kDot2V3 ZIyuKMmTu4cdwDETr/O+ =7jTj -----END PGP SIGNATURE----- Merge tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management and ACPI updates from Rafael Wysocki: "The rework of backlight interface selection API from Hans de Goede stands out from the number of commits and the number of affected places perspective. The cpufreq core fixes from Viresh Kumar are quite significant too as far as the number of commits goes and because they should reduce CPU online/offline overhead quite a bit in the majority of cases. From the new featues point of view, the ACPICA update (to upstream revision 20150515) adding support for new ACPI 6 material to ACPICA is the one that matters the most as some new significant features will be based on it going forward. Also included is an update of the ACPI device power management core to follow ACPI 6 (which in turn reflects the Windows' device PM implementation), a PM core extension to support wakeup interrupts in a more generic way and support for the ACPI _CCA device configuration object. The rest is mostly fixes and cleanups all over and some documentation updates, including new DT bindings for Operating Performance Points. There is one fix for a regression introduced in the 4.1 cycle, but it adds quite a number of lines of code, it wasn't really ready before Thursday and you were on vacation, so I refrained from pushing it on the last minute for 4.1. Specifics: - ACPICA update to upstream revision 20150515 including basic support for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO, XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM, FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore, Lv Zheng). - ACPI device power management core code update to follow ACPI 6 which reflects the ACPI device power management implementation in Windows (Rafael J Wysocki). - rework of the backlight interface selection logic to reduce the number of kernel command line options and improve the handling of DMI quirks that may be involved in that and to make the code generally more straightforward (Hans de Goede). - fixes for the ACPI Embedded Controller (EC) driver related to the handling of EC transactions (Lv Zheng). - fix for a regression related to the ACPI resources management and resulting from a recent change of ACPI initialization code ordering (Rafael J Wysocki). - fix for a system initialization regression related to ACPI introduced during the 3.14 cycle and caused by running the code that switches the platform over to the ACPI mode too early in the initialization sequence (Rafael J Wysocki). - support for the ACPI _CCA device configuration object related to DMA cache coherence (Suravee Suthikulpanit). - ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov). - ACPI battery driver cleanups (Luis Henriques, Mathias Krause). - ACPI processor driver cleanups (Hanjun Guo). - cleanups and documentation update related to the ACPI device properties interface based on _DSD (Rafael J Wysocki). - ACPI device power management fixes (Rafael J Wysocki). - assorted cleanups related to ACPI (Dominik Brodowski, Fabian Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki). - fix for a long-standing issue causing General Protection Faults to be generated occasionally on return to user space after resume from ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar). - fix to make the suspend core code return -EBUSY consistently in all cases when system suspend is aborted due to wakeup detection (Ruchi Kandoi). - support for automated device wakeup IRQ handling allowing drivers to make their PM support more starightforward (Tony Lindgren). - new tracepoints for suspend-to-idle tracing and rework of the prepare/complete callbacks tracing in the PM core (Todd E Brandt, Rafael J Wysocki). - wakeup sources framework enhancements (Jin Qian). - new macro for noirq system PM callbacks (Grygorii Strashko). - assorted cleanups related to system suspend (Rafael J Wysocki). - cpuidle core cleanups to make the code more efficient (Rafael J Wysocki). - powernv/pseries cpuidle driver update (Shilpasri G Bhat). - cpufreq core fixes related to CPU online/offline that should reduce the overhead of these operations quite a bit, unless the CPU in question is physically going away (Viresh Kumar, Saravana Kannan). - serialization of cpufreq governor callbacks to avoid race conditions in some cases (Viresh Kumar). - intel_pstate driver fixes and cleanups (Doug Smythies, Prarit Bhargava, Joe Konno). - cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep Holla, Felipe Balbi, Tang Yuantian). - assorted cleanups in cpufreq drivers and core (Shailendra Verma, Fabian Frederick, Wang Long). - new Device Tree bindings for representing Operating Performance Points (Viresh Kumar). - updates for the common clock operations support code in the PM core (Rajendra Nayak, Geert Uytterhoeven). - PM domains core code update (Geert Uytterhoeven). - Intel Knights Landing support for the RAPL (Running Average Power Limit) power capping driver (Dasaratharaman Chandramouli). - fixes related to the floor frequency setting on Atom SoCs in the RAPL power capping driver (Ajay Thomas). - runtime PM framework documentation update (Ben Dooks). - cpupower tool fix (Herton R Krzesinski)" * tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits) cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state x86: Load __USER_DS into DS/ES after resume PM / OPP: Add binding for 'opp-suspend' PM / OPP: Allow multiple OPP tables to be passed via DT PM / OPP: Add new bindings to address shortcomings of existing bindings ACPI: Constify ACPI device IDs in documentation ACPI / enumeration: Document the rules regarding the PRP0001 device ID ACPI / video: Make acpi_video_unregister_backlight() private acpi-video-detect: Remove old API toshiba-acpi: Port to new backlight interface selection API thinkpad-acpi: Port to new backlight interface selection API sony-laptop: Port to new backlight interface selection API samsung-laptop: Port to new backlight interface selection API msi-wmi: Port to new backlight interface selection API msi-laptop: Port to new backlight interface selection API intel-oaktrail: Port to new backlight interface selection API ideapad-laptop: Port to new backlight interface selection API fujitsu-laptop: Port to new backlight interface selection API eeepc-laptop: Port to new backlight interface selection API dell-wmi: Port to new backlight interface selection API ...
1296 lines
29 KiB
C
1296 lines
29 KiB
C
/*
|
|
* intel_pstate.c: Native P state management for Intel processors
|
|
*
|
|
* (C) Copyright 2012 Intel Corporation
|
|
* Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; version 2
|
|
* of the License.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/list.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <trace/events/power.h>
|
|
|
|
#include <asm/div64.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
#define BYT_RATIOS 0x66a
|
|
#define BYT_VIDS 0x66b
|
|
#define BYT_TURBO_RATIOS 0x66c
|
|
#define BYT_TURBO_VIDS 0x66d
|
|
|
|
#define FRAC_BITS 8
|
|
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
|
|
#define fp_toint(X) ((X) >> FRAC_BITS)
|
|
|
|
|
|
static inline int32_t mul_fp(int32_t x, int32_t y)
|
|
{
|
|
return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
|
|
}
|
|
|
|
static inline int32_t div_fp(s64 x, s64 y)
|
|
{
|
|
return div64_s64((int64_t)x << FRAC_BITS, y);
|
|
}
|
|
|
|
static inline int ceiling_fp(int32_t x)
|
|
{
|
|
int mask, ret;
|
|
|
|
ret = fp_toint(x);
|
|
mask = (1 << FRAC_BITS) - 1;
|
|
if (x & mask)
|
|
ret += 1;
|
|
return ret;
|
|
}
|
|
|
|
struct sample {
|
|
int32_t core_pct_busy;
|
|
u64 aperf;
|
|
u64 mperf;
|
|
u64 tsc;
|
|
int freq;
|
|
ktime_t time;
|
|
};
|
|
|
|
struct pstate_data {
|
|
int current_pstate;
|
|
int min_pstate;
|
|
int max_pstate;
|
|
int scaling;
|
|
int turbo_pstate;
|
|
};
|
|
|
|
struct vid_data {
|
|
int min;
|
|
int max;
|
|
int turbo;
|
|
int32_t ratio;
|
|
};
|
|
|
|
struct _pid {
|
|
int setpoint;
|
|
int32_t integral;
|
|
int32_t p_gain;
|
|
int32_t i_gain;
|
|
int32_t d_gain;
|
|
int deadband;
|
|
int32_t last_err;
|
|
};
|
|
|
|
struct cpudata {
|
|
int cpu;
|
|
|
|
struct timer_list timer;
|
|
|
|
struct pstate_data pstate;
|
|
struct vid_data vid;
|
|
struct _pid pid;
|
|
|
|
ktime_t last_sample_time;
|
|
u64 prev_aperf;
|
|
u64 prev_mperf;
|
|
u64 prev_tsc;
|
|
struct sample sample;
|
|
};
|
|
|
|
static struct cpudata **all_cpu_data;
|
|
struct pstate_adjust_policy {
|
|
int sample_rate_ms;
|
|
int deadband;
|
|
int setpoint;
|
|
int p_gain_pct;
|
|
int d_gain_pct;
|
|
int i_gain_pct;
|
|
};
|
|
|
|
struct pstate_funcs {
|
|
int (*get_max)(void);
|
|
int (*get_min)(void);
|
|
int (*get_turbo)(void);
|
|
int (*get_scaling)(void);
|
|
void (*set)(struct cpudata*, int pstate);
|
|
void (*get_vid)(struct cpudata *);
|
|
};
|
|
|
|
struct cpu_defaults {
|
|
struct pstate_adjust_policy pid_policy;
|
|
struct pstate_funcs funcs;
|
|
};
|
|
|
|
static struct pstate_adjust_policy pid_params;
|
|
static struct pstate_funcs pstate_funcs;
|
|
static int hwp_active;
|
|
|
|
struct perf_limits {
|
|
int no_turbo;
|
|
int turbo_disabled;
|
|
int max_perf_pct;
|
|
int min_perf_pct;
|
|
int32_t max_perf;
|
|
int32_t min_perf;
|
|
int max_policy_pct;
|
|
int max_sysfs_pct;
|
|
int min_policy_pct;
|
|
int min_sysfs_pct;
|
|
};
|
|
|
|
static struct perf_limits limits = {
|
|
.no_turbo = 0,
|
|
.turbo_disabled = 0,
|
|
.max_perf_pct = 100,
|
|
.max_perf = int_tofp(1),
|
|
.min_perf_pct = 0,
|
|
.min_perf = 0,
|
|
.max_policy_pct = 100,
|
|
.max_sysfs_pct = 100,
|
|
.min_policy_pct = 0,
|
|
.min_sysfs_pct = 0,
|
|
};
|
|
|
|
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
|
|
int deadband, int integral) {
|
|
pid->setpoint = setpoint;
|
|
pid->deadband = deadband;
|
|
pid->integral = int_tofp(integral);
|
|
pid->last_err = int_tofp(setpoint) - int_tofp(busy);
|
|
}
|
|
|
|
static inline void pid_p_gain_set(struct _pid *pid, int percent)
|
|
{
|
|
pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
|
|
}
|
|
|
|
static inline void pid_i_gain_set(struct _pid *pid, int percent)
|
|
{
|
|
pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
|
|
}
|
|
|
|
static inline void pid_d_gain_set(struct _pid *pid, int percent)
|
|
{
|
|
pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
|
|
}
|
|
|
|
static signed int pid_calc(struct _pid *pid, int32_t busy)
|
|
{
|
|
signed int result;
|
|
int32_t pterm, dterm, fp_error;
|
|
int32_t integral_limit;
|
|
|
|
fp_error = int_tofp(pid->setpoint) - busy;
|
|
|
|
if (abs(fp_error) <= int_tofp(pid->deadband))
|
|
return 0;
|
|
|
|
pterm = mul_fp(pid->p_gain, fp_error);
|
|
|
|
pid->integral += fp_error;
|
|
|
|
/*
|
|
* We limit the integral here so that it will never
|
|
* get higher than 30. This prevents it from becoming
|
|
* too large an input over long periods of time and allows
|
|
* it to get factored out sooner.
|
|
*
|
|
* The value of 30 was chosen through experimentation.
|
|
*/
|
|
integral_limit = int_tofp(30);
|
|
if (pid->integral > integral_limit)
|
|
pid->integral = integral_limit;
|
|
if (pid->integral < -integral_limit)
|
|
pid->integral = -integral_limit;
|
|
|
|
dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
|
|
pid->last_err = fp_error;
|
|
|
|
result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
|
|
result = result + (1 << (FRAC_BITS-1));
|
|
return (signed int)fp_toint(result);
|
|
}
|
|
|
|
static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
|
|
{
|
|
pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
|
|
pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
|
|
pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
|
|
|
|
pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
|
|
}
|
|
|
|
static inline void intel_pstate_reset_all_pid(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (all_cpu_data[cpu])
|
|
intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
|
|
}
|
|
}
|
|
|
|
static inline void update_turbo_state(void)
|
|
{
|
|
u64 misc_en;
|
|
struct cpudata *cpu;
|
|
|
|
cpu = all_cpu_data[0];
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
|
|
limits.turbo_disabled =
|
|
(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
|
|
cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
|
|
}
|
|
|
|
#define PCT_TO_HWP(x) (x * 255 / 100)
|
|
static void intel_pstate_hwp_set(void)
|
|
{
|
|
int min, max, cpu;
|
|
u64 value, freq;
|
|
|
|
get_online_cpus();
|
|
|
|
for_each_online_cpu(cpu) {
|
|
rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
|
|
min = PCT_TO_HWP(limits.min_perf_pct);
|
|
value &= ~HWP_MIN_PERF(~0L);
|
|
value |= HWP_MIN_PERF(min);
|
|
|
|
max = PCT_TO_HWP(limits.max_perf_pct);
|
|
if (limits.no_turbo) {
|
|
rdmsrl( MSR_HWP_CAPABILITIES, freq);
|
|
max = HWP_GUARANTEED_PERF(freq);
|
|
}
|
|
|
|
value &= ~HWP_MAX_PERF(~0L);
|
|
value |= HWP_MAX_PERF(max);
|
|
wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
|
|
}
|
|
|
|
put_online_cpus();
|
|
}
|
|
|
|
/************************** debugfs begin ************************/
|
|
static int pid_param_set(void *data, u64 val)
|
|
{
|
|
*(u32 *)data = val;
|
|
intel_pstate_reset_all_pid();
|
|
return 0;
|
|
}
|
|
|
|
static int pid_param_get(void *data, u64 *val)
|
|
{
|
|
*val = *(u32 *)data;
|
|
return 0;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
|
|
|
|
struct pid_param {
|
|
char *name;
|
|
void *value;
|
|
};
|
|
|
|
static struct pid_param pid_files[] = {
|
|
{"sample_rate_ms", &pid_params.sample_rate_ms},
|
|
{"d_gain_pct", &pid_params.d_gain_pct},
|
|
{"i_gain_pct", &pid_params.i_gain_pct},
|
|
{"deadband", &pid_params.deadband},
|
|
{"setpoint", &pid_params.setpoint},
|
|
{"p_gain_pct", &pid_params.p_gain_pct},
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static void __init intel_pstate_debug_expose_params(void)
|
|
{
|
|
struct dentry *debugfs_parent;
|
|
int i = 0;
|
|
|
|
if (hwp_active)
|
|
return;
|
|
debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
|
|
if (IS_ERR_OR_NULL(debugfs_parent))
|
|
return;
|
|
while (pid_files[i].name) {
|
|
debugfs_create_file(pid_files[i].name, 0660,
|
|
debugfs_parent, pid_files[i].value,
|
|
&fops_pid_param);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/************************** debugfs end ************************/
|
|
|
|
/************************** sysfs begin ************************/
|
|
#define show_one(file_name, object) \
|
|
static ssize_t show_##file_name \
|
|
(struct kobject *kobj, struct attribute *attr, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "%u\n", limits.object); \
|
|
}
|
|
|
|
static ssize_t show_turbo_pct(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
struct cpudata *cpu;
|
|
int total, no_turbo, turbo_pct;
|
|
uint32_t turbo_fp;
|
|
|
|
cpu = all_cpu_data[0];
|
|
|
|
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
|
|
no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
|
|
turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
|
|
turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
|
|
return sprintf(buf, "%u\n", turbo_pct);
|
|
}
|
|
|
|
static ssize_t show_num_pstates(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
struct cpudata *cpu;
|
|
int total;
|
|
|
|
cpu = all_cpu_data[0];
|
|
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
|
|
return sprintf(buf, "%u\n", total);
|
|
}
|
|
|
|
static ssize_t show_no_turbo(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
ssize_t ret;
|
|
|
|
update_turbo_state();
|
|
if (limits.turbo_disabled)
|
|
ret = sprintf(buf, "%u\n", limits.turbo_disabled);
|
|
else
|
|
ret = sprintf(buf, "%u\n", limits.no_turbo);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
update_turbo_state();
|
|
if (limits.turbo_disabled) {
|
|
pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
limits.no_turbo = clamp_t(int, input, 0, 1);
|
|
|
|
if (hwp_active)
|
|
intel_pstate_hwp_set();
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
|
|
limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
|
|
limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
|
|
|
|
if (hwp_active)
|
|
intel_pstate_hwp_set();
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
|
|
limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
|
|
limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
|
|
|
|
if (hwp_active)
|
|
intel_pstate_hwp_set();
|
|
return count;
|
|
}
|
|
|
|
show_one(max_perf_pct, max_perf_pct);
|
|
show_one(min_perf_pct, min_perf_pct);
|
|
|
|
define_one_global_rw(no_turbo);
|
|
define_one_global_rw(max_perf_pct);
|
|
define_one_global_rw(min_perf_pct);
|
|
define_one_global_ro(turbo_pct);
|
|
define_one_global_ro(num_pstates);
|
|
|
|
static struct attribute *intel_pstate_attributes[] = {
|
|
&no_turbo.attr,
|
|
&max_perf_pct.attr,
|
|
&min_perf_pct.attr,
|
|
&turbo_pct.attr,
|
|
&num_pstates.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group intel_pstate_attr_group = {
|
|
.attrs = intel_pstate_attributes,
|
|
};
|
|
|
|
static void __init intel_pstate_sysfs_expose_params(void)
|
|
{
|
|
struct kobject *intel_pstate_kobject;
|
|
int rc;
|
|
|
|
intel_pstate_kobject = kobject_create_and_add("intel_pstate",
|
|
&cpu_subsys.dev_root->kobj);
|
|
BUG_ON(!intel_pstate_kobject);
|
|
rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
|
|
BUG_ON(rc);
|
|
}
|
|
/************************** sysfs end ************************/
|
|
|
|
static void intel_pstate_hwp_enable(void)
|
|
{
|
|
hwp_active++;
|
|
pr_info("intel_pstate: HWP enabled\n");
|
|
|
|
wrmsrl( MSR_PM_ENABLE, 0x1);
|
|
}
|
|
|
|
static int byt_get_min_pstate(void)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(BYT_RATIOS, value);
|
|
return (value >> 8) & 0x7F;
|
|
}
|
|
|
|
static int byt_get_max_pstate(void)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(BYT_RATIOS, value);
|
|
return (value >> 16) & 0x7F;
|
|
}
|
|
|
|
static int byt_get_turbo_pstate(void)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(BYT_TURBO_RATIOS, value);
|
|
return value & 0x7F;
|
|
}
|
|
|
|
static void byt_set_pstate(struct cpudata *cpudata, int pstate)
|
|
{
|
|
u64 val;
|
|
int32_t vid_fp;
|
|
u32 vid;
|
|
|
|
val = pstate << 8;
|
|
if (limits.no_turbo && !limits.turbo_disabled)
|
|
val |= (u64)1 << 32;
|
|
|
|
vid_fp = cpudata->vid.min + mul_fp(
|
|
int_tofp(pstate - cpudata->pstate.min_pstate),
|
|
cpudata->vid.ratio);
|
|
|
|
vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
|
|
vid = ceiling_fp(vid_fp);
|
|
|
|
if (pstate > cpudata->pstate.max_pstate)
|
|
vid = cpudata->vid.turbo;
|
|
|
|
val |= vid;
|
|
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
|
|
}
|
|
|
|
#define BYT_BCLK_FREQS 5
|
|
static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
|
|
|
|
static int byt_get_scaling(void)
|
|
{
|
|
u64 value;
|
|
int i;
|
|
|
|
rdmsrl(MSR_FSB_FREQ, value);
|
|
i = value & 0x3;
|
|
|
|
BUG_ON(i > BYT_BCLK_FREQS);
|
|
|
|
return byt_freq_table[i] * 100;
|
|
}
|
|
|
|
static void byt_get_vid(struct cpudata *cpudata)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(BYT_VIDS, value);
|
|
cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
|
|
cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
|
|
cpudata->vid.ratio = div_fp(
|
|
cpudata->vid.max - cpudata->vid.min,
|
|
int_tofp(cpudata->pstate.max_pstate -
|
|
cpudata->pstate.min_pstate));
|
|
|
|
rdmsrl(BYT_TURBO_VIDS, value);
|
|
cpudata->vid.turbo = value & 0x7f;
|
|
}
|
|
|
|
static int core_get_min_pstate(void)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_PLATFORM_INFO, value);
|
|
return (value >> 40) & 0xFF;
|
|
}
|
|
|
|
static int core_get_max_pstate(void)
|
|
{
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_PLATFORM_INFO, value);
|
|
return (value >> 8) & 0xFF;
|
|
}
|
|
|
|
static int core_get_turbo_pstate(void)
|
|
{
|
|
u64 value;
|
|
int nont, ret;
|
|
|
|
rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
|
|
nont = core_get_max_pstate();
|
|
ret = (value) & 255;
|
|
if (ret <= nont)
|
|
ret = nont;
|
|
return ret;
|
|
}
|
|
|
|
static inline int core_get_scaling(void)
|
|
{
|
|
return 100000;
|
|
}
|
|
|
|
static void core_set_pstate(struct cpudata *cpudata, int pstate)
|
|
{
|
|
u64 val;
|
|
|
|
val = pstate << 8;
|
|
if (limits.no_turbo && !limits.turbo_disabled)
|
|
val |= (u64)1 << 32;
|
|
|
|
wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
|
|
}
|
|
|
|
static int knl_get_turbo_pstate(void)
|
|
{
|
|
u64 value;
|
|
int nont, ret;
|
|
|
|
rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
|
|
nont = core_get_max_pstate();
|
|
ret = (((value) >> 8) & 0xFF);
|
|
if (ret <= nont)
|
|
ret = nont;
|
|
return ret;
|
|
}
|
|
|
|
static struct cpu_defaults core_params = {
|
|
.pid_policy = {
|
|
.sample_rate_ms = 10,
|
|
.deadband = 0,
|
|
.setpoint = 97,
|
|
.p_gain_pct = 20,
|
|
.d_gain_pct = 0,
|
|
.i_gain_pct = 0,
|
|
},
|
|
.funcs = {
|
|
.get_max = core_get_max_pstate,
|
|
.get_min = core_get_min_pstate,
|
|
.get_turbo = core_get_turbo_pstate,
|
|
.get_scaling = core_get_scaling,
|
|
.set = core_set_pstate,
|
|
},
|
|
};
|
|
|
|
static struct cpu_defaults byt_params = {
|
|
.pid_policy = {
|
|
.sample_rate_ms = 10,
|
|
.deadband = 0,
|
|
.setpoint = 60,
|
|
.p_gain_pct = 14,
|
|
.d_gain_pct = 0,
|
|
.i_gain_pct = 4,
|
|
},
|
|
.funcs = {
|
|
.get_max = byt_get_max_pstate,
|
|
.get_min = byt_get_min_pstate,
|
|
.get_turbo = byt_get_turbo_pstate,
|
|
.set = byt_set_pstate,
|
|
.get_scaling = byt_get_scaling,
|
|
.get_vid = byt_get_vid,
|
|
},
|
|
};
|
|
|
|
static struct cpu_defaults knl_params = {
|
|
.pid_policy = {
|
|
.sample_rate_ms = 10,
|
|
.deadband = 0,
|
|
.setpoint = 97,
|
|
.p_gain_pct = 20,
|
|
.d_gain_pct = 0,
|
|
.i_gain_pct = 0,
|
|
},
|
|
.funcs = {
|
|
.get_max = core_get_max_pstate,
|
|
.get_min = core_get_min_pstate,
|
|
.get_turbo = knl_get_turbo_pstate,
|
|
.set = core_set_pstate,
|
|
},
|
|
};
|
|
|
|
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
|
|
{
|
|
int max_perf = cpu->pstate.turbo_pstate;
|
|
int max_perf_adj;
|
|
int min_perf;
|
|
|
|
if (limits.no_turbo || limits.turbo_disabled)
|
|
max_perf = cpu->pstate.max_pstate;
|
|
|
|
/*
|
|
* performance can be limited by user through sysfs, by cpufreq
|
|
* policy, or by cpu specific default values determined through
|
|
* experimentation.
|
|
*/
|
|
max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
|
|
*max = clamp_t(int, max_perf_adj,
|
|
cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
|
|
|
|
min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
|
|
*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
|
|
}
|
|
|
|
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
|
|
{
|
|
int max_perf, min_perf;
|
|
|
|
if (force) {
|
|
update_turbo_state();
|
|
|
|
intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
|
|
|
|
pstate = clamp_t(int, pstate, min_perf, max_perf);
|
|
|
|
if (pstate == cpu->pstate.current_pstate)
|
|
return;
|
|
}
|
|
trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
|
|
|
|
cpu->pstate.current_pstate = pstate;
|
|
|
|
pstate_funcs.set(cpu, pstate);
|
|
}
|
|
|
|
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
|
|
{
|
|
cpu->pstate.min_pstate = pstate_funcs.get_min();
|
|
cpu->pstate.max_pstate = pstate_funcs.get_max();
|
|
cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
|
|
cpu->pstate.scaling = pstate_funcs.get_scaling();
|
|
|
|
if (pstate_funcs.get_vid)
|
|
pstate_funcs.get_vid(cpu);
|
|
intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
|
|
}
|
|
|
|
static inline void intel_pstate_calc_busy(struct cpudata *cpu)
|
|
{
|
|
struct sample *sample = &cpu->sample;
|
|
int64_t core_pct;
|
|
|
|
core_pct = int_tofp(sample->aperf) * int_tofp(100);
|
|
core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
|
|
|
|
sample->freq = fp_toint(
|
|
mul_fp(int_tofp(
|
|
cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
|
|
core_pct));
|
|
|
|
sample->core_pct_busy = (int32_t)core_pct;
|
|
}
|
|
|
|
static inline void intel_pstate_sample(struct cpudata *cpu)
|
|
{
|
|
u64 aperf, mperf;
|
|
unsigned long flags;
|
|
u64 tsc;
|
|
|
|
local_irq_save(flags);
|
|
rdmsrl(MSR_IA32_APERF, aperf);
|
|
rdmsrl(MSR_IA32_MPERF, mperf);
|
|
tsc = native_read_tsc();
|
|
local_irq_restore(flags);
|
|
|
|
cpu->last_sample_time = cpu->sample.time;
|
|
cpu->sample.time = ktime_get();
|
|
cpu->sample.aperf = aperf;
|
|
cpu->sample.mperf = mperf;
|
|
cpu->sample.tsc = tsc;
|
|
cpu->sample.aperf -= cpu->prev_aperf;
|
|
cpu->sample.mperf -= cpu->prev_mperf;
|
|
cpu->sample.tsc -= cpu->prev_tsc;
|
|
|
|
intel_pstate_calc_busy(cpu);
|
|
|
|
cpu->prev_aperf = aperf;
|
|
cpu->prev_mperf = mperf;
|
|
cpu->prev_tsc = tsc;
|
|
}
|
|
|
|
static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
|
|
{
|
|
int delay;
|
|
|
|
delay = msecs_to_jiffies(50);
|
|
mod_timer_pinned(&cpu->timer, jiffies + delay);
|
|
}
|
|
|
|
static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
|
|
{
|
|
int delay;
|
|
|
|
delay = msecs_to_jiffies(pid_params.sample_rate_ms);
|
|
mod_timer_pinned(&cpu->timer, jiffies + delay);
|
|
}
|
|
|
|
static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
|
|
{
|
|
int32_t core_busy, max_pstate, current_pstate, sample_ratio;
|
|
s64 duration_us;
|
|
u32 sample_time;
|
|
|
|
/*
|
|
* core_busy is the ratio of actual performance to max
|
|
* max_pstate is the max non turbo pstate available
|
|
* current_pstate was the pstate that was requested during
|
|
* the last sample period.
|
|
*
|
|
* We normalize core_busy, which was our actual percent
|
|
* performance to what we requested during the last sample
|
|
* period. The result will be a percentage of busy at a
|
|
* specified pstate.
|
|
*/
|
|
core_busy = cpu->sample.core_pct_busy;
|
|
max_pstate = int_tofp(cpu->pstate.max_pstate);
|
|
current_pstate = int_tofp(cpu->pstate.current_pstate);
|
|
core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
|
|
|
|
/*
|
|
* Since we have a deferred timer, it will not fire unless
|
|
* we are in C0. So, determine if the actual elapsed time
|
|
* is significantly greater (3x) than our sample interval. If it
|
|
* is, then we were idle for a long enough period of time
|
|
* to adjust our busyness.
|
|
*/
|
|
sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
|
|
duration_us = ktime_us_delta(cpu->sample.time,
|
|
cpu->last_sample_time);
|
|
if (duration_us > sample_time * 3) {
|
|
sample_ratio = div_fp(int_tofp(sample_time),
|
|
int_tofp(duration_us));
|
|
core_busy = mul_fp(core_busy, sample_ratio);
|
|
}
|
|
|
|
return core_busy;
|
|
}
|
|
|
|
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
|
|
{
|
|
int32_t busy_scaled;
|
|
struct _pid *pid;
|
|
signed int ctl;
|
|
int from;
|
|
struct sample *sample;
|
|
|
|
from = cpu->pstate.current_pstate;
|
|
|
|
pid = &cpu->pid;
|
|
busy_scaled = intel_pstate_get_scaled_busy(cpu);
|
|
|
|
ctl = pid_calc(pid, busy_scaled);
|
|
|
|
/* Negative values of ctl increase the pstate and vice versa */
|
|
intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
|
|
|
|
sample = &cpu->sample;
|
|
trace_pstate_sample(fp_toint(sample->core_pct_busy),
|
|
fp_toint(busy_scaled),
|
|
from,
|
|
cpu->pstate.current_pstate,
|
|
sample->mperf,
|
|
sample->aperf,
|
|
sample->tsc,
|
|
sample->freq);
|
|
}
|
|
|
|
static void intel_hwp_timer_func(unsigned long __data)
|
|
{
|
|
struct cpudata *cpu = (struct cpudata *) __data;
|
|
|
|
intel_pstate_sample(cpu);
|
|
intel_hwp_set_sample_time(cpu);
|
|
}
|
|
|
|
static void intel_pstate_timer_func(unsigned long __data)
|
|
{
|
|
struct cpudata *cpu = (struct cpudata *) __data;
|
|
|
|
intel_pstate_sample(cpu);
|
|
|
|
intel_pstate_adjust_busy_pstate(cpu);
|
|
|
|
intel_pstate_set_sample_time(cpu);
|
|
}
|
|
|
|
#define ICPU(model, policy) \
|
|
{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
|
|
(unsigned long)&policy }
|
|
|
|
static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
|
|
ICPU(0x2a, core_params),
|
|
ICPU(0x2d, core_params),
|
|
ICPU(0x37, byt_params),
|
|
ICPU(0x3a, core_params),
|
|
ICPU(0x3c, core_params),
|
|
ICPU(0x3d, core_params),
|
|
ICPU(0x3e, core_params),
|
|
ICPU(0x3f, core_params),
|
|
ICPU(0x45, core_params),
|
|
ICPU(0x46, core_params),
|
|
ICPU(0x47, core_params),
|
|
ICPU(0x4c, byt_params),
|
|
ICPU(0x4e, core_params),
|
|
ICPU(0x4f, core_params),
|
|
ICPU(0x56, core_params),
|
|
ICPU(0x57, knl_params),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
|
|
|
|
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
|
|
ICPU(0x56, core_params),
|
|
{}
|
|
};
|
|
|
|
static int intel_pstate_init_cpu(unsigned int cpunum)
|
|
{
|
|
struct cpudata *cpu;
|
|
|
|
if (!all_cpu_data[cpunum])
|
|
all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
|
|
GFP_KERNEL);
|
|
if (!all_cpu_data[cpunum])
|
|
return -ENOMEM;
|
|
|
|
cpu = all_cpu_data[cpunum];
|
|
|
|
cpu->cpu = cpunum;
|
|
intel_pstate_get_cpu_pstates(cpu);
|
|
|
|
init_timer_deferrable(&cpu->timer);
|
|
cpu->timer.data = (unsigned long)cpu;
|
|
cpu->timer.expires = jiffies + HZ/100;
|
|
|
|
if (!hwp_active)
|
|
cpu->timer.function = intel_pstate_timer_func;
|
|
else
|
|
cpu->timer.function = intel_hwp_timer_func;
|
|
|
|
intel_pstate_busy_pid_reset(cpu);
|
|
intel_pstate_sample(cpu);
|
|
|
|
add_timer_on(&cpu->timer, cpunum);
|
|
|
|
pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int intel_pstate_get(unsigned int cpu_num)
|
|
{
|
|
struct sample *sample;
|
|
struct cpudata *cpu;
|
|
|
|
cpu = all_cpu_data[cpu_num];
|
|
if (!cpu)
|
|
return 0;
|
|
sample = &cpu->sample;
|
|
return sample->freq;
|
|
}
|
|
|
|
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
|
|
{
|
|
if (!policy->cpuinfo.max_freq)
|
|
return -ENODEV;
|
|
|
|
if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
|
|
policy->max >= policy->cpuinfo.max_freq) {
|
|
limits.min_policy_pct = 100;
|
|
limits.min_perf_pct = 100;
|
|
limits.min_perf = int_tofp(1);
|
|
limits.max_policy_pct = 100;
|
|
limits.max_perf_pct = 100;
|
|
limits.max_perf = int_tofp(1);
|
|
limits.no_turbo = 0;
|
|
return 0;
|
|
}
|
|
|
|
limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
|
|
limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
|
|
limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
|
|
limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
|
|
|
|
limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
|
|
limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
|
|
limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
|
|
limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
|
|
|
|
if (hwp_active)
|
|
intel_pstate_hwp_set();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
|
|
if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
|
|
policy->policy != CPUFREQ_POLICY_PERFORMANCE)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
|
|
{
|
|
int cpu_num = policy->cpu;
|
|
struct cpudata *cpu = all_cpu_data[cpu_num];
|
|
|
|
pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
|
|
|
|
del_timer_sync(&all_cpu_data[cpu_num]->timer);
|
|
if (hwp_active)
|
|
return;
|
|
|
|
intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
|
|
}
|
|
|
|
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct cpudata *cpu;
|
|
int rc;
|
|
|
|
rc = intel_pstate_init_cpu(policy->cpu);
|
|
if (rc)
|
|
return rc;
|
|
|
|
cpu = all_cpu_data[policy->cpu];
|
|
|
|
if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
|
|
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
|
|
else
|
|
policy->policy = CPUFREQ_POLICY_POWERSAVE;
|
|
|
|
policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
|
|
policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
|
|
|
|
/* cpuinfo and default policy values */
|
|
policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
|
|
policy->cpuinfo.max_freq =
|
|
cpu->pstate.turbo_pstate * cpu->pstate.scaling;
|
|
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
|
|
cpumask_set_cpu(policy->cpu, policy->cpus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct cpufreq_driver intel_pstate_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS,
|
|
.verify = intel_pstate_verify_policy,
|
|
.setpolicy = intel_pstate_set_policy,
|
|
.get = intel_pstate_get,
|
|
.init = intel_pstate_cpu_init,
|
|
.stop_cpu = intel_pstate_stop_cpu,
|
|
.name = "intel_pstate",
|
|
};
|
|
|
|
static int __initdata no_load;
|
|
static int __initdata no_hwp;
|
|
static int __initdata hwp_only;
|
|
static unsigned int force_load;
|
|
|
|
static int intel_pstate_msrs_not_valid(void)
|
|
{
|
|
if (!pstate_funcs.get_max() ||
|
|
!pstate_funcs.get_min() ||
|
|
!pstate_funcs.get_turbo())
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void copy_pid_params(struct pstate_adjust_policy *policy)
|
|
{
|
|
pid_params.sample_rate_ms = policy->sample_rate_ms;
|
|
pid_params.p_gain_pct = policy->p_gain_pct;
|
|
pid_params.i_gain_pct = policy->i_gain_pct;
|
|
pid_params.d_gain_pct = policy->d_gain_pct;
|
|
pid_params.deadband = policy->deadband;
|
|
pid_params.setpoint = policy->setpoint;
|
|
}
|
|
|
|
static void copy_cpu_funcs(struct pstate_funcs *funcs)
|
|
{
|
|
pstate_funcs.get_max = funcs->get_max;
|
|
pstate_funcs.get_min = funcs->get_min;
|
|
pstate_funcs.get_turbo = funcs->get_turbo;
|
|
pstate_funcs.get_scaling = funcs->get_scaling;
|
|
pstate_funcs.set = funcs->set;
|
|
pstate_funcs.get_vid = funcs->get_vid;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_ACPI)
|
|
#include <acpi/processor.h>
|
|
|
|
static bool intel_pstate_no_acpi_pss(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
acpi_status status;
|
|
union acpi_object *pss;
|
|
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
|
|
struct acpi_processor *pr = per_cpu(processors, i);
|
|
|
|
if (!pr)
|
|
continue;
|
|
|
|
status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
|
|
if (ACPI_FAILURE(status))
|
|
continue;
|
|
|
|
pss = buffer.pointer;
|
|
if (pss && pss->type == ACPI_TYPE_PACKAGE) {
|
|
kfree(pss);
|
|
return false;
|
|
}
|
|
|
|
kfree(pss);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool intel_pstate_has_acpi_ppc(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct acpi_processor *pr = per_cpu(processors, i);
|
|
|
|
if (!pr)
|
|
continue;
|
|
if (acpi_has_method(pr->handle, "_PPC"))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
enum {
|
|
PSS,
|
|
PPC,
|
|
};
|
|
|
|
struct hw_vendor_info {
|
|
u16 valid;
|
|
char oem_id[ACPI_OEM_ID_SIZE];
|
|
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
|
|
int oem_pwr_table;
|
|
};
|
|
|
|
/* Hardware vendor-specific info that has its own power management modes */
|
|
static struct hw_vendor_info vendor_info[] = {
|
|
{1, "HP ", "ProLiant", PSS},
|
|
{1, "ORACLE", "X4-2 ", PPC},
|
|
{1, "ORACLE", "X4-2L ", PPC},
|
|
{1, "ORACLE", "X4-2B ", PPC},
|
|
{1, "ORACLE", "X3-2 ", PPC},
|
|
{1, "ORACLE", "X3-2L ", PPC},
|
|
{1, "ORACLE", "X3-2B ", PPC},
|
|
{1, "ORACLE", "X4470M2 ", PPC},
|
|
{1, "ORACLE", "X4270M3 ", PPC},
|
|
{1, "ORACLE", "X4270M2 ", PPC},
|
|
{1, "ORACLE", "X4170M2 ", PPC},
|
|
{0, "", ""},
|
|
};
|
|
|
|
static bool intel_pstate_platform_pwr_mgmt_exists(void)
|
|
{
|
|
struct acpi_table_header hdr;
|
|
struct hw_vendor_info *v_info;
|
|
const struct x86_cpu_id *id;
|
|
u64 misc_pwr;
|
|
|
|
id = x86_match_cpu(intel_pstate_cpu_oob_ids);
|
|
if (id) {
|
|
rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
|
|
if ( misc_pwr & (1 << 8))
|
|
return true;
|
|
}
|
|
|
|
if (acpi_disabled ||
|
|
ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
|
|
return false;
|
|
|
|
for (v_info = vendor_info; v_info->valid; v_info++) {
|
|
if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
|
|
!strncmp(hdr.oem_table_id, v_info->oem_table_id,
|
|
ACPI_OEM_TABLE_ID_SIZE))
|
|
switch (v_info->oem_pwr_table) {
|
|
case PSS:
|
|
return intel_pstate_no_acpi_pss();
|
|
case PPC:
|
|
return intel_pstate_has_acpi_ppc() &&
|
|
(!force_load);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#else /* CONFIG_ACPI not enabled */
|
|
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
|
|
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
|
|
#endif /* CONFIG_ACPI */
|
|
|
|
static int __init intel_pstate_init(void)
|
|
{
|
|
int cpu, rc = 0;
|
|
const struct x86_cpu_id *id;
|
|
struct cpu_defaults *cpu_def;
|
|
|
|
if (no_load)
|
|
return -ENODEV;
|
|
|
|
id = x86_match_cpu(intel_pstate_cpu_ids);
|
|
if (!id)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* The Intel pstate driver will be ignored if the platform
|
|
* firmware has its own power management modes.
|
|
*/
|
|
if (intel_pstate_platform_pwr_mgmt_exists())
|
|
return -ENODEV;
|
|
|
|
cpu_def = (struct cpu_defaults *)id->driver_data;
|
|
|
|
copy_pid_params(&cpu_def->pid_policy);
|
|
copy_cpu_funcs(&cpu_def->funcs);
|
|
|
|
if (intel_pstate_msrs_not_valid())
|
|
return -ENODEV;
|
|
|
|
pr_info("Intel P-state driver initializing.\n");
|
|
|
|
all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
|
|
if (!all_cpu_data)
|
|
return -ENOMEM;
|
|
|
|
if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
|
|
intel_pstate_hwp_enable();
|
|
|
|
if (!hwp_active && hwp_only)
|
|
goto out;
|
|
|
|
rc = cpufreq_register_driver(&intel_pstate_driver);
|
|
if (rc)
|
|
goto out;
|
|
|
|
intel_pstate_debug_expose_params();
|
|
intel_pstate_sysfs_expose_params();
|
|
|
|
return rc;
|
|
out:
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu) {
|
|
if (all_cpu_data[cpu]) {
|
|
del_timer_sync(&all_cpu_data[cpu]->timer);
|
|
kfree(all_cpu_data[cpu]);
|
|
}
|
|
}
|
|
|
|
put_online_cpus();
|
|
vfree(all_cpu_data);
|
|
return -ENODEV;
|
|
}
|
|
device_initcall(intel_pstate_init);
|
|
|
|
static int __init intel_pstate_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(str, "disable"))
|
|
no_load = 1;
|
|
if (!strcmp(str, "no_hwp"))
|
|
no_hwp = 1;
|
|
if (!strcmp(str, "force"))
|
|
force_load = 1;
|
|
if (!strcmp(str, "hwp_only"))
|
|
hwp_only = 1;
|
|
return 0;
|
|
}
|
|
early_param("intel_pstate", intel_pstate_setup);
|
|
|
|
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
|
|
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
|
|
MODULE_LICENSE("GPL");
|