linux/drivers/mtd/nand/raw/arasan-nand-controller.c
Maciej Andrzejewski 11e6831fd8 mtd: rawnand: arasan: Fix missing de-registration of NAND
The NAND chip-selects are registered for the Arasan driver during
initialization but are not de-registered when the driver is unloaded. As a
result, if the driver is loaded again, the chip-selects remain registered
and busy, making them unavailable for use.

Fixes: 197b88fecc ("mtd: rawnand: arasan: Add new Arasan NAND controller")
Cc: stable@vger.kernel.org
Signed-off-by: Maciej Andrzejewski ICEYE <maciej.andrzejewski@m-works.net>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2024-12-05 11:13:52 +01:00

1519 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Arasan NAND Flash Controller Driver
*
* Copyright (C) 2014 - 2020 Xilinx, Inc.
* Author:
* Miquel Raynal <miquel.raynal@bootlin.com>
* Original work (fully rewritten):
* Punnaiah Choudary Kalluri <punnaia@xilinx.com>
* Naga Sureshkumar Relli <nagasure@xilinx.com>
*/
#include <linux/bch.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#define PKT_REG 0x00
#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
#define MEM_ADDR1_REG 0x04
#define MEM_ADDR2_REG 0x08
#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
#define CMD_REG 0x0C
#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
#define CMD_DMA_ENABLE BIT(27)
#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
#define CMD_ECC_ENABLE BIT(31)
#define PROG_REG 0x10
#define PROG_PGRD BIT(0)
#define PROG_ERASE BIT(2)
#define PROG_STATUS BIT(3)
#define PROG_PGPROG BIT(4)
#define PROG_RDID BIT(6)
#define PROG_RDPARAM BIT(7)
#define PROG_RST BIT(8)
#define PROG_GET_FEATURE BIT(9)
#define PROG_SET_FEATURE BIT(10)
#define PROG_CHG_RD_COL_ENH BIT(14)
#define INTR_STS_EN_REG 0x14
#define INTR_SIG_EN_REG 0x18
#define INTR_STS_REG 0x1C
#define WRITE_READY BIT(0)
#define READ_READY BIT(1)
#define XFER_COMPLETE BIT(2)
#define DMA_BOUNDARY BIT(6)
#define EVENT_MASK GENMASK(7, 0)
#define READY_STS_REG 0x20
#define DMA_ADDR0_REG 0x50
#define DMA_ADDR1_REG 0x24
#define FLASH_STS_REG 0x28
#define TIMING_REG 0x2C
#define TCCS_TIME_500NS 0
#define TCCS_TIME_300NS 3
#define TCCS_TIME_200NS 2
#define TCCS_TIME_100NS 1
#define FAST_TCAD BIT(2)
#define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x))
#define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x))
#define DATA_PORT_REG 0x30
#define ECC_CONF_REG 0x34
#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
#define ECC_CONF_BCH_EN BIT(27)
#define ECC_ERR_CNT_REG 0x38
#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
#define ECC_SP_REG 0x3C
#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
#define ECC_1ERR_CNT_REG 0x40
#define ECC_2ERR_CNT_REG 0x44
#define DATA_INTERFACE_REG 0x6C
#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
#define DIFACE_SDR 0
#define DIFACE_NVDDR BIT(9)
#define ANFC_MAX_CS 2
#define ANFC_DFLT_TIMEOUT_US 1000000
#define ANFC_MAX_CHUNK_SIZE SZ_1M
#define ANFC_MAX_PARAM_SIZE SZ_4K
#define ANFC_MAX_STEPS SZ_2K
#define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
#define ANFC_MAX_ADDR_CYC 5U
#define ANFC_RSVD_ECC_BYTES 21
#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
/**
* struct anfc_op - Defines how to execute an operation
* @pkt_reg: Packet register
* @addr1_reg: Memory address 1 register
* @addr2_reg: Memory address 2 register
* @cmd_reg: Command register
* @prog_reg: Program register
* @steps: Number of "packets" to read/write
* @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
* @len: Data transfer length
* @read: Data transfer direction from the controller point of view
* @buf: Data buffer
*/
struct anfc_op {
u32 pkt_reg;
u32 addr1_reg;
u32 addr2_reg;
u32 cmd_reg;
u32 prog_reg;
int steps;
unsigned int rdy_timeout_ms;
unsigned int len;
bool read;
u8 *buf;
};
/**
* struct anand - Defines the NAND chip related information
* @node: Used to store NAND chips into a list
* @chip: NAND chip information structure
* @rb: Ready-busy line
* @page_sz: Register value of the page_sz field to use
* @clk: Expected clock frequency to use
* @data_iface: Data interface timing mode to use
* @timings: NV-DDR specific timings to use
* @ecc_conf: Hardware ECC configuration value
* @strength: Register value of the ECC strength
* @raddr_cycles: Row address cycle information
* @caddr_cycles: Column address cycle information
* @ecc_bits: Exact number of ECC bits per syndrome
* @ecc_total: Total number of ECC bytes
* @errloc: Array of errors located with soft BCH
* @hw_ecc: Buffer to store syndromes computed by hardware
* @bch: BCH structure
* @cs_idx: Array of chip-select for this device, values are indexes
* of the controller structure @gpio_cs array
* @ncs_idx: Size of the @cs_idx array
*/
struct anand {
struct list_head node;
struct nand_chip chip;
unsigned int rb;
unsigned int page_sz;
unsigned long clk;
u32 data_iface;
u32 timings;
u32 ecc_conf;
u32 strength;
u16 raddr_cycles;
u16 caddr_cycles;
unsigned int ecc_bits;
unsigned int ecc_total;
unsigned int *errloc;
u8 *hw_ecc;
struct bch_control *bch;
int *cs_idx;
int ncs_idx;
};
/**
* struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
* @dev: Pointer to the device structure
* @base: Remapped register area
* @controller_clk: Pointer to the system clock
* @bus_clk: Pointer to the flash clock
* @controller: Base controller structure
* @chips: List of all NAND chips attached to the controller
* @cur_clk: Current clock rate
* @cs_array: CS array. Native CS are left empty, the other cells are
* populated with their corresponding GPIO descriptor.
* @ncs: Size of @cs_array
* @cur_cs: Index in @cs_array of the currently in use CS
* @native_cs: Currently selected native CS
* @spare_cs: Native CS that is not wired (may be selected when a GPIO
* CS is in use)
*/
struct arasan_nfc {
struct device *dev;
void __iomem *base;
struct clk *controller_clk;
struct clk *bus_clk;
struct nand_controller controller;
struct list_head chips;
unsigned int cur_clk;
struct gpio_desc **cs_array;
unsigned int ncs;
int cur_cs;
unsigned int native_cs;
unsigned int spare_cs;
};
static struct anand *to_anand(struct nand_chip *nand)
{
return container_of(nand, struct anand, chip);
}
static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
{
return container_of(ctrl, struct arasan_nfc, controller);
}
static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
{
u32 val;
int ret;
ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
val & event, 0,
ANFC_DFLT_TIMEOUT_US);
if (ret) {
dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
return -ETIMEDOUT;
}
writel_relaxed(event, nfc->base + INTR_STS_REG);
return 0;
}
static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
unsigned int timeout_ms)
{
struct anand *anand = to_anand(chip);
u32 val;
int ret;
/* There is no R/B interrupt, we must poll a register */
ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
val & BIT(anand->rb),
1, timeout_ms * 1000);
if (ret) {
dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
readl_relaxed(nfc->base + READY_STS_REG));
return -ETIMEDOUT;
}
return 0;
}
static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
}
static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
unsigned int *pktsize)
{
unsigned int nb, sz;
for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
sz = len / nb;
if (sz <= ANFC_MAX_PKT_SIZE)
break;
}
if (sz * nb != len)
return -ENOTSUPP;
if (steps)
*steps = nb;
if (pktsize)
*pktsize = sz;
return 0;
}
static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
{
return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
}
static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
{
return anand->cs_idx[num];
}
static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
{
/* CS did not change: do nothing */
if (nfc->cur_cs == nfc_cs_idx)
return;
/* Deassert the previous CS if it was a GPIO */
if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
/* Assert the new one */
if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
nfc->native_cs = nfc->spare_cs;
gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
} else {
nfc->native_cs = nfc_cs_idx;
}
nfc->cur_cs = nfc_cs_idx;
}
static int anfc_select_target(struct nand_chip *chip, int target)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
int ret;
anfc_assert_cs(nfc, nfc_cs_idx);
/* Update the controller timings and the potential ECC configuration */
writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
writel_relaxed(anand->timings, nfc->base + TIMING_REG);
/* Update clock frequency */
if (nfc->cur_clk != anand->clk) {
clk_disable_unprepare(nfc->bus_clk);
ret = clk_set_rate(nfc->bus_clk, anand->clk);
if (ret) {
dev_err(nfc->dev, "Failed to change clock rate\n");
return ret;
}
ret = clk_prepare_enable(nfc->bus_clk);
if (ret) {
dev_err(nfc->dev,
"Failed to re-enable the bus clock\n");
return ret;
}
nfc->cur_clk = anand->clk;
}
return 0;
}
/*
* When using the embedded hardware ECC engine, the controller is in charge of
* feeding the engine with, first, the ECC residue present in the data array.
* A typical read operation is:
* 1/ Assert the read operation by sending the relevant command/address cycles
* but targeting the column of the first ECC bytes in the OOB area instead of
* the main data directly.
* 2/ After having read the relevant number of ECC bytes, the controller uses
* the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
* Register" to move the pointer back at the beginning of the main data.
* 3/ It will read the content of the main area for a given size (pktsize) and
* will feed the ECC engine with this buffer again.
* 4/ The ECC engine derives the ECC bytes for the given data and compare them
* with the ones already received. It eventually trigger status flags and
* then set the "Buffer Read Ready" flag.
* 5/ The corrected data is then available for reading from the data port
* register.
*
* The hardware BCH ECC engine is known to be inconstent in BCH mode and never
* reports uncorrectable errors. Because of this bug, we have to use the
* software BCH implementation in the read path.
*/
static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
struct anand *anand = to_anand(chip);
unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
unsigned int max_bitflips = 0;
dma_addr_t dma_addr;
int step, ret;
struct anfc_op nfc_op = {
.pkt_reg =
PKT_SIZE(chip->ecc.size) |
PKT_STEPS(chip->ecc.steps),
.addr1_reg =
(page & 0xFF) << (8 * (anand->caddr_cycles)) |
(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
.addr2_reg =
((page >> 16) & 0xFF) |
ADDR2_STRENGTH(anand->strength) |
ADDR2_CS(nfc->native_cs),
.cmd_reg =
CMD_1(NAND_CMD_READ0) |
CMD_2(NAND_CMD_READSTART) |
CMD_PAGE_SIZE(anand->page_sz) |
CMD_DMA_ENABLE |
CMD_NADDRS(anand->caddr_cycles +
anand->raddr_cycles),
.prog_reg = PROG_PGRD,
};
dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(nfc->dev, dma_addr)) {
dev_err(nfc->dev, "Buffer mapping error");
return -EIO;
}
writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
if (ret) {
dev_err(nfc->dev, "Error reading page %d\n", page);
return ret;
}
/* Store the raw OOB bytes as well */
ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
mtd->oobsize, 0);
if (ret)
return ret;
/*
* For each step, compute by softare the BCH syndrome over the raw data.
* Compare the theoretical amount of errors and compare with the
* hardware engine feedback.
*/
for (step = 0; step < chip->ecc.steps; step++) {
u8 *raw_buf = &buf[step * chip->ecc.size];
unsigned int bit, byte;
int bf, i;
/* Extract the syndrome, it is not necessarily aligned */
memset(anand->hw_ecc, 0, chip->ecc.bytes);
nand_extract_bits(anand->hw_ecc, 0,
&chip->oob_poi[mtd->oobsize - anand->ecc_total],
anand->ecc_bits * step, anand->ecc_bits);
bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
anand->hw_ecc, NULL, NULL, anand->errloc);
if (!bf) {
continue;
} else if (bf > 0) {
for (i = 0; i < bf; i++) {
/* Only correct the data, not the syndrome */
if (anand->errloc[i] < (chip->ecc.size * 8)) {
bit = BIT(anand->errloc[i] & 7);
byte = anand->errloc[i] >> 3;
raw_buf[byte] ^= bit;
}
}
mtd->ecc_stats.corrected += bf;
max_bitflips = max_t(unsigned int, max_bitflips, bf);
continue;
}
bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
anand->hw_ecc, chip->ecc.bytes, NULL, 0,
chip->ecc.strength);
if (bf > 0) {
mtd->ecc_stats.corrected += bf;
max_bitflips = max_t(unsigned int, max_bitflips, bf);
memset(raw_buf, 0xFF, chip->ecc.size);
} else if (bf < 0) {
mtd->ecc_stats.failed++;
}
}
return 0;
}
static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
int ret;
ret = anfc_select_target(chip, chip->cur_cs);
if (ret)
return ret;
return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
};
static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
dma_addr_t dma_addr;
u8 status;
int ret;
struct anfc_op nfc_op = {
.pkt_reg =
PKT_SIZE(chip->ecc.size) |
PKT_STEPS(chip->ecc.steps),
.addr1_reg =
(page & 0xFF) << (8 * (anand->caddr_cycles)) |
(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
.addr2_reg =
((page >> 16) & 0xFF) |
ADDR2_STRENGTH(anand->strength) |
ADDR2_CS(nfc->native_cs),
.cmd_reg =
CMD_1(NAND_CMD_SEQIN) |
CMD_2(NAND_CMD_PAGEPROG) |
CMD_PAGE_SIZE(anand->page_sz) |
CMD_DMA_ENABLE |
CMD_NADDRS(anand->caddr_cycles +
anand->raddr_cycles) |
CMD_ECC_ENABLE,
.prog_reg = PROG_PGPROG,
};
writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
ECC_SP_ADDRS(anand->caddr_cycles),
nfc->base + ECC_SP_REG);
dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
if (dma_mapping_error(nfc->dev, dma_addr)) {
dev_err(nfc->dev, "Buffer mapping error");
return -EIO;
}
writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
if (ret) {
dev_err(nfc->dev, "Error writing page %d\n", page);
return ret;
}
/* Spare data is not protected */
if (oob_required) {
ret = nand_write_oob_std(chip, page);
if (ret)
return ret;
}
/* Check write status on the chip side */
ret = nand_status_op(chip, &status);
if (ret)
return ret;
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
int ret;
ret = anfc_select_target(chip, chip->cur_cs);
if (ret)
return ret;
return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
};
/* NAND framework ->exec_op() hooks and related helpers */
static int anfc_parse_instructions(struct nand_chip *chip,
const struct nand_subop *subop,
struct anfc_op *nfc_op)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anand *anand = to_anand(chip);
const struct nand_op_instr *instr = NULL;
bool first_cmd = true;
unsigned int op_id;
int ret, i;
memset(nfc_op, 0, sizeof(*nfc_op));
nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
unsigned int offset, naddrs, pktsize;
const u8 *addrs;
u8 *buf;
instr = &subop->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
if (first_cmd)
nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
else
nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
first_cmd = false;
break;
case NAND_OP_ADDR_INSTR:
offset = nand_subop_get_addr_start_off(subop, op_id);
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
addrs = &instr->ctx.addr.addrs[offset];
nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
if (i < 4)
nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
else
nfc_op->addr2_reg |= addrs[i];
}
break;
case NAND_OP_DATA_IN_INSTR:
nfc_op->read = true;
fallthrough;
case NAND_OP_DATA_OUT_INSTR:
offset = nand_subop_get_data_start_off(subop, op_id);
buf = instr->ctx.data.buf.in;
nfc_op->buf = &buf[offset];
nfc_op->len = nand_subop_get_data_len(subop, op_id);
ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
&pktsize);
if (ret)
return ret;
/*
* Number of DATA cycles must be aligned on 4, this
* means the controller might read/write more than
* requested. This is harmless most of the time as extra
* DATA are discarded in the write path and read pointer
* adjusted in the read path.
*
* FIXME: The core should mark operations where
* reading/writing more is allowed so the exec_op()
* implementation can take the right decision when the
* alignment constraint is not met: adjust the number of
* DATA cycles when it's allowed, reject the operation
* otherwise.
*/
nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
PKT_STEPS(nfc_op->steps);
break;
case NAND_OP_WAITRDY_INSTR:
nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
break;
}
}
return 0;
}
static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
{
unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
unsigned int last_len = nfc_op->len % 4;
unsigned int offset, dir;
u8 *buf = nfc_op->buf;
int ret, i;
for (i = 0; i < nfc_op->steps; i++) {
dir = nfc_op->read ? READ_READY : WRITE_READY;
ret = anfc_wait_for_event(nfc, dir);
if (ret) {
dev_err(nfc->dev, "PIO %s ready signal not received\n",
nfc_op->read ? "Read" : "Write");
return ret;
}
offset = i * (dwords * 4);
if (nfc_op->read)
ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
dwords);
else
iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
dwords);
}
if (last_len) {
u32 remainder;
offset = nfc_op->len - last_len;
if (nfc_op->read) {
remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
memcpy(&buf[offset], &remainder, last_len);
} else {
memcpy(&remainder, &buf[offset], last_len);
writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
}
}
return anfc_wait_for_event(nfc, XFER_COMPLETE);
}
static int anfc_misc_data_type_exec(struct nand_chip *chip,
const struct nand_subop *subop,
u32 prog_reg)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
nfc_op.prog_reg = prog_reg;
anfc_trigger_op(nfc, &nfc_op);
if (nfc_op.rdy_timeout_ms) {
ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
if (ret)
return ret;
}
return anfc_rw_pio_op(nfc, &nfc_op);
}
static int anfc_param_read_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
}
static int anfc_data_read_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
u32 prog_reg = PROG_PGRD;
/*
* Experience shows that while in SDR mode sending a CHANGE READ COLUMN
* command through the READ PAGE "type" always works fine, when in
* NV-DDR mode the same command simply fails. However, it was also
* spotted that any CHANGE READ COLUMN command sent through the CHANGE
* READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
* and NV-DDR). So, for simplicity, let's program the controller with
* the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
* perform a CHANGE READ COLUMN operation.
*/
if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
prog_reg = PROG_CHG_RD_COL_ENH;
return anfc_misc_data_type_exec(chip, subop, prog_reg);
}
static int anfc_param_write_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
}
static int anfc_data_write_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
}
static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
const struct nand_subop *subop,
u32 prog_reg)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
nfc_op.prog_reg = prog_reg;
anfc_trigger_op(nfc, &nfc_op);
ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
if (ret)
return ret;
if (nfc_op.rdy_timeout_ms)
ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
return ret;
}
static int anfc_status_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
u32 tmp;
int ret;
/* See anfc_check_op() for details about this constraint */
if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
return -ENOTSUPP;
ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
if (ret)
return ret;
tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
return 0;
}
static int anfc_reset_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
}
static int anfc_erase_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
}
static int anfc_wait_type_exec(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct anfc_op nfc_op = {};
int ret;
ret = anfc_parse_instructions(chip, subop, &nfc_op);
if (ret)
return ret;
return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
}
static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
anfc_param_read_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_param_write_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_data_read_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_data_write_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_reset_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_erase_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
NAND_OP_PARSER_PATTERN(
anfc_status_type_exec,
NAND_OP_PARSER_PAT_CMD_ELEM(false),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
NAND_OP_PARSER_PATTERN(
anfc_wait_type_exec,
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);
static int anfc_check_op(struct nand_chip *chip,
const struct nand_operation *op)
{
const struct nand_op_instr *instr;
int op_id;
/*
* The controller abstracts all the NAND operations and do not support
* data only operations.
*
* TODO: The nand_op_parser framework should be extended to
* support custom checks on DATA instructions.
*/
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_ADDR_INSTR:
if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
return -ENOTSUPP;
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
return -ENOTSUPP;
if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL))
return -ENOTSUPP;
break;
default:
break;
}
}
/*
* The controller does not allow to proceed with a CMD+DATA_IN cycle
* manually on the bus by reading data from the data register. Instead,
* the controller abstract a status read operation with its own status
* register after ordering a read status operation. Hence, we cannot
* support any CMD+DATA_IN operation other than a READ STATUS.
*
* TODO: The nand_op_parser() framework should be extended to describe
* fixed patterns instead of open-coding this check here.
*/
if (op->ninstrs == 2 &&
op->instrs[0].type == NAND_OP_CMD_INSTR &&
op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
return -ENOTSUPP;
return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
}
static int anfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
int ret;
if (check_only)
return anfc_check_op(chip, op);
ret = anfc_select_target(chip, op->cs);
if (ret)
return ret;
return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
}
static int anfc_setup_interface(struct nand_chip *chip, int target,
const struct nand_interface_config *conf)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct device_node *np = nfc->dev->of_node;
const struct nand_sdr_timings *sdr;
const struct nand_nvddr_timings *nvddr;
unsigned int tccs_min, dqs_mode, fast_tcad;
if (nand_interface_is_nvddr(conf)) {
nvddr = nand_get_nvddr_timings(conf);
if (IS_ERR(nvddr))
return PTR_ERR(nvddr);
} else {
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
}
if (target < 0)
return 0;
if (nand_interface_is_sdr(conf)) {
anand->data_iface = DIFACE_SDR |
DIFACE_SDR_MODE(conf->timings.mode);
anand->timings = 0;
} else {
anand->data_iface = DIFACE_NVDDR |
DIFACE_DDR_MODE(conf->timings.mode);
if (conf->timings.nvddr.tCCS_min <= 100000)
tccs_min = TCCS_TIME_100NS;
else if (conf->timings.nvddr.tCCS_min <= 200000)
tccs_min = TCCS_TIME_200NS;
else if (conf->timings.nvddr.tCCS_min <= 300000)
tccs_min = TCCS_TIME_300NS;
else
tccs_min = TCCS_TIME_500NS;
fast_tcad = 0;
if (conf->timings.nvddr.tCAD_min < 45000)
fast_tcad = FAST_TCAD;
switch (conf->timings.mode) {
case 5:
case 4:
dqs_mode = 2;
break;
case 3:
dqs_mode = 3;
break;
case 2:
dqs_mode = 4;
break;
case 1:
dqs_mode = 5;
break;
case 0:
default:
dqs_mode = 6;
break;
}
anand->timings = tccs_min | fast_tcad |
DQS_BUFF_SEL_IN(dqs_mode) |
DQS_BUFF_SEL_OUT(dqs_mode);
}
if (nand_interface_is_sdr(conf)) {
anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
} else {
/* ONFI timings are defined in picoseconds */
anand->clk = div_u64((u64)NSEC_PER_SEC * 1000,
conf->timings.nvddr.tCK_min);
}
/*
* Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
* with f > 90MHz (default clock is 100MHz) but signals are unstable
* with higher modes. Hence we decrease a little bit the clock rate to
* 80MHz when using SDR modes 2-5 with this SoC.
*/
if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
return 0;
}
static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
{
unsigned int bch_gf_mag, ecc_bits;
switch (step_size) {
case SZ_512:
bch_gf_mag = 13;
break;
case SZ_1K:
bch_gf_mag = 14;
break;
default:
return -EINVAL;
}
ecc_bits = bch_gf_mag * strength;
return DIV_ROUND_UP(ecc_bits, 8);
}
static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
static const int anfc_hw_ecc_1024_strengths[] = {24};
static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
{
.stepsize = SZ_512,
.strengths = anfc_hw_ecc_512_strengths,
.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
},
{
.stepsize = SZ_1K,
.strengths = anfc_hw_ecc_1024_strengths,
.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
},
};
static const struct nand_ecc_caps anfc_hw_ecc_caps = {
.stepinfos = anfc_hw_ecc_step_infos,
.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
};
static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
int ret;
switch (mtd->writesize) {
case SZ_512:
case SZ_2K:
case SZ_4K:
case SZ_8K:
case SZ_16K:
break;
default:
dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
return -EINVAL;
}
ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
if (ret)
return ret;
switch (ecc->strength) {
case 12:
anand->strength = 0x1;
break;
case 8:
anand->strength = 0x2;
break;
case 4:
anand->strength = 0x3;
break;
case 24:
anand->strength = 0x4;
break;
default:
dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
return -EINVAL;
}
switch (ecc->size) {
case SZ_512:
bch_gf_mag = 13;
bch_prim_poly = 0x201b;
break;
case SZ_1K:
bch_gf_mag = 14;
bch_prim_poly = 0x4443;
break;
default:
dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
return -EINVAL;
}
mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
ecc->steps = mtd->writesize / ecc->size;
ecc->algo = NAND_ECC_ALGO_BCH;
anand->ecc_bits = bch_gf_mag * ecc->strength;
ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
ECC_CONF_LEN(anand->ecc_total) |
ECC_CONF_BCH_EN;
anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
sizeof(*anand->errloc), GFP_KERNEL);
if (!anand->errloc)
return -ENOMEM;
anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
if (!anand->hw_ecc)
return -ENOMEM;
/* Enforce bit swapping to fit the hardware */
anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
if (!anand->bch)
return -EINVAL;
ecc->read_page = anfc_sel_read_page_hw_ecc;
ecc->write_page = anfc_sel_write_page_hw_ecc;
return 0;
}
static int anfc_attach_chip(struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
struct arasan_nfc *nfc = to_anfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0;
if (mtd->writesize <= SZ_512)
anand->caddr_cycles = 1;
else
anand->caddr_cycles = 2;
if (chip->options & NAND_ROW_ADDR_3)
anand->raddr_cycles = 3;
else
anand->raddr_cycles = 2;
switch (mtd->writesize) {
case 512:
anand->page_sz = 0;
break;
case 1024:
anand->page_sz = 5;
break;
case 2048:
anand->page_sz = 1;
break;
case 4096:
anand->page_sz = 2;
break;
case 8192:
anand->page_sz = 3;
break;
case 16384:
anand->page_sz = 4;
break;
default:
return -EINVAL;
}
/* These hooks are valid for all ECC providers */
chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
case NAND_ECC_ENGINE_TYPE_ON_DIE:
break;
case NAND_ECC_ENGINE_TYPE_ON_HOST:
ret = anfc_init_hw_ecc_controller(nfc, chip);
break;
default:
dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
chip->ecc.engine_type);
return -EINVAL;
}
return ret;
}
static void anfc_detach_chip(struct nand_chip *chip)
{
struct anand *anand = to_anand(chip);
if (anand->bch)
bch_free(anand->bch);
}
static const struct nand_controller_ops anfc_ops = {
.exec_op = anfc_exec_op,
.setup_interface = anfc_setup_interface,
.attach_chip = anfc_attach_chip,
.detach_chip = anfc_detach_chip,
};
static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
{
struct anand *anand;
struct nand_chip *chip;
struct mtd_info *mtd;
int rb, ret, i;
anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
if (!anand)
return -ENOMEM;
/* Chip-select init */
anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
dev_err(nfc->dev, "Invalid reg property\n");
return -EINVAL;
}
anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
sizeof(*anand->cs_idx), GFP_KERNEL);
if (!anand->cs_idx)
return -ENOMEM;
for (i = 0; i < anand->ncs_idx; i++) {
ret = of_property_read_u32_index(np, "reg", i,
&anand->cs_idx[i]);
if (ret) {
dev_err(nfc->dev, "invalid CS property: %d\n", ret);
return ret;
}
}
/* Ready-busy init */
ret = of_property_read_u32(np, "nand-rb", &rb);
if (ret)
return ret;
if (rb >= ANFC_MAX_CS) {
dev_err(nfc->dev, "Wrong RB %d\n", rb);
return -EINVAL;
}
anand->rb = rb;
chip = &anand->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = nfc->dev;
chip->controller = &nfc->controller;
chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
NAND_USES_DMA;
nand_set_flash_node(chip, np);
if (!mtd->name) {
dev_err(nfc->dev, "NAND label property is mandatory\n");
return -EINVAL;
}
ret = nand_scan(chip, anand->ncs_idx);
if (ret) {
dev_err(nfc->dev, "Scan operation failed\n");
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return ret;
}
list_add_tail(&anand->node, &nfc->chips);
return 0;
}
static void anfc_chips_cleanup(struct arasan_nfc *nfc)
{
struct anand *anand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
chip = &anand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&anand->node);
}
}
static int anfc_chips_init(struct arasan_nfc *nfc)
{
struct device_node *np = nfc->dev->of_node;
int nchips = of_get_child_count(np);
int ret;
if (!nchips) {
dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
nchips);
return -EINVAL;
}
for_each_child_of_node_scoped(np, nand_np) {
ret = anfc_chip_init(nfc, nand_np);
if (ret) {
anfc_chips_cleanup(nfc);
break;
}
}
return ret;
}
static void anfc_reset(struct arasan_nfc *nfc)
{
/* Disable interrupt signals */
writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
/* Enable interrupt status */
writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
nfc->cur_cs = -1;
}
static int anfc_parse_cs(struct arasan_nfc *nfc)
{
int ret;
/* Check the gpio-cs property */
ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
if (ret)
return ret;
/*
* The controller native CS cannot be both disabled at the same time.
* Hence, only one native CS can be used if GPIO CS are needed, so that
* the other is selected when a non-native CS must be asserted (not
* wired physically or configured as GPIO instead of NAND CS). In this
* case, the "not" chosen CS is assigned to nfc->spare_cs and selected
* whenever a GPIO CS must be asserted.
*/
if (nfc->cs_array) {
if (nfc->ncs > 2 && !nfc->cs_array[0] && !nfc->cs_array[1]) {
dev_err(nfc->dev,
"Assign a single native CS when using GPIOs\n");
return -EINVAL;
}
if (nfc->cs_array[0])
nfc->spare_cs = 0;
else
nfc->spare_cs = 1;
}
if (!nfc->cs_array) {
nfc->cs_array = anfc_default_cs_array;
nfc->ncs = ANFC_MAX_CS;
return 0;
}
return 0;
}
static int anfc_probe(struct platform_device *pdev)
{
struct arasan_nfc *nfc;
int ret;
nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = &pdev->dev;
nand_controller_init(&nfc->controller);
nfc->controller.ops = &anfc_ops;
INIT_LIST_HEAD(&nfc->chips);
nfc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->base))
return PTR_ERR(nfc->base);
anfc_reset(nfc);
nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller");
if (IS_ERR(nfc->controller_clk))
return PTR_ERR(nfc->controller_clk);
nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus");
if (IS_ERR(nfc->bus_clk))
return PTR_ERR(nfc->bus_clk);
ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
if (ret)
return ret;
ret = anfc_parse_cs(nfc);
if (ret)
return ret;
ret = anfc_chips_init(nfc);
if (ret)
return ret;
platform_set_drvdata(pdev, nfc);
return 0;
}
static void anfc_remove(struct platform_device *pdev)
{
int i;
struct arasan_nfc *nfc = platform_get_drvdata(pdev);
for (i = 0; i < nfc->ncs; i++) {
if (nfc->cs_array[i]) {
gpiod_put(nfc->cs_array[i]);
}
}
anfc_chips_cleanup(nfc);
}
static const struct of_device_id anfc_ids[] = {
{
.compatible = "xlnx,zynqmp-nand-controller",
},
{
.compatible = "arasan,nfc-v3p10",
},
{}
};
MODULE_DEVICE_TABLE(of, anfc_ids);
static struct platform_driver anfc_driver = {
.driver = {
.name = "arasan-nand-controller",
.of_match_table = anfc_ids,
},
.probe = anfc_probe,
.remove = anfc_remove,
};
module_platform_driver(anfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");