linux/drivers/memory/samsung/exynos5422-dmc.c
Linus Torvalds e70140ba0d Get rid of 'remove_new' relic from platform driver struct
The continual trickle of small conversion patches is grating on me, and
is really not helping.  Just get rid of the 'remove_new' member
function, which is just an alias for the plain 'remove', and had a
comment to that effect:

  /*
   * .remove_new() is a relic from a prototype conversion of .remove().
   * New drivers are supposed to implement .remove(). Once all drivers are
   * converted to not use .remove_new any more, it will be dropped.
   */

This was just a tree-wide 'sed' script that replaced '.remove_new' with
'.remove', with some care taken to turn a subsequent tab into two tabs
to make things line up.

I did do some minimal manual whitespace adjustment for places that used
spaces to line things up.

Then I just removed the old (sic) .remove_new member function, and this
is the end result.  No more unnecessary conversion noise.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-12-01 15:12:43 -08:00

1584 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 Samsung Electronics Co., Ltd.
* Author: Lukasz Luba <l.luba@partner.samsung.com>
*/
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/devfreq.h>
#include <linux/devfreq-event.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "../jedec_ddr.h"
#include "../of_memory.h"
static int irqmode;
module_param(irqmode, int, 0644);
MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
#define EXYNOS5_DREXI_TIMINGAREF (0x0030)
#define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
#define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
#define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
#define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
#define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
#define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
#define CDREX_PAUSE (0x2091c)
#define CDREX_LPDDR3PHY_CON3 (0x20a20)
#define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
#define EXYNOS5_TIMING_SET_SWI BIT(28)
#define USE_MX_MSPLL_TIMINGS (1)
#define USE_BPLL_TIMINGS (0)
#define EXYNOS5_AREF_NORMAL (0x2e)
#define DREX_PPCCLKCON (0x0130)
#define DREX_PEREV2CONFIG (0x013c)
#define DREX_PMNC_PPC (0xE000)
#define DREX_CNTENS_PPC (0xE010)
#define DREX_CNTENC_PPC (0xE020)
#define DREX_INTENS_PPC (0xE030)
#define DREX_INTENC_PPC (0xE040)
#define DREX_FLAG_PPC (0xE050)
#define DREX_PMCNT2_PPC (0xE130)
/*
* A value for register DREX_PMNC_PPC which should be written to reset
* the cycle counter CCNT (a reference wall clock). It sets zero to the
* CCNT counter.
*/
#define CC_RESET BIT(2)
/*
* A value for register DREX_PMNC_PPC which does the reset of all performance
* counters to zero.
*/
#define PPC_COUNTER_RESET BIT(1)
/*
* Enables all configured counters (including cycle counter). The value should
* be written to the register DREX_PMNC_PPC.
*/
#define PPC_ENABLE BIT(0)
/* A value for register DREX_PPCCLKCON which enables performance events clock.
* Must be written before first access to the performance counters register
* set, otherwise it could crash.
*/
#define PEREV_CLK_EN BIT(0)
/*
* Values which are used to enable counters, interrupts or configure flags of
* the performance counters. They configure counter 2 and cycle counter.
*/
#define PERF_CNT2 BIT(2)
#define PERF_CCNT BIT(31)
/*
* Performance event types which are used for setting the preferred event
* to track in the counters.
* There is a set of different types, the values are from range 0 to 0x6f.
* These settings should be written to the configuration register which manages
* the type of the event (register DREX_PEREV2CONFIG).
*/
#define READ_TRANSFER_CH0 (0x6d)
#define READ_TRANSFER_CH1 (0x6f)
#define PERF_COUNTER_START_VALUE 0xff000000
#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
/**
* struct dmc_opp_table - Operating level desciption
* @freq_hz: target frequency in Hz
* @volt_uv: target voltage in uV
*
* Covers frequency and voltage settings of the DMC operating mode.
*/
struct dmc_opp_table {
u32 freq_hz;
u32 volt_uv;
};
/**
* struct exynos5_dmc - main structure describing DMC device
* @dev: DMC device
* @df: devfreq device structure returned by devfreq framework
* @gov_data: configuration of devfreq governor
* @base_drexi0: DREX0 registers mapping
* @base_drexi1: DREX1 registers mapping
* @clk_regmap: regmap for clock controller registers
* @lock: protects curr_rate and frequency/voltage setting section
* @curr_rate: current frequency
* @curr_volt: current voltage
* @opp: OPP table
* @opp_count: number of 'opp' elements
* @timings_arr_size: number of 'timings' elements
* @timing_row: values for timing row register, for each OPP
* @timing_data: values for timing data register, for each OPP
* @timing_power: balues for timing power register, for each OPP
* @timings: DDR memory timings, from device tree
* @min_tck: DDR memory minimum timing values, from device tree
* @bypass_timing_row: value for timing row register for bypass timings
* @bypass_timing_data: value for timing data register for bypass timings
* @bypass_timing_power: value for timing power register for bypass
* timings
* @vdd_mif: Memory interface regulator
* @fout_spll: clock: SPLL
* @fout_bpll: clock: BPLL
* @mout_spll: clock: mux SPLL
* @mout_bpll: clock: mux BPLL
* @mout_mclk_cdrex: clock: mux mclk_cdrex
* @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore
* @counter: devfreq events
* @num_counters: number of 'counter' elements
* @last_overflow_ts: time (in ns) of last overflow of each DREX
* @load: utilization in percents
* @total: total time between devfreq events
* @in_irq_mode: whether running in interrupt mode (true)
* or polling (false)
*
* The main structure for the Dynamic Memory Controller which covers clocks,
* memory regions, HW information, parameters and current operating mode.
*/
struct exynos5_dmc {
struct device *dev;
struct devfreq *df;
struct devfreq_simple_ondemand_data gov_data;
void __iomem *base_drexi0;
void __iomem *base_drexi1;
struct regmap *clk_regmap;
/* Protects curr_rate and frequency/voltage setting section */
struct mutex lock;
unsigned long curr_rate;
unsigned long curr_volt;
struct dmc_opp_table *opp;
int opp_count;
u32 timings_arr_size;
u32 *timing_row;
u32 *timing_data;
u32 *timing_power;
const struct lpddr3_timings *timings;
const struct lpddr3_min_tck *min_tck;
u32 bypass_timing_row;
u32 bypass_timing_data;
u32 bypass_timing_power;
struct regulator *vdd_mif;
struct clk *fout_spll;
struct clk *fout_bpll;
struct clk *mout_spll;
struct clk *mout_bpll;
struct clk *mout_mclk_cdrex;
struct clk *mout_mx_mspll_ccore;
struct devfreq_event_dev **counter;
int num_counters;
u64 last_overflow_ts[2];
unsigned long load;
unsigned long total;
bool in_irq_mode;
};
#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
#define TIMING_VAL2REG(timing, t_val) \
({ \
u32 __val; \
__val = (t_val) << (timing)->bit_beg; \
__val; \
})
struct timing_reg {
char *name;
int bit_beg;
int bit_end;
unsigned int val;
};
static const struct timing_reg timing_row_reg_fields[] = {
TIMING_FIELD("tRFC", 24, 31),
TIMING_FIELD("tRRD", 20, 23),
TIMING_FIELD("tRP", 16, 19),
TIMING_FIELD("tRCD", 12, 15),
TIMING_FIELD("tRC", 6, 11),
TIMING_FIELD("tRAS", 0, 5),
};
static const struct timing_reg timing_data_reg_fields[] = {
TIMING_FIELD("tWTR", 28, 31),
TIMING_FIELD("tWR", 24, 27),
TIMING_FIELD("tRTP", 20, 23),
TIMING_FIELD("tW2W-C2C", 14, 14),
TIMING_FIELD("tR2R-C2C", 12, 12),
TIMING_FIELD("WL", 8, 11),
TIMING_FIELD("tDQSCK", 4, 7),
TIMING_FIELD("RL", 0, 3),
};
static const struct timing_reg timing_power_reg_fields[] = {
TIMING_FIELD("tFAW", 26, 31),
TIMING_FIELD("tXSR", 16, 25),
TIMING_FIELD("tXP", 8, 15),
TIMING_FIELD("tCKE", 4, 7),
TIMING_FIELD("tMRD", 0, 3),
};
#define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
ARRAY_SIZE(timing_data_reg_fields) + \
ARRAY_SIZE(timing_power_reg_fields))
static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
{
int i, ret;
for (i = 0; i < dmc->num_counters; i++) {
if (!dmc->counter[i])
continue;
ret = devfreq_event_set_event(dmc->counter[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
{
int i, ret;
for (i = 0; i < dmc->num_counters; i++) {
if (!dmc->counter[i])
continue;
ret = devfreq_event_enable_edev(dmc->counter[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
{
int i, ret;
for (i = 0; i < dmc->num_counters; i++) {
if (!dmc->counter[i])
continue;
ret = devfreq_event_disable_edev(dmc->counter[i]);
if (ret < 0)
return ret;
}
return 0;
}
/**
* find_target_freq_idx() - Finds requested frequency in local DMC configuration
* @dmc: device for which the information is checked
* @target_rate: requested frequency in KHz
*
* Seeks in the local DMC driver structure for the requested frequency value
* and returns index or error value.
*/
static int find_target_freq_idx(struct exynos5_dmc *dmc,
unsigned long target_rate)
{
int i;
for (i = dmc->opp_count - 1; i >= 0; i--)
if (dmc->opp[i].freq_hz <= target_rate)
return i;
return -EINVAL;
}
/**
* exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
* @dmc: device for which the new settings is going to be applied
* @set: boolean variable passing set value
*
* Changes the register set, which holds timing parameters.
* There is two register sets: 0 and 1. The register set 0
* is used in normal operation when the clock is provided from main PLL.
* The bank register set 1 is used when the main PLL frequency is going to be
* changed and the clock is taken from alternative, stable source.
* This function switches between these banks according to the
* currently used clock source.
*/
static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
{
unsigned int reg;
int ret;
ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
if (ret)
return ret;
if (set)
reg |= EXYNOS5_TIMING_SET_SWI;
else
reg &= ~EXYNOS5_TIMING_SET_SWI;
regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
return 0;
}
/**
* exynos5_init_freq_table() - Initialized PM OPP framework
* @dmc: DMC device for which the frequencies are used for OPP init
* @profile: devfreq device's profile
*
* Populate the devfreq device's OPP table based on current frequency, voltage.
*/
static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
struct devfreq_dev_profile *profile)
{
struct device *dev = dmc->dev;
int i, ret;
int idx;
unsigned long freq;
ret = devm_pm_opp_of_add_table(dev);
if (ret < 0) {
dev_err(dev, "Failed to get OPP table\n");
return ret;
}
dmc->opp_count = dev_pm_opp_get_opp_count(dev);
dmc->opp = devm_kmalloc_array(dev, dmc->opp_count,
sizeof(struct dmc_opp_table), GFP_KERNEL);
if (!dmc->opp)
return -ENOMEM;
idx = dmc->opp_count - 1;
for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
struct dev_pm_opp *opp;
opp = dev_pm_opp_find_freq_floor(dev, &freq);
if (IS_ERR(opp))
return PTR_ERR(opp);
dmc->opp[idx - i].freq_hz = freq;
dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
}
return 0;
}
/**
* exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
* @dmc: device for which the new settings is going to be applied
*
* Low-level function for changing timings for DRAM memory clocking from
* 'bypass' clock source (fixed frequency @400MHz).
* It uses timing bank registers set 1.
*/
static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
{
writel(EXYNOS5_AREF_NORMAL,
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
writel(dmc->bypass_timing_row,
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
writel(dmc->bypass_timing_row,
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
writel(dmc->bypass_timing_data,
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
writel(dmc->bypass_timing_data,
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
writel(dmc->bypass_timing_power,
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
writel(dmc->bypass_timing_power,
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
}
/**
* exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
* @dmc: device for which the new settings is going to be applied
* @target_rate: target frequency of the DMC
*
* Low-level function for changing timings for DRAM memory operating from main
* clock source (BPLL), which can have different frequencies. Thus, each
* frequency must have corresponding timings register values in order to keep
* the needed delays.
* It uses timing bank registers set 0.
*/
static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
unsigned long target_rate)
{
int idx;
for (idx = dmc->opp_count - 1; idx >= 0; idx--)
if (dmc->opp[idx].freq_hz <= target_rate)
break;
if (idx < 0)
return -EINVAL;
writel(EXYNOS5_AREF_NORMAL,
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
writel(dmc->timing_row[idx],
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
writel(dmc->timing_row[idx],
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
writel(dmc->timing_data[idx],
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
writel(dmc->timing_data[idx],
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
writel(dmc->timing_power[idx],
dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
writel(dmc->timing_power[idx],
dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
return 0;
}
/**
* exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
* @dmc: device for which it is going to be set
* @target_volt: new voltage which is chosen to be final
*
* Function tries to align voltage to the safe level for 'normal' mode.
* It checks the need of higher voltage and changes the value. The target
* voltage might be lower that currently set and still the system will be
* stable.
*/
static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
unsigned long target_volt)
{
int ret = 0;
if (dmc->curr_volt <= target_volt)
return 0;
ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
target_volt);
if (!ret)
dmc->curr_volt = target_volt;
return ret;
}
/**
* exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
* @dmc: device for which it is going to be set
* @target_volt: new voltage which is chosen to be final
*
* Function tries to align voltage to the safe level for the 'bypass' mode.
* It checks the need of higher voltage and changes the value.
* The target voltage must not be less than currently needed, because
* for current frequency the device might become unstable.
*/
static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
unsigned long target_volt)
{
int ret = 0;
if (dmc->curr_volt >= target_volt)
return 0;
ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
target_volt);
if (!ret)
dmc->curr_volt = target_volt;
return ret;
}
/**
* exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
* @dmc: device for which it is going to be set
* @target_rate: new frequency which is chosen to be final
*
* Function changes the DRAM timings for the temporary 'bypass' mode.
*/
static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
unsigned long target_rate)
{
int idx = find_target_freq_idx(dmc, target_rate);
if (idx < 0)
return -EINVAL;
exynos5_set_bypass_dram_timings(dmc);
return 0;
}
/**
* exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
* @dmc: DMC device for which the switching is going to happen
* @target_rate: new frequency which is going to be set as a final
* @target_volt: new voltage which is going to be set as a final
*
* Function configures DMC and clocks for operating in temporary 'bypass' mode.
* This mode is used only temporary but if required, changes voltage and timings
* for DRAM chips. It switches the main clock to stable clock source for the
* period of the main PLL reconfiguration.
*/
static int
exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
unsigned long target_rate,
unsigned long target_volt)
{
int ret;
/*
* Having higher voltage for a particular frequency does not harm
* the chip. Use it for the temporary frequency change when one
* voltage manipulation might be avoided.
*/
ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
if (ret)
return ret;
/*
* Longer delays for DRAM does not cause crash, the opposite does.
*/
ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
if (ret)
return ret;
/*
* Delays are long enough, so use them for the new coming clock.
*/
ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
return ret;
}
/**
* exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
* using safe procedure
* @dmc: device for which the frequency is going to be changed
* @target_rate: requested new frequency
* @target_volt: requested voltage which corresponds to the new frequency
*
* The DMC frequency change procedure requires a few steps.
* The main requirement is to change the clock source in the clk mux
* for the time of main clock PLL locking. The assumption is that the
* alternative clock source set as parent is stable.
* The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
* clock. This requires alignment in DRAM timing parameters for the new
* T-period. There is two bank sets for keeping DRAM
* timings: set 0 and set 1. The set 0 is used when main clock source is
* chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
* the two bank sets is part of the process.
* The voltage must also be aligned to the minimum required level. There is
* this intermediate step with switching to 'bypass' parent clock source.
* if the old voltage is lower, it requires an increase of the voltage level.
* The complexity of the voltage manipulation is hidden in low level function.
* In this function there is last alignment of the voltage level at the end.
*/
static int
exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
unsigned long target_rate,
unsigned long target_volt)
{
int ret;
ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
target_volt);
if (ret)
return ret;
/*
* Voltage is set at least to a level needed for this frequency,
* so switching clock source is safe now.
*/
clk_prepare_enable(dmc->fout_spll);
clk_prepare_enable(dmc->mout_spll);
clk_prepare_enable(dmc->mout_mx_mspll_ccore);
ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
if (ret)
goto disable_clocks;
/*
* We are safe to increase the timings for current bypass frequency.
* Thanks to this the settings will be ready for the upcoming clock
* source change.
*/
exynos5_dram_change_timings(dmc, target_rate);
clk_set_rate(dmc->fout_bpll, target_rate);
ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
if (ret)
goto disable_clocks;
ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
if (ret)
goto disable_clocks;
/*
* Make sure if the voltage is not from 'bypass' settings and align to
* the right level for power efficiency.
*/
ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
disable_clocks:
clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
clk_disable_unprepare(dmc->mout_spll);
clk_disable_unprepare(dmc->fout_spll);
return ret;
}
/**
* exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
* table.
* @dmc: device for which the frequency is going to be changed
* @freq: requested frequency in KHz
* @target_rate: returned frequency which is the same or lower than
* requested
* @target_volt: returned voltage which corresponds to the returned
* frequency
* @flags: devfreq flags provided for this frequency change request
*
* Function gets requested frequency and checks OPP framework for needed
* frequency and voltage. It populates the values 'target_rate' and
* 'target_volt' or returns error value when OPP framework fails.
*/
static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
unsigned long *freq,
unsigned long *target_rate,
unsigned long *target_volt, u32 flags)
{
struct dev_pm_opp *opp;
opp = devfreq_recommended_opp(dmc->dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
*target_rate = dev_pm_opp_get_freq(opp);
*target_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
return 0;
}
/**
* exynos5_dmc_target() - Function responsible for changing frequency of DMC
* @dev: device for which the frequency is going to be changed
* @freq: requested frequency in KHz
* @flags: flags provided for this frequency change request
*
* An entry function provided to the devfreq framework which provides frequency
* change of the DMC. The function gets the possible rate from OPP table based
* on requested frequency. It calls the next function responsible for the
* frequency and voltage change. In case of failure, does not set 'curr_rate'
* and returns error value to the framework.
*/
static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct exynos5_dmc *dmc = dev_get_drvdata(dev);
unsigned long target_rate = 0;
unsigned long target_volt = 0;
int ret;
ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
flags);
if (ret)
return ret;
if (target_rate == dmc->curr_rate)
return 0;
mutex_lock(&dmc->lock);
ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
if (ret) {
mutex_unlock(&dmc->lock);
return ret;
}
dmc->curr_rate = target_rate;
mutex_unlock(&dmc->lock);
return 0;
}
/**
* exynos5_counters_get() - Gets the performance counters values.
* @dmc: device for which the counters are going to be checked
* @load_count: variable which is populated with counter value
* @total_count: variable which is used as 'wall clock' reference
*
* Function which provides performance counters values. It sums up counters for
* two DMC channels. The 'total_count' is used as a reference and max value.
* The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
*/
static int exynos5_counters_get(struct exynos5_dmc *dmc,
unsigned long *load_count,
unsigned long *total_count)
{
unsigned long total = 0;
struct devfreq_event_data event;
int ret, i;
*load_count = 0;
/* Take into account only read+write counters, but stop all */
for (i = 0; i < dmc->num_counters; i++) {
if (!dmc->counter[i])
continue;
ret = devfreq_event_get_event(dmc->counter[i], &event);
if (ret < 0)
return ret;
*load_count += event.load_count;
if (total < event.total_count)
total = event.total_count;
}
*total_count = total;
return 0;
}
/**
* exynos5_dmc_start_perf_events() - Setup and start performance event counters
* @dmc: device for which the counters are going to be checked
* @beg_value: initial value for the counter
*
* Function which enables needed counters, interrupts and sets initial values
* then starts the counters.
*/
static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
u32 beg_value)
{
/* Enable interrupts for counter 2 */
writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
/* Enable counter 2 and CCNT */
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
/* Clear overflow flag for all counters */
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
/* Reset all counters */
writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
/*
* Set start value for the counters, the number of samples that
* will be gathered is calculated as: 0xffffffff - beg_value
*/
writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
/* Start all counters */
writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
}
/**
* exynos5_dmc_perf_events_calc() - Calculate utilization
* @dmc: device for which the counters are going to be checked
* @diff_ts: time between last interrupt and current one
*
* Function which calculates needed utilization for the devfreq governor.
* It prepares values for 'busy_time' and 'total_time' based on elapsed time
* between interrupts, which approximates utilization.
*/
static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
{
/*
* This is a simple algorithm for managing traffic on DMC.
* When there is almost no load the counters overflow every 4s,
* no mater the DMC frequency.
* The high load might be approximated using linear function.
* Knowing that, simple calculation can provide 'busy_time' and
* 'total_time' to the devfreq governor which picks up target
* frequency.
* We want a fast ramp up and slow decay in frequency change function.
*/
if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
/*
* Set higher utilization for the simple_ondemand governor.
* The governor should increase the frequency of the DMC.
*/
dmc->load = 70;
dmc->total = 100;
} else {
/*
* Set low utilization for the simple_ondemand governor.
* The governor should decrease the frequency of the DMC.
*/
dmc->load = 35;
dmc->total = 100;
}
dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
}
/**
* exynos5_dmc_perf_events_check() - Checks the status of the counters
* @dmc: device for which the counters are going to be checked
*
* Function which is called from threaded IRQ to check the counters state
* and to call approximation for the needed utilization.
*/
static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
{
u32 val;
u64 diff_ts, ts;
ts = ktime_get_ns();
/* Stop all counters */
writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
/* Check the source in interrupt flag registers (which channel) */
val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
if (val) {
diff_ts = ts - dmc->last_overflow_ts[0];
dmc->last_overflow_ts[0] = ts;
dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
} else {
val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
diff_ts = ts - dmc->last_overflow_ts[1];
dmc->last_overflow_ts[1] = ts;
dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
}
exynos5_dmc_perf_events_calc(dmc, diff_ts);
exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
}
/**
* exynos5_dmc_enable_perf_events() - Enable performance events
* @dmc: device for which the counters are going to be checked
*
* Function which is setup needed environment and enables counters.
*/
static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
{
u64 ts;
/* Enable Performance Event Clock */
writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
/* Select read transfers as performance event2 */
writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
ts = ktime_get_ns();
dmc->last_overflow_ts[0] = ts;
dmc->last_overflow_ts[1] = ts;
/* Devfreq shouldn't be faster than initialization, play safe though. */
dmc->load = 99;
dmc->total = 100;
}
/**
* exynos5_dmc_disable_perf_events() - Disable performance events
* @dmc: device for which the counters are going to be checked
*
* Function which stops, disables performance event counters and interrupts.
*/
static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
{
/* Stop all counters */
writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
/* Disable interrupts for counter 2 */
writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
/* Disable counter 2 and CCNT */
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
/* Clear overflow flag for all counters */
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
}
/**
* exynos5_dmc_get_status() - Read current DMC performance statistics.
* @dev: device for which the statistics are requested
* @stat: structure which has statistic fields
*
* Function reads the DMC performance counters and calculates 'busy_time'
* and 'total_time'. To protect from overflow, the values are shifted right
* by 10. After read out the counters are setup to count again.
*/
static int exynos5_dmc_get_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct exynos5_dmc *dmc = dev_get_drvdata(dev);
unsigned long load, total;
int ret;
if (dmc->in_irq_mode) {
mutex_lock(&dmc->lock);
stat->current_frequency = dmc->curr_rate;
mutex_unlock(&dmc->lock);
stat->busy_time = dmc->load;
stat->total_time = dmc->total;
} else {
ret = exynos5_counters_get(dmc, &load, &total);
if (ret < 0)
return -EINVAL;
/* To protect from overflow, divide by 1024 */
stat->busy_time = load >> 10;
stat->total_time = total >> 10;
ret = exynos5_counters_set_event(dmc);
if (ret < 0) {
dev_err(dev, "could not set event counter\n");
return ret;
}
}
return 0;
}
/**
* exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
* @dev: device for which the framework checks operating frequency
* @freq: returned frequency value
*
* It returns the currently used frequency of the DMC. The real operating
* frequency might be lower when the clock source value could not be divided
* to the requested value.
*/
static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
{
struct exynos5_dmc *dmc = dev_get_drvdata(dev);
mutex_lock(&dmc->lock);
*freq = dmc->curr_rate;
mutex_unlock(&dmc->lock);
return 0;
}
/*
* exynos5_dmc_df_profile - Devfreq governor's profile structure
*
* It provides to the devfreq framework needed functions and polling period.
*/
static struct devfreq_dev_profile exynos5_dmc_df_profile = {
.timer = DEVFREQ_TIMER_DELAYED,
.target = exynos5_dmc_target,
.get_dev_status = exynos5_dmc_get_status,
.get_cur_freq = exynos5_dmc_get_cur_freq,
};
/**
* exynos5_dmc_align_init_freq() - Align initial frequency value
* @dmc: device for which the frequency is going to be set
* @bootloader_init_freq: initial frequency set by the bootloader in KHz
*
* The initial bootloader frequency, which is present during boot, might be
* different that supported frequency values in the driver. It is possible
* due to different PLL settings or used PLL as a source.
* This function provides the 'initial_freq' for the devfreq framework
* statistics engine which supports only registered values. Thus, some alignment
* must be made.
*/
static unsigned long
exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
unsigned long bootloader_init_freq)
{
unsigned long aligned_freq;
int idx;
idx = find_target_freq_idx(dmc, bootloader_init_freq);
if (idx >= 0)
aligned_freq = dmc->opp[idx].freq_hz;
else
aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
return aligned_freq;
}
/**
* create_timings_aligned() - Create register values and align with standard
* @dmc: device for which the frequency is going to be set
* @reg_timing_row: array to fill with values for timing row register
* @reg_timing_data: array to fill with values for timing data register
* @reg_timing_power: array to fill with values for timing power register
* @clk_period_ps: the period of the clock, known as tCK
*
* The function calculates timings and creates a register value ready for
* a frequency transition. The register contains a few timings. They are
* shifted by a known offset. The timing value is calculated based on memory
* specyfication: minimal time required and minimal cycles required.
*/
static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
u32 *reg_timing_data, u32 *reg_timing_power,
u32 clk_period_ps)
{
u32 val;
const struct timing_reg *reg;
if (clk_period_ps == 0)
return -EINVAL;
*reg_timing_row = 0;
*reg_timing_data = 0;
*reg_timing_power = 0;
val = dmc->timings->tRFC / clk_period_ps;
val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRFC);
reg = &timing_row_reg_fields[0];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRRD / clk_period_ps;
val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRRD);
reg = &timing_row_reg_fields[1];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRPab / clk_period_ps;
val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRPab);
reg = &timing_row_reg_fields[2];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRCD / clk_period_ps;
val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRCD);
reg = &timing_row_reg_fields[3];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRC / clk_period_ps;
val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRC);
reg = &timing_row_reg_fields[4];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRAS / clk_period_ps;
val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRAS);
reg = &timing_row_reg_fields[5];
*reg_timing_row |= TIMING_VAL2REG(reg, val);
/* data related timings */
val = dmc->timings->tWTR / clk_period_ps;
val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tWTR);
reg = &timing_data_reg_fields[0];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tWR / clk_period_ps;
val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tWR);
reg = &timing_data_reg_fields[1];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRTP / clk_period_ps;
val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRTP);
reg = &timing_data_reg_fields[2];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tW2W_C2C / clk_period_ps;
val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tW2W_C2C);
reg = &timing_data_reg_fields[3];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tR2R_C2C / clk_period_ps;
val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tR2R_C2C);
reg = &timing_data_reg_fields[4];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tWL / clk_period_ps;
val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tWL);
reg = &timing_data_reg_fields[5];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tDQSCK / clk_period_ps;
val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tDQSCK);
reg = &timing_data_reg_fields[6];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tRL / clk_period_ps;
val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tRL);
reg = &timing_data_reg_fields[7];
*reg_timing_data |= TIMING_VAL2REG(reg, val);
/* power related timings */
val = dmc->timings->tFAW / clk_period_ps;
val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tFAW);
reg = &timing_power_reg_fields[0];
*reg_timing_power |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tXSR / clk_period_ps;
val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tXSR);
reg = &timing_power_reg_fields[1];
*reg_timing_power |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tXP / clk_period_ps;
val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tXP);
reg = &timing_power_reg_fields[2];
*reg_timing_power |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tCKE / clk_period_ps;
val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tCKE);
reg = &timing_power_reg_fields[3];
*reg_timing_power |= TIMING_VAL2REG(reg, val);
val = dmc->timings->tMRD / clk_period_ps;
val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
val = max(val, dmc->min_tck->tMRD);
reg = &timing_power_reg_fields[4];
*reg_timing_power |= TIMING_VAL2REG(reg, val);
return 0;
}
/**
* of_get_dram_timings() - helper function for parsing DT settings for DRAM
* @dmc: device for which the frequency is going to be set
*
* The function parses DT entries with DRAM information.
*/
static int of_get_dram_timings(struct exynos5_dmc *dmc)
{
int ret = 0;
struct device *dev = dmc->dev;
int idx;
u32 freq_mhz, clk_period_ps;
struct device_node *np_ddr __free(device_node) =
of_parse_phandle(dev->of_node, "device-handle", 0);
if (!np_ddr) {
dev_warn(dev, "could not find 'device-handle' in DT\n");
return -EINVAL;
}
dmc->timing_row = devm_kmalloc_array(dev, TIMING_COUNT,
sizeof(u32), GFP_KERNEL);
if (!dmc->timing_row)
return -ENOMEM;
dmc->timing_data = devm_kmalloc_array(dev, TIMING_COUNT,
sizeof(u32), GFP_KERNEL);
if (!dmc->timing_data)
return -ENOMEM;
dmc->timing_power = devm_kmalloc_array(dev, TIMING_COUNT,
sizeof(u32), GFP_KERNEL);
if (!dmc->timing_power)
return -ENOMEM;
dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dev,
DDR_TYPE_LPDDR3,
&dmc->timings_arr_size);
if (!dmc->timings) {
dev_warn(dev, "could not get timings from DT\n");
return -EINVAL;
}
dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dev);
if (!dmc->min_tck) {
dev_warn(dev, "could not get tck from DT\n");
return -EINVAL;
}
/* Sorted array of OPPs with frequency ascending */
for (idx = 0; idx < dmc->opp_count; idx++) {
freq_mhz = dmc->opp[idx].freq_hz / 1000000;
clk_period_ps = 1000000 / freq_mhz;
ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
&dmc->timing_data[idx],
&dmc->timing_power[idx],
clk_period_ps);
}
/* Take the highest frequency's timings as 'bypass' */
dmc->bypass_timing_row = dmc->timing_row[idx - 1];
dmc->bypass_timing_data = dmc->timing_data[idx - 1];
dmc->bypass_timing_power = dmc->timing_power[idx - 1];
return ret;
}
/**
* exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
* @dmc: DMC structure containing needed fields
*
* Get the needed clocks defined in DT device, enable and set the right parents.
* Read current frequency and initialize the initial rate for governor.
*/
static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
{
int ret;
struct device *dev = dmc->dev;
unsigned long target_volt = 0;
unsigned long target_rate = 0;
unsigned int tmp;
dmc->fout_spll = devm_clk_get(dev, "fout_spll");
if (IS_ERR(dmc->fout_spll))
return PTR_ERR(dmc->fout_spll);
dmc->fout_bpll = devm_clk_get(dev, "fout_bpll");
if (IS_ERR(dmc->fout_bpll))
return PTR_ERR(dmc->fout_bpll);
dmc->mout_mclk_cdrex = devm_clk_get(dev, "mout_mclk_cdrex");
if (IS_ERR(dmc->mout_mclk_cdrex))
return PTR_ERR(dmc->mout_mclk_cdrex);
dmc->mout_bpll = devm_clk_get(dev, "mout_bpll");
if (IS_ERR(dmc->mout_bpll))
return PTR_ERR(dmc->mout_bpll);
dmc->mout_mx_mspll_ccore = devm_clk_get(dev, "mout_mx_mspll_ccore");
if (IS_ERR(dmc->mout_mx_mspll_ccore))
return PTR_ERR(dmc->mout_mx_mspll_ccore);
dmc->mout_spll = devm_clk_get(dev, "ff_dout_spll2");
if (IS_ERR(dmc->mout_spll)) {
dmc->mout_spll = devm_clk_get(dev, "mout_sclk_spll");
if (IS_ERR(dmc->mout_spll))
return PTR_ERR(dmc->mout_spll);
}
/*
* Convert frequency to KHz values and set it for the governor.
*/
dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
&target_volt, 0);
if (ret)
return ret;
dmc->curr_volt = target_volt;
ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
if (ret)
return ret;
clk_prepare_enable(dmc->fout_bpll);
clk_prepare_enable(dmc->mout_bpll);
/*
* Some bootloaders do not set clock routes correctly.
* Stop one path in clocks to PHY.
*/
regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
tmp &= ~(BIT(1) | BIT(0));
regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
return 0;
}
/**
* exynos5_performance_counters_init() - Initializes performance DMC's counters
* @dmc: DMC for which it does the setup
*
* Initialization of performance counters in DMC for estimating usage.
* The counter's values are used for calculation of a memory bandwidth and based
* on that the governor changes the frequency.
* The counters are not used when the governor is GOVERNOR_USERSPACE.
*/
static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
{
struct device *dev = dmc->dev;
int ret, i;
dmc->num_counters = devfreq_event_get_edev_count(dev, "devfreq-events");
if (dmc->num_counters < 0) {
dev_err(dev, "could not get devfreq-event counters\n");
return dmc->num_counters;
}
dmc->counter = devm_kcalloc(dev, dmc->num_counters,
sizeof(*dmc->counter), GFP_KERNEL);
if (!dmc->counter)
return -ENOMEM;
for (i = 0; i < dmc->num_counters; i++) {
dmc->counter[i] =
devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
if (IS_ERR_OR_NULL(dmc->counter[i]))
return -EPROBE_DEFER;
}
ret = exynos5_counters_enable_edev(dmc);
if (ret < 0) {
dev_err(dev, "could not enable event counter\n");
return ret;
}
ret = exynos5_counters_set_event(dmc);
if (ret < 0) {
exynos5_counters_disable_edev(dmc);
dev_err(dev, "could not set event counter\n");
return ret;
}
return 0;
}
/**
* exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
* @dmc: device which is used for changing this feature
*
* There is a need of pausing DREX DMC when divider or MUX in clock tree
* changes its configuration. In such situation access to the memory is blocked
* in DMC automatically. This feature is used when clock frequency change
* request appears and touches clock tree.
*/
static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
{
unsigned int val;
int ret;
ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
if (ret)
return ret;
val |= 1UL;
regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
return 0;
}
static irqreturn_t dmc_irq_thread(int irq, void *priv)
{
int res;
struct exynos5_dmc *dmc = priv;
mutex_lock(&dmc->df->lock);
exynos5_dmc_perf_events_check(dmc);
res = update_devfreq(dmc->df);
mutex_unlock(&dmc->df->lock);
if (res)
dev_warn(dmc->dev, "devfreq failed with %d\n", res);
return IRQ_HANDLED;
}
/**
* exynos5_dmc_probe() - Probe function for the DMC driver
* @pdev: platform device for which the driver is going to be initialized
*
* Initialize basic components: clocks, regulators, performance counters, etc.
* Read out product version and based on the information setup
* internal structures for the controller (frequency and voltage) and for DRAM
* memory parameters: timings for each operating frequency.
* Register new devfreq device for controlling DVFS of the DMC.
*/
static int exynos5_dmc_probe(struct platform_device *pdev)
{
int ret = 0;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct exynos5_dmc *dmc;
int irq[2];
dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
if (!dmc)
return -ENOMEM;
mutex_init(&dmc->lock);
dmc->dev = dev;
platform_set_drvdata(pdev, dmc);
dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dmc->base_drexi0))
return PTR_ERR(dmc->base_drexi0);
dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(dmc->base_drexi1))
return PTR_ERR(dmc->base_drexi1);
dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
"samsung,syscon-clk");
if (IS_ERR(dmc->clk_regmap))
return PTR_ERR(dmc->clk_regmap);
ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
if (ret) {
dev_warn(dev, "couldn't initialize frequency settings\n");
return ret;
}
dmc->vdd_mif = devm_regulator_get(dev, "vdd");
if (IS_ERR(dmc->vdd_mif)) {
ret = PTR_ERR(dmc->vdd_mif);
return ret;
}
ret = exynos5_dmc_init_clks(dmc);
if (ret)
return ret;
ret = of_get_dram_timings(dmc);
if (ret) {
dev_warn(dev, "couldn't initialize timings settings\n");
goto remove_clocks;
}
ret = exynos5_dmc_set_pause_on_switching(dmc);
if (ret) {
dev_warn(dev, "couldn't get access to PAUSE register\n");
goto remove_clocks;
}
/* There is two modes in which the driver works: polling or IRQ */
irq[0] = platform_get_irq_byname(pdev, "drex_0");
irq[1] = platform_get_irq_byname(pdev, "drex_1");
if (irq[0] > 0 && irq[1] > 0 && irqmode) {
ret = devm_request_threaded_irq(dev, irq[0], NULL,
dmc_irq_thread, IRQF_ONESHOT,
dev_name(dev), dmc);
if (ret) {
dev_err(dev, "couldn't grab IRQ\n");
goto remove_clocks;
}
ret = devm_request_threaded_irq(dev, irq[1], NULL,
dmc_irq_thread, IRQF_ONESHOT,
dev_name(dev), dmc);
if (ret) {
dev_err(dev, "couldn't grab IRQ\n");
goto remove_clocks;
}
/*
* Setup default thresholds for the devfreq governor.
* The values are chosen based on experiments.
*/
dmc->gov_data.upthreshold = 55;
dmc->gov_data.downdifferential = 5;
exynos5_dmc_enable_perf_events(dmc);
dmc->in_irq_mode = 1;
} else {
ret = exynos5_performance_counters_init(dmc);
if (ret) {
dev_warn(dev, "couldn't probe performance counters\n");
goto remove_clocks;
}
/*
* Setup default thresholds for the devfreq governor.
* The values are chosen based on experiments.
*/
dmc->gov_data.upthreshold = 10;
dmc->gov_data.downdifferential = 5;
exynos5_dmc_df_profile.polling_ms = 100;
}
dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&dmc->gov_data);
if (IS_ERR(dmc->df)) {
ret = PTR_ERR(dmc->df);
goto err_devfreq_add;
}
if (dmc->in_irq_mode)
exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
return 0;
err_devfreq_add:
if (dmc->in_irq_mode)
exynos5_dmc_disable_perf_events(dmc);
else
exynos5_counters_disable_edev(dmc);
remove_clocks:
clk_disable_unprepare(dmc->mout_bpll);
clk_disable_unprepare(dmc->fout_bpll);
return ret;
}
/**
* exynos5_dmc_remove() - Remove function for the platform device
* @pdev: platform device which is going to be removed
*
* The function relies on 'devm' framework function which automatically
* clean the device's resources. It just calls explicitly disable function for
* the performance counters.
*/
static void exynos5_dmc_remove(struct platform_device *pdev)
{
struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
if (dmc->in_irq_mode)
exynos5_dmc_disable_perf_events(dmc);
else
exynos5_counters_disable_edev(dmc);
clk_disable_unprepare(dmc->mout_bpll);
clk_disable_unprepare(dmc->fout_bpll);
}
static const struct of_device_id exynos5_dmc_of_match[] = {
{ .compatible = "samsung,exynos5422-dmc", },
{ },
};
MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
static struct platform_driver exynos5_dmc_platdrv = {
.probe = exynos5_dmc_probe,
.remove = exynos5_dmc_remove,
.driver = {
.name = "exynos5-dmc",
.of_match_table = exynos5_dmc_of_match,
},
};
module_platform_driver(exynos5_dmc_platdrv);
MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Lukasz Luba");