linux/mm/zsmalloc.c
Pintu Kumar e664c2cd98 mm/zsmalloc: use memcpy_from/to_page whereever possible
As part of "zsmalloc: replace kmap_atomic with kmap_local_page" [1] we
replaced kmap/kunmap_atomic() with kmap_local_page()/kunmap_local().

But later it was found that some of the code could be replaced with
already available apis in highmem.h, such as
memcpy_from_page()/memcpy_to_page().

Also, update the comments with correct api naming.

[1] https://lkml.kernel.org/r/20241001175358.12970-1-quic_pintu@quicinc.com

Link: https://lkml.kernel.org/r/20241010175143.27262-1-quic_pintu@quicinc.com
Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Joe Perches <joe@perches.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pintu Agarwal <pintu.ping@gmail.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-07 14:38:07 -08:00

2300 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* zsmalloc memory allocator
*
* Copyright (C) 2011 Nitin Gupta
* Copyright (C) 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the license that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*/
/*
* Following is how we use various fields and flags of underlying
* struct page(s) to form a zspage.
*
* Usage of struct page fields:
* page->private: points to zspage
* page->index: links together all component pages of a zspage
* For the huge page, this is always 0, so we use this field
* to store handle.
* page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object
* offset in a subpage of a zspage
*
* Usage of struct page flags:
* PG_private: identifies the first component page
* PG_owner_priv_1: identifies the huge component page
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
/*
* lock ordering:
* page_lock
* pool->migrate_lock
* class->lock
* zspage->lock
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/pgtable.h>
#include <asm/tlbflush.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/vmalloc.h>
#include <linux/preempt.h>
#include <linux/spinlock.h>
#include <linux/sprintf.h>
#include <linux/shrinker.h>
#include <linux/types.h>
#include <linux/debugfs.h>
#include <linux/zsmalloc.h>
#include <linux/zpool.h>
#include <linux/migrate.h>
#include <linux/wait.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
#include <linux/local_lock.h>
#define ZSPAGE_MAGIC 0x58
/*
* This must be power of 2 and greater than or equal to sizeof(link_free).
* These two conditions ensure that any 'struct link_free' itself doesn't
* span more than 1 page which avoids complex case of mapping 2 pages simply
* to restore link_free pointer values.
*/
#define ZS_ALIGN 8
#define ZS_HANDLE_SIZE (sizeof(unsigned long))
/*
* Object location (<PFN>, <obj_idx>) is encoded as
* a single (unsigned long) handle value.
*
* Note that object index <obj_idx> starts from 0.
*
* This is made more complicated by various memory models and PAE.
*/
#ifndef MAX_POSSIBLE_PHYSMEM_BITS
#ifdef MAX_PHYSMEM_BITS
#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
#else
/*
* If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
* be PAGE_SHIFT
*/
#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
/*
* Head in allocated object should have OBJ_ALLOCATED_TAG
* to identify the object was allocated or not.
* It's okay to add the status bit in the least bit because
* header keeps handle which is 4byte-aligned address so we
* have room for two bit at least.
*/
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
#define HUGE_BITS 1
#define FULLNESS_BITS 4
#define CLASS_BITS 8
#define MAGIC_VAL_BITS 8
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
/* each chunk includes extra space to keep handle */
#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
/*
* On systems with 4K page size, this gives 255 size classes! There is a
* trader-off here:
* - Large number of size classes is potentially wasteful as free page are
* spread across these classes
* - Small number of size classes causes large internal fragmentation
* - Probably its better to use specific size classes (empirically
* determined). NOTE: all those class sizes must be set as multiple of
* ZS_ALIGN to make sure link_free itself never has to span 2 pages.
*
* ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
* (reason above)
*/
#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
ZS_SIZE_CLASS_DELTA) + 1)
/*
* Pages are distinguished by the ratio of used memory (that is the ratio
* of ->inuse objects to all objects that page can store). For example,
* INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
*
* The number of fullness groups is not random. It allows us to keep
* difference between the least busy page in the group (minimum permitted
* number of ->inuse objects) and the most busy page (maximum permitted
* number of ->inuse objects) at a reasonable value.
*/
enum fullness_group {
ZS_INUSE_RATIO_0,
ZS_INUSE_RATIO_10,
/* NOTE: 8 more fullness groups here */
ZS_INUSE_RATIO_99 = 10,
ZS_INUSE_RATIO_100,
NR_FULLNESS_GROUPS,
};
enum class_stat_type {
/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
ZS_OBJS_INUSE,
NR_CLASS_STAT_TYPES,
};
struct zs_size_stat {
unsigned long objs[NR_CLASS_STAT_TYPES];
};
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
#endif
static size_t huge_class_size;
struct size_class {
spinlock_t lock;
struct list_head fullness_list[NR_FULLNESS_GROUPS];
/*
* Size of objects stored in this class. Must be multiple
* of ZS_ALIGN.
*/
int size;
int objs_per_zspage;
/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
int pages_per_zspage;
unsigned int index;
struct zs_size_stat stats;
};
/*
* Placed within free objects to form a singly linked list.
* For every zspage, zspage->freeobj gives head of this list.
*
* This must be power of 2 and less than or equal to ZS_ALIGN
*/
struct link_free {
union {
/*
* Free object index;
* It's valid for non-allocated object
*/
unsigned long next;
/*
* Handle of allocated object.
*/
unsigned long handle;
};
};
struct zs_pool {
const char *name;
struct size_class *size_class[ZS_SIZE_CLASSES];
struct kmem_cache *handle_cachep;
struct kmem_cache *zspage_cachep;
atomic_long_t pages_allocated;
struct zs_pool_stats stats;
/* Compact classes */
struct shrinker *shrinker;
#ifdef CONFIG_ZSMALLOC_STAT
struct dentry *stat_dentry;
#endif
#ifdef CONFIG_COMPACTION
struct work_struct free_work;
#endif
/* protect page/zspage migration */
rwlock_t migrate_lock;
atomic_t compaction_in_progress;
};
struct zspage {
struct {
unsigned int huge:HUGE_BITS;
unsigned int fullness:FULLNESS_BITS;
unsigned int class:CLASS_BITS + 1;
unsigned int magic:MAGIC_VAL_BITS;
};
unsigned int inuse;
unsigned int freeobj;
struct page *first_page;
struct list_head list; /* fullness list */
struct zs_pool *pool;
rwlock_t lock;
};
struct mapping_area {
local_lock_t lock;
char *vm_buf; /* copy buffer for objects that span pages */
char *vm_addr; /* address of kmap_local_page()'ed pages */
enum zs_mapmode vm_mm; /* mapping mode */
};
/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
static void SetZsHugePage(struct zspage *zspage)
{
zspage->huge = 1;
}
static bool ZsHugePage(struct zspage *zspage)
{
return zspage->huge;
}
static void migrate_lock_init(struct zspage *zspage);
static void migrate_read_lock(struct zspage *zspage);
static void migrate_read_unlock(struct zspage *zspage);
static void migrate_write_lock(struct zspage *zspage);
static void migrate_write_unlock(struct zspage *zspage);
#ifdef CONFIG_COMPACTION
static void kick_deferred_free(struct zs_pool *pool);
static void init_deferred_free(struct zs_pool *pool);
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
#else
static void kick_deferred_free(struct zs_pool *pool) {}
static void init_deferred_free(struct zs_pool *pool) {}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
#endif
static int create_cache(struct zs_pool *pool)
{
char *name;
name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
if (!name)
return -ENOMEM;
pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
0, 0, NULL);
kfree(name);
if (!pool->handle_cachep)
return -EINVAL;
name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
if (!name)
return -ENOMEM;
pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
0, 0, NULL);
kfree(name);
if (!pool->zspage_cachep) {
kmem_cache_destroy(pool->handle_cachep);
pool->handle_cachep = NULL;
return -EINVAL;
}
return 0;
}
static void destroy_cache(struct zs_pool *pool)
{
kmem_cache_destroy(pool->handle_cachep);
kmem_cache_destroy(pool->zspage_cachep);
}
static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
{
return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
}
static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
{
kmem_cache_free(pool->handle_cachep, (void *)handle);
}
static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
{
return kmem_cache_zalloc(pool->zspage_cachep,
flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
}
static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
{
kmem_cache_free(pool->zspage_cachep, zspage);
}
/* class->lock(which owns the handle) synchronizes races */
static void record_obj(unsigned long handle, unsigned long obj)
{
*(unsigned long *)handle = obj;
}
/* zpool driver */
#ifdef CONFIG_ZPOOL
static void *zs_zpool_create(const char *name, gfp_t gfp)
{
/*
* Ignore global gfp flags: zs_malloc() may be invoked from
* different contexts and its caller must provide a valid
* gfp mask.
*/
return zs_create_pool(name);
}
static void zs_zpool_destroy(void *pool)
{
zs_destroy_pool(pool);
}
static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
unsigned long *handle)
{
*handle = zs_malloc(pool, size, gfp);
if (IS_ERR_VALUE(*handle))
return PTR_ERR((void *)*handle);
return 0;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
zs_free(pool, handle);
}
static void *zs_zpool_map(void *pool, unsigned long handle,
enum zpool_mapmode mm)
{
enum zs_mapmode zs_mm;
switch (mm) {
case ZPOOL_MM_RO:
zs_mm = ZS_MM_RO;
break;
case ZPOOL_MM_WO:
zs_mm = ZS_MM_WO;
break;
case ZPOOL_MM_RW:
default:
zs_mm = ZS_MM_RW;
break;
}
return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
zs_unmap_object(pool, handle);
}
static u64 zs_zpool_total_pages(void *pool)
{
return zs_get_total_pages(pool);
}
static struct zpool_driver zs_zpool_driver = {
.type = "zsmalloc",
.owner = THIS_MODULE,
.create = zs_zpool_create,
.destroy = zs_zpool_destroy,
.malloc_support_movable = true,
.malloc = zs_zpool_malloc,
.free = zs_zpool_free,
.map = zs_zpool_map,
.unmap = zs_zpool_unmap,
.total_pages = zs_zpool_total_pages,
};
MODULE_ALIAS("zpool-zsmalloc");
#endif /* CONFIG_ZPOOL */
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
.lock = INIT_LOCAL_LOCK(lock),
};
static __maybe_unused int is_first_page(struct page *page)
{
return PagePrivate(page);
}
/* Protected by class->lock */
static inline int get_zspage_inuse(struct zspage *zspage)
{
return zspage->inuse;
}
static inline void mod_zspage_inuse(struct zspage *zspage, int val)
{
zspage->inuse += val;
}
static inline struct page *get_first_page(struct zspage *zspage)
{
struct page *first_page = zspage->first_page;
VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
return first_page;
}
#define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
static inline unsigned int get_first_obj_offset(struct page *page)
{
VM_WARN_ON_ONCE(!PageZsmalloc(page));
return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
}
static inline void set_first_obj_offset(struct page *page, unsigned int offset)
{
/* With 24 bits available, we can support offsets into 16 MiB pages. */
BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
VM_WARN_ON_ONCE(!PageZsmalloc(page));
VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
}
static inline unsigned int get_freeobj(struct zspage *zspage)
{
return zspage->freeobj;
}
static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
{
zspage->freeobj = obj;
}
static struct size_class *zspage_class(struct zs_pool *pool,
struct zspage *zspage)
{
return pool->size_class[zspage->class];
}
/*
* zsmalloc divides the pool into various size classes where each
* class maintains a list of zspages where each zspage is divided
* into equal sized chunks. Each allocation falls into one of these
* classes depending on its size. This function returns index of the
* size class which has chunk size big enough to hold the given size.
*/
static int get_size_class_index(int size)
{
int idx = 0;
if (likely(size > ZS_MIN_ALLOC_SIZE))
idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
ZS_SIZE_CLASS_DELTA);
return min_t(int, ZS_SIZE_CLASSES - 1, idx);
}
static inline void class_stat_add(struct size_class *class, int type,
unsigned long cnt)
{
class->stats.objs[type] += cnt;
}
static inline void class_stat_sub(struct size_class *class, int type,
unsigned long cnt)
{
class->stats.objs[type] -= cnt;
}
static inline unsigned long class_stat_read(struct size_class *class, int type)
{
return class->stats.objs[type];
}
#ifdef CONFIG_ZSMALLOC_STAT
static void __init zs_stat_init(void)
{
if (!debugfs_initialized()) {
pr_warn("debugfs not available, stat dir not created\n");
return;
}
zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
}
static void __exit zs_stat_exit(void)
{
debugfs_remove_recursive(zs_stat_root);
}
static unsigned long zs_can_compact(struct size_class *class);
static int zs_stats_size_show(struct seq_file *s, void *v)
{
int i, fg;
struct zs_pool *pool = s->private;
struct size_class *class;
int objs_per_zspage;
unsigned long obj_allocated, obj_used, pages_used, freeable;
unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
unsigned long total_freeable = 0;
unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
"class", "size", "10%", "20%", "30%", "40%",
"50%", "60%", "70%", "80%", "90%", "99%", "100%",
"obj_allocated", "obj_used", "pages_used",
"pages_per_zspage", "freeable");
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
class = pool->size_class[i];
if (class->index != i)
continue;
spin_lock(&class->lock);
seq_printf(s, " %5u %5u ", i, class->size);
for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
inuse_totals[fg] += class_stat_read(class, fg);
seq_printf(s, "%9lu ", class_stat_read(class, fg));
}
obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
obj_used = class_stat_read(class, ZS_OBJS_INUSE);
freeable = zs_can_compact(class);
spin_unlock(&class->lock);
objs_per_zspage = class->objs_per_zspage;
pages_used = obj_allocated / objs_per_zspage *
class->pages_per_zspage;
seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
obj_allocated, obj_used, pages_used,
class->pages_per_zspage, freeable);
total_objs += obj_allocated;
total_used_objs += obj_used;
total_pages += pages_used;
total_freeable += freeable;
}
seq_puts(s, "\n");
seq_printf(s, " %5s %5s ", "Total", "");
for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
seq_printf(s, "%9lu ", inuse_totals[fg]);
seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
total_objs, total_used_objs, total_pages, "",
total_freeable);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
{
if (!zs_stat_root) {
pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
return;
}
pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
&zs_stats_size_fops);
}
static void zs_pool_stat_destroy(struct zs_pool *pool)
{
debugfs_remove_recursive(pool->stat_dentry);
}
#else /* CONFIG_ZSMALLOC_STAT */
static void __init zs_stat_init(void)
{
}
static void __exit zs_stat_exit(void)
{
}
static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
{
}
static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif
/*
* For each size class, zspages are divided into different groups
* depending on their usage ratio. This function returns fullness
* status of the given page.
*/
static int get_fullness_group(struct size_class *class, struct zspage *zspage)
{
int inuse, objs_per_zspage, ratio;
inuse = get_zspage_inuse(zspage);
objs_per_zspage = class->objs_per_zspage;
if (inuse == 0)
return ZS_INUSE_RATIO_0;
if (inuse == objs_per_zspage)
return ZS_INUSE_RATIO_100;
ratio = 100 * inuse / objs_per_zspage;
/*
* Take integer division into consideration: a page with one inuse
* object out of 127 possible, will end up having 0 usage ratio,
* which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
*/
return ratio / 10 + 1;
}
/*
* Each size class maintains various freelists and zspages are assigned
* to one of these freelists based on the number of live objects they
* have. This functions inserts the given zspage into the freelist
* identified by <class, fullness_group>.
*/
static void insert_zspage(struct size_class *class,
struct zspage *zspage,
int fullness)
{
class_stat_add(class, fullness, 1);
list_add(&zspage->list, &class->fullness_list[fullness]);
zspage->fullness = fullness;
}
/*
* This function removes the given zspage from the freelist identified
* by <class, fullness_group>.
*/
static void remove_zspage(struct size_class *class, struct zspage *zspage)
{
int fullness = zspage->fullness;
VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
list_del_init(&zspage->list);
class_stat_sub(class, fullness, 1);
}
/*
* Each size class maintains zspages in different fullness groups depending
* on the number of live objects they contain. When allocating or freeing
* objects, the fullness status of the page can change, for instance, from
* INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
* checks if such a status change has occurred for the given page and
* accordingly moves the page from the list of the old fullness group to that
* of the new fullness group.
*/
static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
{
int newfg;
newfg = get_fullness_group(class, zspage);
if (newfg == zspage->fullness)
goto out;
remove_zspage(class, zspage);
insert_zspage(class, zspage, newfg);
out:
return newfg;
}
static struct zspage *get_zspage(struct page *page)
{
struct zspage *zspage = (struct zspage *)page_private(page);
BUG_ON(zspage->magic != ZSPAGE_MAGIC);
return zspage;
}
static struct page *get_next_page(struct page *page)
{
struct zspage *zspage = get_zspage(page);
if (unlikely(ZsHugePage(zspage)))
return NULL;
return (struct page *)page->index;
}
/**
* obj_to_location - get (<page>, <obj_idx>) from encoded object value
* @obj: the encoded object value
* @page: page object resides in zspage
* @obj_idx: object index
*/
static void obj_to_location(unsigned long obj, struct page **page,
unsigned int *obj_idx)
{
*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
*obj_idx = (obj & OBJ_INDEX_MASK);
}
static void obj_to_page(unsigned long obj, struct page **page)
{
*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
}
/**
* location_to_obj - get obj value encoded from (<page>, <obj_idx>)
* @page: page object resides in zspage
* @obj_idx: object index
*/
static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
{
unsigned long obj;
obj = page_to_pfn(page) << OBJ_INDEX_BITS;
obj |= obj_idx & OBJ_INDEX_MASK;
return obj;
}
static unsigned long handle_to_obj(unsigned long handle)
{
return *(unsigned long *)handle;
}
static inline bool obj_allocated(struct page *page, void *obj,
unsigned long *phandle)
{
unsigned long handle;
struct zspage *zspage = get_zspage(page);
if (unlikely(ZsHugePage(zspage))) {
VM_BUG_ON_PAGE(!is_first_page(page), page);
handle = page->index;
} else
handle = *(unsigned long *)obj;
if (!(handle & OBJ_ALLOCATED_TAG))
return false;
/* Clear all tags before returning the handle */
*phandle = handle & ~OBJ_TAG_MASK;
return true;
}
static void reset_page(struct page *page)
{
__ClearPageMovable(page);
ClearPagePrivate(page);
set_page_private(page, 0);
page->index = 0;
__ClearPageZsmalloc(page);
}
static int trylock_zspage(struct zspage *zspage)
{
struct page *cursor, *fail;
for (cursor = get_first_page(zspage); cursor != NULL; cursor =
get_next_page(cursor)) {
if (!trylock_page(cursor)) {
fail = cursor;
goto unlock;
}
}
return 1;
unlock:
for (cursor = get_first_page(zspage); cursor != fail; cursor =
get_next_page(cursor))
unlock_page(cursor);
return 0;
}
static void __free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{
struct page *page, *next;
assert_spin_locked(&class->lock);
VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
next = page = get_first_page(zspage);
do {
VM_BUG_ON_PAGE(!PageLocked(page), page);
next = get_next_page(page);
reset_page(page);
unlock_page(page);
dec_zone_page_state(page, NR_ZSPAGES);
put_page(page);
page = next;
} while (page != NULL);
cache_free_zspage(pool, zspage);
class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
}
static void free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{
VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(list_empty(&zspage->list));
/*
* Since zs_free couldn't be sleepable, this function cannot call
* lock_page. The page locks trylock_zspage got will be released
* by __free_zspage.
*/
if (!trylock_zspage(zspage)) {
kick_deferred_free(pool);
return;
}
remove_zspage(class, zspage);
__free_zspage(pool, class, zspage);
}
/* Initialize a newly allocated zspage */
static void init_zspage(struct size_class *class, struct zspage *zspage)
{
unsigned int freeobj = 1;
unsigned long off = 0;
struct page *page = get_first_page(zspage);
while (page) {
struct page *next_page;
struct link_free *link;
void *vaddr;
set_first_obj_offset(page, off);
vaddr = kmap_local_page(page);
link = (struct link_free *)vaddr + off / sizeof(*link);
while ((off += class->size) < PAGE_SIZE) {
link->next = freeobj++ << OBJ_TAG_BITS;
link += class->size / sizeof(*link);
}
/*
* We now come to the last (full or partial) object on this
* page, which must point to the first object on the next
* page (if present)
*/
next_page = get_next_page(page);
if (next_page) {
link->next = freeobj++ << OBJ_TAG_BITS;
} else {
/*
* Reset OBJ_TAG_BITS bit to last link to tell
* whether it's allocated object or not.
*/
link->next = -1UL << OBJ_TAG_BITS;
}
kunmap_local(vaddr);
page = next_page;
off %= PAGE_SIZE;
}
set_freeobj(zspage, 0);
}
static void create_page_chain(struct size_class *class, struct zspage *zspage,
struct page *pages[])
{
int i;
struct page *page;
struct page *prev_page = NULL;
int nr_pages = class->pages_per_zspage;
/*
* Allocate individual pages and link them together as:
* 1. all pages are linked together using page->index
* 2. each sub-page point to zspage using page->private
*
* we set PG_private to identify the first page (i.e. no other sub-page
* has this flag set).
*/
for (i = 0; i < nr_pages; i++) {
page = pages[i];
set_page_private(page, (unsigned long)zspage);
page->index = 0;
if (i == 0) {
zspage->first_page = page;
SetPagePrivate(page);
if (unlikely(class->objs_per_zspage == 1 &&
class->pages_per_zspage == 1))
SetZsHugePage(zspage);
} else {
prev_page->index = (unsigned long)page;
}
prev_page = page;
}
}
/*
* Allocate a zspage for the given size class
*/
static struct zspage *alloc_zspage(struct zs_pool *pool,
struct size_class *class,
gfp_t gfp)
{
int i;
struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
struct zspage *zspage = cache_alloc_zspage(pool, gfp);
if (!zspage)
return NULL;
zspage->magic = ZSPAGE_MAGIC;
migrate_lock_init(zspage);
for (i = 0; i < class->pages_per_zspage; i++) {
struct page *page;
page = alloc_page(gfp);
if (!page) {
while (--i >= 0) {
dec_zone_page_state(pages[i], NR_ZSPAGES);
__ClearPageZsmalloc(pages[i]);
__free_page(pages[i]);
}
cache_free_zspage(pool, zspage);
return NULL;
}
__SetPageZsmalloc(page);
inc_zone_page_state(page, NR_ZSPAGES);
pages[i] = page;
}
create_page_chain(class, zspage, pages);
init_zspage(class, zspage);
zspage->pool = pool;
zspage->class = class->index;
return zspage;
}
static struct zspage *find_get_zspage(struct size_class *class)
{
int i;
struct zspage *zspage;
for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
zspage = list_first_entry_or_null(&class->fullness_list[i],
struct zspage, list);
if (zspage)
break;
}
return zspage;
}
static inline int __zs_cpu_up(struct mapping_area *area)
{
/*
* Make sure we don't leak memory if a cpu UP notification
* and zs_init() race and both call zs_cpu_up() on the same cpu
*/
if (area->vm_buf)
return 0;
area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
if (!area->vm_buf)
return -ENOMEM;
return 0;
}
static inline void __zs_cpu_down(struct mapping_area *area)
{
kfree(area->vm_buf);
area->vm_buf = NULL;
}
static void *__zs_map_object(struct mapping_area *area,
struct page *pages[2], int off, int size)
{
size_t sizes[2];
char *buf = area->vm_buf;
/* disable page faults to match kmap_local_page() return conditions */
pagefault_disable();
/* no read fastpath */
if (area->vm_mm == ZS_MM_WO)
goto out;
sizes[0] = PAGE_SIZE - off;
sizes[1] = size - sizes[0];
/* copy object to per-cpu buffer */
memcpy_from_page(buf, pages[0], off, sizes[0]);
memcpy_from_page(buf + sizes[0], pages[1], 0, sizes[1]);
out:
return area->vm_buf;
}
static void __zs_unmap_object(struct mapping_area *area,
struct page *pages[2], int off, int size)
{
size_t sizes[2];
char *buf;
/* no write fastpath */
if (area->vm_mm == ZS_MM_RO)
goto out;
buf = area->vm_buf;
buf = buf + ZS_HANDLE_SIZE;
size -= ZS_HANDLE_SIZE;
off += ZS_HANDLE_SIZE;
sizes[0] = PAGE_SIZE - off;
sizes[1] = size - sizes[0];
/* copy per-cpu buffer to object */
memcpy_to_page(pages[0], off, buf, sizes[0]);
memcpy_to_page(pages[1], 0, buf + sizes[0], sizes[1]);
out:
/* enable page faults to match kunmap_local() return conditions */
pagefault_enable();
}
static int zs_cpu_prepare(unsigned int cpu)
{
struct mapping_area *area;
area = &per_cpu(zs_map_area, cpu);
return __zs_cpu_up(area);
}
static int zs_cpu_dead(unsigned int cpu)
{
struct mapping_area *area;
area = &per_cpu(zs_map_area, cpu);
__zs_cpu_down(area);
return 0;
}
static bool can_merge(struct size_class *prev, int pages_per_zspage,
int objs_per_zspage)
{
if (prev->pages_per_zspage == pages_per_zspage &&
prev->objs_per_zspage == objs_per_zspage)
return true;
return false;
}
static bool zspage_full(struct size_class *class, struct zspage *zspage)
{
return get_zspage_inuse(zspage) == class->objs_per_zspage;
}
static bool zspage_empty(struct zspage *zspage)
{
return get_zspage_inuse(zspage) == 0;
}
/**
* zs_lookup_class_index() - Returns index of the zsmalloc &size_class
* that hold objects of the provided size.
* @pool: zsmalloc pool to use
* @size: object size
*
* Context: Any context.
*
* Return: the index of the zsmalloc &size_class that hold objects of the
* provided size.
*/
unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
{
struct size_class *class;
class = pool->size_class[get_size_class_index(size)];
return class->index;
}
EXPORT_SYMBOL_GPL(zs_lookup_class_index);
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);
/**
* zs_map_object - get address of allocated object from handle.
* @pool: pool from which the object was allocated
* @handle: handle returned from zs_malloc
* @mm: mapping mode to use
*
* Before using an object allocated from zs_malloc, it must be mapped using
* this function. When done with the object, it must be unmapped using
* zs_unmap_object.
*
* Only one object can be mapped per cpu at a time. There is no protection
* against nested mappings.
*
* This function returns with preemption and page faults disabled.
*/
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
enum zs_mapmode mm)
{
struct zspage *zspage;
struct page *page;
unsigned long obj, off;
unsigned int obj_idx;
struct size_class *class;
struct mapping_area *area;
struct page *pages[2];
void *ret;
/*
* Because we use per-cpu mapping areas shared among the
* pools/users, we can't allow mapping in interrupt context
* because it can corrupt another users mappings.
*/
BUG_ON(in_interrupt());
/* It guarantees it can get zspage from handle safely */
read_lock(&pool->migrate_lock);
obj = handle_to_obj(handle);
obj_to_location(obj, &page, &obj_idx);
zspage = get_zspage(page);
/*
* migration cannot move any zpages in this zspage. Here, class->lock
* is too heavy since callers would take some time until they calls
* zs_unmap_object API so delegate the locking from class to zspage
* which is smaller granularity.
*/
migrate_read_lock(zspage);
read_unlock(&pool->migrate_lock);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
local_lock(&zs_map_area.lock);
area = this_cpu_ptr(&zs_map_area);
area->vm_mm = mm;
if (off + class->size <= PAGE_SIZE) {
/* this object is contained entirely within a page */
area->vm_addr = kmap_local_page(page);
ret = area->vm_addr + off;
goto out;
}
/* this object spans two pages */
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
ret = __zs_map_object(area, pages, off, class->size);
out:
if (likely(!ZsHugePage(zspage)))
ret += ZS_HANDLE_SIZE;
return ret;
}
EXPORT_SYMBOL_GPL(zs_map_object);
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
{
struct zspage *zspage;
struct page *page;
unsigned long obj, off;
unsigned int obj_idx;
struct size_class *class;
struct mapping_area *area;
obj = handle_to_obj(handle);
obj_to_location(obj, &page, &obj_idx);
zspage = get_zspage(page);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
area = this_cpu_ptr(&zs_map_area);
if (off + class->size <= PAGE_SIZE)
kunmap_local(area->vm_addr);
else {
struct page *pages[2];
pages[0] = page;
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
__zs_unmap_object(area, pages, off, class->size);
}
local_unlock(&zs_map_area.lock);
migrate_read_unlock(zspage);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);
/**
* zs_huge_class_size() - Returns the size (in bytes) of the first huge
* zsmalloc &size_class.
* @pool: zsmalloc pool to use
*
* The function returns the size of the first huge class - any object of equal
* or bigger size will be stored in zspage consisting of a single physical
* page.
*
* Context: Any context.
*
* Return: the size (in bytes) of the first huge zsmalloc &size_class.
*/
size_t zs_huge_class_size(struct zs_pool *pool)
{
return huge_class_size;
}
EXPORT_SYMBOL_GPL(zs_huge_class_size);
static unsigned long obj_malloc(struct zs_pool *pool,
struct zspage *zspage, unsigned long handle)
{
int i, nr_page, offset;
unsigned long obj;
struct link_free *link;
struct size_class *class;
struct page *m_page;
unsigned long m_offset;
void *vaddr;
class = pool->size_class[zspage->class];
obj = get_freeobj(zspage);
offset = obj * class->size;
nr_page = offset >> PAGE_SHIFT;
m_offset = offset_in_page(offset);
m_page = get_first_page(zspage);
for (i = 0; i < nr_page; i++)
m_page = get_next_page(m_page);
vaddr = kmap_local_page(m_page);
link = (struct link_free *)vaddr + m_offset / sizeof(*link);
set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
if (likely(!ZsHugePage(zspage)))
/* record handle in the header of allocated chunk */
link->handle = handle | OBJ_ALLOCATED_TAG;
else
/* record handle to page->index */
zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
kunmap_local(vaddr);
mod_zspage_inuse(zspage, 1);
obj = location_to_obj(m_page, obj);
record_obj(handle, obj);
return obj;
}
/**
* zs_malloc - Allocate block of given size from pool.
* @pool: pool to allocate from
* @size: size of block to allocate
* @gfp: gfp flags when allocating object
*
* On success, handle to the allocated object is returned,
* otherwise an ERR_PTR().
* Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
*/
unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
{
unsigned long handle;
struct size_class *class;
int newfg;
struct zspage *zspage;
if (unlikely(!size))
return (unsigned long)ERR_PTR(-EINVAL);
if (unlikely(size > ZS_MAX_ALLOC_SIZE))
return (unsigned long)ERR_PTR(-ENOSPC);
handle = cache_alloc_handle(pool, gfp);
if (!handle)
return (unsigned long)ERR_PTR(-ENOMEM);
/* extra space in chunk to keep the handle */
size += ZS_HANDLE_SIZE;
class = pool->size_class[get_size_class_index(size)];
/* class->lock effectively protects the zpage migration */
spin_lock(&class->lock);
zspage = find_get_zspage(class);
if (likely(zspage)) {
obj_malloc(pool, zspage, handle);
/* Now move the zspage to another fullness group, if required */
fix_fullness_group(class, zspage);
class_stat_add(class, ZS_OBJS_INUSE, 1);
goto out;
}
spin_unlock(&class->lock);
zspage = alloc_zspage(pool, class, gfp);
if (!zspage) {
cache_free_handle(pool, handle);
return (unsigned long)ERR_PTR(-ENOMEM);
}
spin_lock(&class->lock);
obj_malloc(pool, zspage, handle);
newfg = get_fullness_group(class, zspage);
insert_zspage(class, zspage, newfg);
atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
class_stat_add(class, ZS_OBJS_INUSE, 1);
/* We completely set up zspage so mark them as movable */
SetZsPageMovable(pool, zspage);
out:
spin_unlock(&class->lock);
return handle;
}
EXPORT_SYMBOL_GPL(zs_malloc);
static void obj_free(int class_size, unsigned long obj)
{
struct link_free *link;
struct zspage *zspage;
struct page *f_page;
unsigned long f_offset;
unsigned int f_objidx;
void *vaddr;
obj_to_location(obj, &f_page, &f_objidx);
f_offset = offset_in_page(class_size * f_objidx);
zspage = get_zspage(f_page);
vaddr = kmap_local_page(f_page);
link = (struct link_free *)(vaddr + f_offset);
/* Insert this object in containing zspage's freelist */
if (likely(!ZsHugePage(zspage)))
link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
else
f_page->index = 0;
set_freeobj(zspage, f_objidx);
kunmap_local(vaddr);
mod_zspage_inuse(zspage, -1);
}
void zs_free(struct zs_pool *pool, unsigned long handle)
{
struct zspage *zspage;
struct page *f_page;
unsigned long obj;
struct size_class *class;
int fullness;
if (IS_ERR_OR_NULL((void *)handle))
return;
/*
* The pool->migrate_lock protects the race with zpage's migration
* so it's safe to get the page from handle.
*/
read_lock(&pool->migrate_lock);
obj = handle_to_obj(handle);
obj_to_page(obj, &f_page);
zspage = get_zspage(f_page);
class = zspage_class(pool, zspage);
spin_lock(&class->lock);
read_unlock(&pool->migrate_lock);
class_stat_sub(class, ZS_OBJS_INUSE, 1);
obj_free(class->size, obj);
fullness = fix_fullness_group(class, zspage);
if (fullness == ZS_INUSE_RATIO_0)
free_zspage(pool, class, zspage);
spin_unlock(&class->lock);
cache_free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);
static void zs_object_copy(struct size_class *class, unsigned long dst,
unsigned long src)
{
struct page *s_page, *d_page;
unsigned int s_objidx, d_objidx;
unsigned long s_off, d_off;
void *s_addr, *d_addr;
int s_size, d_size, size;
int written = 0;
s_size = d_size = class->size;
obj_to_location(src, &s_page, &s_objidx);
obj_to_location(dst, &d_page, &d_objidx);
s_off = offset_in_page(class->size * s_objidx);
d_off = offset_in_page(class->size * d_objidx);
if (s_off + class->size > PAGE_SIZE)
s_size = PAGE_SIZE - s_off;
if (d_off + class->size > PAGE_SIZE)
d_size = PAGE_SIZE - d_off;
s_addr = kmap_local_page(s_page);
d_addr = kmap_local_page(d_page);
while (1) {
size = min(s_size, d_size);
memcpy(d_addr + d_off, s_addr + s_off, size);
written += size;
if (written == class->size)
break;
s_off += size;
s_size -= size;
d_off += size;
d_size -= size;
/*
* Calling kunmap_local(d_addr) is necessary. kunmap_local()
* calls must occurs in reverse order of calls to kmap_local_page().
* So, to call kunmap_local(s_addr) we should first call
* kunmap_local(d_addr). For more details see
* Documentation/mm/highmem.rst.
*/
if (s_off >= PAGE_SIZE) {
kunmap_local(d_addr);
kunmap_local(s_addr);
s_page = get_next_page(s_page);
s_addr = kmap_local_page(s_page);
d_addr = kmap_local_page(d_page);
s_size = class->size - written;
s_off = 0;
}
if (d_off >= PAGE_SIZE) {
kunmap_local(d_addr);
d_page = get_next_page(d_page);
d_addr = kmap_local_page(d_page);
d_size = class->size - written;
d_off = 0;
}
}
kunmap_local(d_addr);
kunmap_local(s_addr);
}
/*
* Find alloced object in zspage from index object and
* return handle.
*/
static unsigned long find_alloced_obj(struct size_class *class,
struct page *page, int *obj_idx)
{
unsigned int offset;
int index = *obj_idx;
unsigned long handle = 0;
void *addr = kmap_local_page(page);
offset = get_first_obj_offset(page);
offset += class->size * index;
while (offset < PAGE_SIZE) {
if (obj_allocated(page, addr + offset, &handle))
break;
offset += class->size;
index++;
}
kunmap_local(addr);
*obj_idx = index;
return handle;
}
static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
struct zspage *dst_zspage)
{
unsigned long used_obj, free_obj;
unsigned long handle;
int obj_idx = 0;
struct page *s_page = get_first_page(src_zspage);
struct size_class *class = pool->size_class[src_zspage->class];
while (1) {
handle = find_alloced_obj(class, s_page, &obj_idx);
if (!handle) {
s_page = get_next_page(s_page);
if (!s_page)
break;
obj_idx = 0;
continue;
}
used_obj = handle_to_obj(handle);
free_obj = obj_malloc(pool, dst_zspage, handle);
zs_object_copy(class, free_obj, used_obj);
obj_idx++;
obj_free(class->size, used_obj);
/* Stop if there is no more space */
if (zspage_full(class, dst_zspage))
break;
/* Stop if there are no more objects to migrate */
if (zspage_empty(src_zspage))
break;
}
}
static struct zspage *isolate_src_zspage(struct size_class *class)
{
struct zspage *zspage;
int fg;
for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
zspage = list_first_entry_or_null(&class->fullness_list[fg],
struct zspage, list);
if (zspage) {
remove_zspage(class, zspage);
return zspage;
}
}
return zspage;
}
static struct zspage *isolate_dst_zspage(struct size_class *class)
{
struct zspage *zspage;
int fg;
for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
zspage = list_first_entry_or_null(&class->fullness_list[fg],
struct zspage, list);
if (zspage) {
remove_zspage(class, zspage);
return zspage;
}
}
return zspage;
}
/*
* putback_zspage - add @zspage into right class's fullness list
* @class: destination class
* @zspage: target page
*
* Return @zspage's fullness status
*/
static int putback_zspage(struct size_class *class, struct zspage *zspage)
{
int fullness;
fullness = get_fullness_group(class, zspage);
insert_zspage(class, zspage, fullness);
return fullness;
}
#ifdef CONFIG_COMPACTION
/*
* To prevent zspage destroy during migration, zspage freeing should
* hold locks of all pages in the zspage.
*/
static void lock_zspage(struct zspage *zspage)
{
struct page *curr_page, *page;
/*
* Pages we haven't locked yet can be migrated off the list while we're
* trying to lock them, so we need to be careful and only attempt to
* lock each page under migrate_read_lock(). Otherwise, the page we lock
* may no longer belong to the zspage. This means that we may wait for
* the wrong page to unlock, so we must take a reference to the page
* prior to waiting for it to unlock outside migrate_read_lock().
*/
while (1) {
migrate_read_lock(zspage);
page = get_first_page(zspage);
if (trylock_page(page))
break;
get_page(page);
migrate_read_unlock(zspage);
wait_on_page_locked(page);
put_page(page);
}
curr_page = page;
while ((page = get_next_page(curr_page))) {
if (trylock_page(page)) {
curr_page = page;
} else {
get_page(page);
migrate_read_unlock(zspage);
wait_on_page_locked(page);
put_page(page);
migrate_read_lock(zspage);
}
}
migrate_read_unlock(zspage);
}
#endif /* CONFIG_COMPACTION */
static void migrate_lock_init(struct zspage *zspage)
{
rwlock_init(&zspage->lock);
}
static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
{
read_lock(&zspage->lock);
}
static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
{
read_unlock(&zspage->lock);
}
static void migrate_write_lock(struct zspage *zspage)
{
write_lock(&zspage->lock);
}
static void migrate_write_unlock(struct zspage *zspage)
{
write_unlock(&zspage->lock);
}
#ifdef CONFIG_COMPACTION
static const struct movable_operations zsmalloc_mops;
static void replace_sub_page(struct size_class *class, struct zspage *zspage,
struct page *newpage, struct page *oldpage)
{
struct page *page;
struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
int idx = 0;
page = get_first_page(zspage);
do {
if (page == oldpage)
pages[idx] = newpage;
else
pages[idx] = page;
idx++;
} while ((page = get_next_page(page)) != NULL);
create_page_chain(class, zspage, pages);
set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
if (unlikely(ZsHugePage(zspage)))
newpage->index = oldpage->index;
__SetPageMovable(newpage, &zsmalloc_mops);
}
static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
{
/*
* Page is locked so zspage couldn't be destroyed. For detail, look at
* lock_zspage in free_zspage.
*/
VM_BUG_ON_PAGE(PageIsolated(page), page);
return true;
}
static int zs_page_migrate(struct page *newpage, struct page *page,
enum migrate_mode mode)
{
struct zs_pool *pool;
struct size_class *class;
struct zspage *zspage;
struct page *dummy;
void *s_addr, *d_addr, *addr;
unsigned int offset;
unsigned long handle;
unsigned long old_obj, new_obj;
unsigned int obj_idx;
VM_BUG_ON_PAGE(!PageIsolated(page), page);
/* We're committed, tell the world that this is a Zsmalloc page. */
__SetPageZsmalloc(newpage);
/* The page is locked, so this pointer must remain valid */
zspage = get_zspage(page);
pool = zspage->pool;
/*
* The pool migrate_lock protects the race between zpage migration
* and zs_free.
*/
write_lock(&pool->migrate_lock);
class = zspage_class(pool, zspage);
/*
* the class lock protects zpage alloc/free in the zspage.
*/
spin_lock(&class->lock);
/* the migrate_write_lock protects zpage access via zs_map_object */
migrate_write_lock(zspage);
offset = get_first_obj_offset(page);
s_addr = kmap_local_page(page);
/*
* Here, any user cannot access all objects in the zspage so let's move.
*/
d_addr = kmap_local_page(newpage);
copy_page(d_addr, s_addr);
kunmap_local(d_addr);
for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
addr += class->size) {
if (obj_allocated(page, addr, &handle)) {
old_obj = handle_to_obj(handle);
obj_to_location(old_obj, &dummy, &obj_idx);
new_obj = (unsigned long)location_to_obj(newpage,
obj_idx);
record_obj(handle, new_obj);
}
}
kunmap_local(s_addr);
replace_sub_page(class, zspage, newpage, page);
/*
* Since we complete the data copy and set up new zspage structure,
* it's okay to release migration_lock.
*/
write_unlock(&pool->migrate_lock);
spin_unlock(&class->lock);
migrate_write_unlock(zspage);
get_page(newpage);
if (page_zone(newpage) != page_zone(page)) {
dec_zone_page_state(page, NR_ZSPAGES);
inc_zone_page_state(newpage, NR_ZSPAGES);
}
reset_page(page);
put_page(page);
return MIGRATEPAGE_SUCCESS;
}
static void zs_page_putback(struct page *page)
{
VM_BUG_ON_PAGE(!PageIsolated(page), page);
}
static const struct movable_operations zsmalloc_mops = {
.isolate_page = zs_page_isolate,
.migrate_page = zs_page_migrate,
.putback_page = zs_page_putback,
};
/*
* Caller should hold page_lock of all pages in the zspage
* In here, we cannot use zspage meta data.
*/
static void async_free_zspage(struct work_struct *work)
{
int i;
struct size_class *class;
struct zspage *zspage, *tmp;
LIST_HEAD(free_pages);
struct zs_pool *pool = container_of(work, struct zs_pool,
free_work);
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
class = pool->size_class[i];
if (class->index != i)
continue;
spin_lock(&class->lock);
list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
&free_pages);
spin_unlock(&class->lock);
}
list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
list_del(&zspage->list);
lock_zspage(zspage);
class = zspage_class(pool, zspage);
spin_lock(&class->lock);
class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
__free_zspage(pool, class, zspage);
spin_unlock(&class->lock);
}
};
static void kick_deferred_free(struct zs_pool *pool)
{
schedule_work(&pool->free_work);
}
static void zs_flush_migration(struct zs_pool *pool)
{
flush_work(&pool->free_work);
}
static void init_deferred_free(struct zs_pool *pool)
{
INIT_WORK(&pool->free_work, async_free_zspage);
}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
{
struct page *page = get_first_page(zspage);
do {
WARN_ON(!trylock_page(page));
__SetPageMovable(page, &zsmalloc_mops);
unlock_page(page);
} while ((page = get_next_page(page)) != NULL);
}
#else
static inline void zs_flush_migration(struct zs_pool *pool) { }
#endif
/*
*
* Based on the number of unused allocated objects calculate
* and return the number of pages that we can free.
*/
static unsigned long zs_can_compact(struct size_class *class)
{
unsigned long obj_wasted;
unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
if (obj_allocated <= obj_used)
return 0;
obj_wasted = obj_allocated - obj_used;
obj_wasted /= class->objs_per_zspage;
return obj_wasted * class->pages_per_zspage;
}
static unsigned long __zs_compact(struct zs_pool *pool,
struct size_class *class)
{
struct zspage *src_zspage = NULL;
struct zspage *dst_zspage = NULL;
unsigned long pages_freed = 0;
/*
* protect the race between zpage migration and zs_free
* as well as zpage allocation/free
*/
write_lock(&pool->migrate_lock);
spin_lock(&class->lock);
while (zs_can_compact(class)) {
int fg;
if (!dst_zspage) {
dst_zspage = isolate_dst_zspage(class);
if (!dst_zspage)
break;
}
src_zspage = isolate_src_zspage(class);
if (!src_zspage)
break;
migrate_write_lock(src_zspage);
migrate_zspage(pool, src_zspage, dst_zspage);
migrate_write_unlock(src_zspage);
fg = putback_zspage(class, src_zspage);
if (fg == ZS_INUSE_RATIO_0) {
free_zspage(pool, class, src_zspage);
pages_freed += class->pages_per_zspage;
}
src_zspage = NULL;
if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
|| rwlock_is_contended(&pool->migrate_lock)) {
putback_zspage(class, dst_zspage);
dst_zspage = NULL;
spin_unlock(&class->lock);
write_unlock(&pool->migrate_lock);
cond_resched();
write_lock(&pool->migrate_lock);
spin_lock(&class->lock);
}
}
if (src_zspage)
putback_zspage(class, src_zspage);
if (dst_zspage)
putback_zspage(class, dst_zspage);
spin_unlock(&class->lock);
write_unlock(&pool->migrate_lock);
return pages_freed;
}
unsigned long zs_compact(struct zs_pool *pool)
{
int i;
struct size_class *class;
unsigned long pages_freed = 0;
/*
* Pool compaction is performed under pool->migrate_lock so it is basically
* single-threaded. Having more than one thread in __zs_compact()
* will increase pool->migrate_lock contention, which will impact other
* zsmalloc operations that need pool->migrate_lock.
*/
if (atomic_xchg(&pool->compaction_in_progress, 1))
return 0;
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
class = pool->size_class[i];
if (class->index != i)
continue;
pages_freed += __zs_compact(pool, class);
}
atomic_long_add(pages_freed, &pool->stats.pages_compacted);
atomic_set(&pool->compaction_in_progress, 0);
return pages_freed;
}
EXPORT_SYMBOL_GPL(zs_compact);
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
struct shrink_control *sc)
{
unsigned long pages_freed;
struct zs_pool *pool = shrinker->private_data;
/*
* Compact classes and calculate compaction delta.
* Can run concurrently with a manually triggered
* (by user) compaction.
*/
pages_freed = zs_compact(pool);
return pages_freed ? pages_freed : SHRINK_STOP;
}
static unsigned long zs_shrinker_count(struct shrinker *shrinker,
struct shrink_control *sc)
{
int i;
struct size_class *class;
unsigned long pages_to_free = 0;
struct zs_pool *pool = shrinker->private_data;
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
class = pool->size_class[i];
if (class->index != i)
continue;
pages_to_free += zs_can_compact(class);
}
return pages_to_free;
}
static void zs_unregister_shrinker(struct zs_pool *pool)
{
shrinker_free(pool->shrinker);
}
static int zs_register_shrinker(struct zs_pool *pool)
{
pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
if (!pool->shrinker)
return -ENOMEM;
pool->shrinker->scan_objects = zs_shrinker_scan;
pool->shrinker->count_objects = zs_shrinker_count;
pool->shrinker->batch = 0;
pool->shrinker->private_data = pool;
shrinker_register(pool->shrinker);
return 0;
}
static int calculate_zspage_chain_size(int class_size)
{
int i, min_waste = INT_MAX;
int chain_size = 1;
if (is_power_of_2(class_size))
return chain_size;
for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
int waste;
waste = (i * PAGE_SIZE) % class_size;
if (waste < min_waste) {
min_waste = waste;
chain_size = i;
}
}
return chain_size;
}
/**
* zs_create_pool - Creates an allocation pool to work from.
* @name: pool name to be created
*
* This function must be called before anything when using
* the zsmalloc allocator.
*
* On success, a pointer to the newly created pool is returned,
* otherwise NULL.
*/
struct zs_pool *zs_create_pool(const char *name)
{
int i;
struct zs_pool *pool;
struct size_class *prev_class = NULL;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return NULL;
init_deferred_free(pool);
rwlock_init(&pool->migrate_lock);
atomic_set(&pool->compaction_in_progress, 0);
pool->name = kstrdup(name, GFP_KERNEL);
if (!pool->name)
goto err;
if (create_cache(pool))
goto err;
/*
* Iterate reversely, because, size of size_class that we want to use
* for merging should be larger or equal to current size.
*/
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
int size;
int pages_per_zspage;
int objs_per_zspage;
struct size_class *class;
int fullness;
size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
if (size > ZS_MAX_ALLOC_SIZE)
size = ZS_MAX_ALLOC_SIZE;
pages_per_zspage = calculate_zspage_chain_size(size);
objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
/*
* We iterate from biggest down to smallest classes,
* so huge_class_size holds the size of the first huge
* class. Any object bigger than or equal to that will
* endup in the huge class.
*/
if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
!huge_class_size) {
huge_class_size = size;
/*
* The object uses ZS_HANDLE_SIZE bytes to store the
* handle. We need to subtract it, because zs_malloc()
* unconditionally adds handle size before it performs
* size class search - so object may be smaller than
* huge class size, yet it still can end up in the huge
* class because it grows by ZS_HANDLE_SIZE extra bytes
* right before class lookup.
*/
huge_class_size -= (ZS_HANDLE_SIZE - 1);
}
/*
* size_class is used for normal zsmalloc operation such
* as alloc/free for that size. Although it is natural that we
* have one size_class for each size, there is a chance that we
* can get more memory utilization if we use one size_class for
* many different sizes whose size_class have same
* characteristics. So, we makes size_class point to
* previous size_class if possible.
*/
if (prev_class) {
if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
pool->size_class[i] = prev_class;
continue;
}
}
class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
if (!class)
goto err;
class->size = size;
class->index = i;
class->pages_per_zspage = pages_per_zspage;
class->objs_per_zspage = objs_per_zspage;
spin_lock_init(&class->lock);
pool->size_class[i] = class;
fullness = ZS_INUSE_RATIO_0;
while (fullness < NR_FULLNESS_GROUPS) {
INIT_LIST_HEAD(&class->fullness_list[fullness]);
fullness++;
}
prev_class = class;
}
/* debug only, don't abort if it fails */
zs_pool_stat_create(pool, name);
/*
* Not critical since shrinker is only used to trigger internal
* defragmentation of the pool which is pretty optional thing. If
* registration fails we still can use the pool normally and user can
* trigger compaction manually. Thus, ignore return code.
*/
zs_register_shrinker(pool);
return pool;
err:
zs_destroy_pool(pool);
return NULL;
}
EXPORT_SYMBOL_GPL(zs_create_pool);
void zs_destroy_pool(struct zs_pool *pool)
{
int i;
zs_unregister_shrinker(pool);
zs_flush_migration(pool);
zs_pool_stat_destroy(pool);
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
int fg;
struct size_class *class = pool->size_class[i];
if (!class)
continue;
if (class->index != i)
continue;
for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
if (list_empty(&class->fullness_list[fg]))
continue;
pr_err("Class-%d fullness group %d is not empty\n",
class->size, fg);
}
kfree(class);
}
destroy_cache(pool);
kfree(pool->name);
kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
static int __init zs_init(void)
{
int ret;
ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
zs_cpu_prepare, zs_cpu_dead);
if (ret)
goto out;
#ifdef CONFIG_ZPOOL
zpool_register_driver(&zs_zpool_driver);
#endif
zs_stat_init();
return 0;
out:
return ret;
}
static void __exit zs_exit(void)
{
#ifdef CONFIG_ZPOOL
zpool_unregister_driver(&zs_zpool_driver);
#endif
cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
zs_stat_exit();
}
module_init(zs_init);
module_exit(zs_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("zsmalloc memory allocator");