linux/drivers/ufs/core/ufs-sysfs.c
Gwendal Grignou eb48e9fc00 scsi: ufs: core: sysfs: Prevent div by zero
Prevent a division by 0 when monitoring is not enabled.

Fixes: 1d8613a23f ("scsi: ufs: core: Introduce HBA performance monitor sysfs nodes")
Cc: stable@vger.kernel.org
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Link: https://lore.kernel.org/r/20241120062522.917157-1-gwendal@chromium.org
Reviewed-by: Can Guo <quic_cang@quicinc.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2024-12-04 13:22:59 -05:00

1714 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Western Digital Corporation
#include <linux/err.h>
#include <linux/string.h>
#include <linux/bitfield.h>
#include <linux/unaligned.h>
#include <ufs/ufs.h>
#include <ufs/unipro.h>
#include "ufs-sysfs.h"
#include "ufshcd-priv.h"
static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode)
{
switch (mode) {
case FAST_MODE: return "FAST_MODE";
case SLOW_MODE: return "SLOW_MODE";
case FASTAUTO_MODE: return "FASTAUTO_MODE";
case SLOWAUTO_MODE: return "SLOWAUTO_MODE";
default: return "UNKNOWN";
}
}
static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate)
{
switch (rate) {
case PA_HS_MODE_A: return "HS_RATE_A";
case PA_HS_MODE_B: return "HS_RATE_B";
default: return "UNKNOWN";
}
}
static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear)
{
switch (gear) {
case UFS_PWM_G1: return "PWM_GEAR1";
case UFS_PWM_G2: return "PWM_GEAR2";
case UFS_PWM_G3: return "PWM_GEAR3";
case UFS_PWM_G4: return "PWM_GEAR4";
case UFS_PWM_G5: return "PWM_GEAR5";
case UFS_PWM_G6: return "PWM_GEAR6";
case UFS_PWM_G7: return "PWM_GEAR7";
default: return "UNKNOWN";
}
}
static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear)
{
switch (gear) {
case UFS_HS_G1: return "HS_GEAR1";
case UFS_HS_G2: return "HS_GEAR2";
case UFS_HS_G3: return "HS_GEAR3";
case UFS_HS_G4: return "HS_GEAR4";
case UFS_HS_G5: return "HS_GEAR5";
default: return "UNKNOWN";
}
}
static const char *ufshcd_uic_link_state_to_string(
enum uic_link_state state)
{
switch (state) {
case UIC_LINK_OFF_STATE: return "OFF";
case UIC_LINK_ACTIVE_STATE: return "ACTIVE";
case UIC_LINK_HIBERN8_STATE: return "HIBERN8";
case UIC_LINK_BROKEN_STATE: return "BROKEN";
default: return "UNKNOWN";
}
}
static const char *ufshcd_ufs_dev_pwr_mode_to_string(
enum ufs_dev_pwr_mode state)
{
switch (state) {
case UFS_ACTIVE_PWR_MODE: return "ACTIVE";
case UFS_SLEEP_PWR_MODE: return "SLEEP";
case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN";
case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP";
default: return "UNKNOWN";
}
}
static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count,
bool rpm)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_dev_info *dev_info = &hba->dev_info;
unsigned long flags, value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
if (value >= UFS_PM_LVL_MAX)
return -EINVAL;
if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE &&
(!(hba->caps & UFSHCD_CAP_DEEPSLEEP) ||
!(dev_info->wspecversion >= 0x310)))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
if (rpm)
hba->rpm_lvl = value;
else
hba->spm_lvl = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t rpm_lvl_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->rpm_lvl);
}
static ssize_t rpm_lvl_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true);
}
static ssize_t rpm_target_dev_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[hba->rpm_lvl].dev_state));
}
static ssize_t rpm_target_link_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(
ufs_pm_lvl_states[hba->rpm_lvl].link_state));
}
static ssize_t spm_lvl_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->spm_lvl);
}
static ssize_t spm_lvl_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false);
}
static ssize_t spm_target_dev_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(
ufs_pm_lvl_states[hba->spm_lvl].dev_state));
}
static ssize_t spm_target_link_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(
ufs_pm_lvl_states[hba->spm_lvl].link_state));
}
/* Convert Auto-Hibernate Idle Timer register value to microseconds */
static int ufshcd_ahit_to_us(u32 ahit)
{
int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit);
int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit);
for (; scale > 0; --scale)
timer *= UFSHCI_AHIBERN8_SCALE_FACTOR;
return timer;
}
/* Convert microseconds to Auto-Hibernate Idle Timer register value */
static u32 ufshcd_us_to_ahit(unsigned int timer)
{
unsigned int scale;
for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale)
timer /= UFSHCI_AHIBERN8_SCALE_FACTOR;
return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) |
FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale);
}
static int ufshcd_read_hci_reg(struct ufs_hba *hba, u32 *val, unsigned int reg)
{
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
up(&hba->host_sem);
return -EBUSY;
}
ufshcd_rpm_get_sync(hba);
ufshcd_hold(hba);
*val = ufshcd_readl(hba, reg);
ufshcd_release(hba);
ufshcd_rpm_put_sync(hba);
up(&hba->host_sem);
return 0;
}
static ssize_t auto_hibern8_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 ahit;
int ret;
struct ufs_hba *hba = dev_get_drvdata(dev);
if (!ufshcd_is_auto_hibern8_supported(hba))
return -EOPNOTSUPP;
ret = ufshcd_read_hci_reg(hba, &ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
if (ret)
return ret;
return sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit));
}
static ssize_t auto_hibern8_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned int timer;
int ret = 0;
if (!ufshcd_is_auto_hibern8_supported(hba))
return -EOPNOTSUPP;
if (kstrtouint(buf, 0, &timer))
return -EINVAL;
if (timer > UFSHCI_AHIBERN8_MAX)
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
ret = -EBUSY;
goto out;
}
ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer));
out:
up(&hba->host_sem);
return ret ? ret : count;
}
static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled);
}
static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned int wb_enable;
ssize_t res;
if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba)
&& ufshcd_enable_wb_if_scaling_up(hba))) {
/*
* If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB
* on/off will be done while clock scaling up/down.
*/
dev_warn(dev, "It is not allowed to configure WB!\n");
return -EOPNOTSUPP;
}
if (kstrtouint(buf, 0, &wb_enable))
return -EINVAL;
if (wb_enable != 0 && wb_enable != 1)
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
res = -EBUSY;
goto out;
}
ufshcd_rpm_get_sync(hba);
res = ufshcd_wb_toggle(hba, wb_enable);
ufshcd_rpm_put_sync(hba);
out:
up(&hba->host_sem);
return res < 0 ? res : count;
}
static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period);
}
static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned int ms;
bool resume_period_update = false;
if (kstrtouint(buf, 0, &ms))
return -EINVAL;
if (!hba->dev_info.rtc_update_period && ms > 0)
resume_period_update = true;
/* Minimum and maximum update frequency should be synchronized with all UFS vendors */
hba->dev_info.rtc_update_period = ms;
if (resume_period_update)
schedule_delayed_work(&hba->ufs_rtc_update_work,
msecs_to_jiffies(hba->dev_info.rtc_update_period));
return count;
}
static ssize_t enable_wb_buf_flush_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled);
}
static ssize_t enable_wb_buf_flush_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned int enable_wb_buf_flush;
ssize_t res;
if (!ufshcd_is_wb_buf_flush_allowed(hba)) {
dev_warn(dev, "It is not allowed to configure WB buf flushing!\n");
return -EOPNOTSUPP;
}
if (kstrtouint(buf, 0, &enable_wb_buf_flush))
return -EINVAL;
if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1)
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
res = -EBUSY;
goto out;
}
ufshcd_rpm_get_sync(hba);
res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush);
ufshcd_rpm_put_sync(hba);
out:
up(&hba->host_sem);
return res < 0 ? res : count;
}
static ssize_t wb_flush_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold);
}
static ssize_t wb_flush_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned int wb_flush_threshold;
if (kstrtouint(buf, 0, &wb_flush_threshold))
return -EINVAL;
/* The range of values for wb_flush_threshold is (0,10] */
if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) ||
wb_flush_threshold == 0) {
dev_err(dev, "The value of wb_flush_threshold is invalid!\n");
return -EINVAL;
}
hba->vps->wb_flush_threshold = wb_flush_threshold;
return count;
}
/**
* pm_qos_enable_show - sysfs handler to show pm qos enable value
* @dev: device associated with the UFS controller
* @attr: sysfs attribute handle
* @buf: buffer for sysfs file
*
* Print 1 if PM QoS feature is enabled, 0 if disabled.
*
* Returns number of characters written to @buf.
*/
static ssize_t pm_qos_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled);
}
/**
* pm_qos_enable_store - sysfs handler to store value
* @dev: device associated with the UFS controller
* @attr: sysfs attribute handle
* @buf: buffer for sysfs file
* @count: stores buffer characters count
*
* Input 0 to disable PM QoS and 1 value to enable.
* Default state: 1
*
* Return: number of characters written to @buf on success, < 0 upon failure.
*/
static ssize_t pm_qos_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
bool value;
if (kstrtobool(buf, &value))
return -EINVAL;
if (value)
ufshcd_pm_qos_init(hba);
else
ufshcd_pm_qos_exit(hba);
return count;
}
static DEVICE_ATTR_RW(rpm_lvl);
static DEVICE_ATTR_RO(rpm_target_dev_state);
static DEVICE_ATTR_RO(rpm_target_link_state);
static DEVICE_ATTR_RW(spm_lvl);
static DEVICE_ATTR_RO(spm_target_dev_state);
static DEVICE_ATTR_RO(spm_target_link_state);
static DEVICE_ATTR_RW(auto_hibern8);
static DEVICE_ATTR_RW(wb_on);
static DEVICE_ATTR_RW(enable_wb_buf_flush);
static DEVICE_ATTR_RW(wb_flush_threshold);
static DEVICE_ATTR_RW(rtc_update_ms);
static DEVICE_ATTR_RW(pm_qos_enable);
static struct attribute *ufs_sysfs_ufshcd_attrs[] = {
&dev_attr_rpm_lvl.attr,
&dev_attr_rpm_target_dev_state.attr,
&dev_attr_rpm_target_link_state.attr,
&dev_attr_spm_lvl.attr,
&dev_attr_spm_target_dev_state.attr,
&dev_attr_spm_target_link_state.attr,
&dev_attr_auto_hibern8.attr,
&dev_attr_wb_on.attr,
&dev_attr_enable_wb_buf_flush.attr,
&dev_attr_wb_flush_threshold.attr,
&dev_attr_rtc_update_ms.attr,
&dev_attr_pm_qos_enable.attr,
NULL
};
static const struct attribute_group ufs_sysfs_default_group = {
.attrs = ufs_sysfs_ufshcd_attrs,
};
static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba));
}
static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba));
}
static DEVICE_ATTR_RO(clock_scaling);
static DEVICE_ATTR_RO(write_booster);
/*
* See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this
* group.
*/
static struct attribute *ufs_sysfs_capabilities_attrs[] = {
&dev_attr_clock_scaling.attr,
&dev_attr_write_booster.attr,
NULL
};
static const struct attribute_group ufs_sysfs_capabilities_group = {
.name = "capabilities",
.attrs = ufs_sysfs_capabilities_attrs,
};
static ssize_t version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "0x%x\n", hba->ufs_version);
}
static ssize_t product_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
u32 val;
struct ufs_hba *hba = dev_get_drvdata(dev);
ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_PID);
if (ret)
return ret;
return sysfs_emit(buf, "0x%x\n", val);
}
static ssize_t man_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
u32 val;
struct ufs_hba *hba = dev_get_drvdata(dev);
ret = ufshcd_read_hci_reg(hba, &val, REG_CONTROLLER_MID);
if (ret)
return ret;
return sysfs_emit(buf, "0x%x\n", val);
}
static DEVICE_ATTR_RO(version);
static DEVICE_ATTR_RO(product_id);
static DEVICE_ATTR_RO(man_id);
static struct attribute *ufs_sysfs_ufshci_cap_attrs[] = {
&dev_attr_version.attr,
&dev_attr_product_id.attr,
&dev_attr_man_id.attr,
NULL
};
static const struct attribute_group ufs_sysfs_ufshci_group = {
.name = "ufshci_capabilities",
.attrs = ufs_sysfs_ufshci_cap_attrs,
};
static ssize_t monitor_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->monitor.enabled);
}
static ssize_t monitor_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long value, flags;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
value = !!value;
spin_lock_irqsave(hba->host->host_lock, flags);
if (value == hba->monitor.enabled)
goto out_unlock;
if (!value) {
memset(&hba->monitor, 0, sizeof(hba->monitor));
} else {
hba->monitor.enabled = true;
hba->monitor.enabled_ts = ktime_get();
}
out_unlock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t monitor_chunk_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size);
}
static ssize_t monitor_chunk_size_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long value, flags;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
spin_lock_irqsave(hba->host->host_lock, flags);
/* Only allow chunk size change when monitor is disabled */
if (!hba->monitor.enabled)
hba->monitor.chunk_size = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static ssize_t read_total_sectors_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]);
}
static ssize_t read_total_busy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.total_busy[READ]));
}
static ssize_t read_nr_requests_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]);
}
static ssize_t read_req_latency_avg_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_hba_monitor *m = &hba->monitor;
if (!m->nr_req[READ])
return sysfs_emit(buf, "0\n");
return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]),
m->nr_req[READ]));
}
static ssize_t read_req_latency_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_max[READ]));
}
static ssize_t read_req_latency_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_min[READ]));
}
static ssize_t read_req_latency_sum_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_sum[READ]));
}
static ssize_t write_total_sectors_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]);
}
static ssize_t write_total_busy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.total_busy[WRITE]));
}
static ssize_t write_nr_requests_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]);
}
static ssize_t write_req_latency_avg_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_hba_monitor *m = &hba->monitor;
if (!m->nr_req[WRITE])
return sysfs_emit(buf, "0\n");
return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]),
m->nr_req[WRITE]));
}
static ssize_t write_req_latency_max_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_max[WRITE]));
}
static ssize_t write_req_latency_min_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_min[WRITE]));
}
static ssize_t write_req_latency_sum_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%llu\n",
ktime_to_us(hba->monitor.lat_sum[WRITE]));
}
static DEVICE_ATTR_RW(monitor_enable);
static DEVICE_ATTR_RW(monitor_chunk_size);
static DEVICE_ATTR_RO(read_total_sectors);
static DEVICE_ATTR_RO(read_total_busy);
static DEVICE_ATTR_RO(read_nr_requests);
static DEVICE_ATTR_RO(read_req_latency_avg);
static DEVICE_ATTR_RO(read_req_latency_max);
static DEVICE_ATTR_RO(read_req_latency_min);
static DEVICE_ATTR_RO(read_req_latency_sum);
static DEVICE_ATTR_RO(write_total_sectors);
static DEVICE_ATTR_RO(write_total_busy);
static DEVICE_ATTR_RO(write_nr_requests);
static DEVICE_ATTR_RO(write_req_latency_avg);
static DEVICE_ATTR_RO(write_req_latency_max);
static DEVICE_ATTR_RO(write_req_latency_min);
static DEVICE_ATTR_RO(write_req_latency_sum);
static struct attribute *ufs_sysfs_monitor_attrs[] = {
&dev_attr_monitor_enable.attr,
&dev_attr_monitor_chunk_size.attr,
&dev_attr_read_total_sectors.attr,
&dev_attr_read_total_busy.attr,
&dev_attr_read_nr_requests.attr,
&dev_attr_read_req_latency_avg.attr,
&dev_attr_read_req_latency_max.attr,
&dev_attr_read_req_latency_min.attr,
&dev_attr_read_req_latency_sum.attr,
&dev_attr_write_total_sectors.attr,
&dev_attr_write_total_busy.attr,
&dev_attr_write_nr_requests.attr,
&dev_attr_write_req_latency_avg.attr,
&dev_attr_write_req_latency_max.attr,
&dev_attr_write_req_latency_min.attr,
&dev_attr_write_req_latency_sum.attr,
NULL
};
static const struct attribute_group ufs_sysfs_monitor_group = {
.name = "monitor",
.attrs = ufs_sysfs_monitor_attrs,
};
static ssize_t lane_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx);
}
static ssize_t mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx));
}
static ssize_t rate_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate));
}
static ssize_t gear_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ?
ufs_hs_gear_to_string(hba->pwr_info.gear_rx) :
ufs_pwm_gear_to_string(hba->pwr_info.gear_rx));
}
static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode));
}
static ssize_t link_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state));
}
static DEVICE_ATTR_RO(lane);
static DEVICE_ATTR_RO(mode);
static DEVICE_ATTR_RO(rate);
static DEVICE_ATTR_RO(gear);
static DEVICE_ATTR_RO(dev_pm);
static DEVICE_ATTR_RO(link_state);
static struct attribute *ufs_power_info_attrs[] = {
&dev_attr_lane.attr,
&dev_attr_mode.attr,
&dev_attr_rate.attr,
&dev_attr_gear.attr,
&dev_attr_dev_pm.attr,
&dev_attr_link_state.attr,
NULL
};
static const struct attribute_group ufs_sysfs_power_info_group = {
.name = "power_info",
.attrs = ufs_power_info_attrs,
};
static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba,
enum desc_idn desc_id,
u8 desc_index,
u8 param_offset,
u8 *sysfs_buf,
u8 param_size)
{
u8 desc_buf[8] = {0};
int ret;
if (param_size > 8)
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
ret = -EBUSY;
goto out;
}
ufshcd_rpm_get_sync(hba);
ret = ufshcd_read_desc_param(hba, desc_id, desc_index,
param_offset, desc_buf, param_size);
ufshcd_rpm_put_sync(hba);
if (ret) {
ret = -EINVAL;
goto out;
}
switch (param_size) {
case 1:
ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf);
break;
case 2:
ret = sysfs_emit(sysfs_buf, "0x%04X\n",
get_unaligned_be16(desc_buf));
break;
case 4:
ret = sysfs_emit(sysfs_buf, "0x%08X\n",
get_unaligned_be32(desc_buf));
break;
case 8:
ret = sysfs_emit(sysfs_buf, "0x%016llX\n",
get_unaligned_be64(desc_buf));
break;
}
out:
up(&hba->host_sem);
return ret;
}
#define UFS_DESC_PARAM(_name, _puname, _duname, _size) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct ufs_hba *hba = dev_get_drvdata(dev); \
return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \
0, _duname##_DESC_PARAM##_puname, buf, _size); \
} \
static DEVICE_ATTR_RO(_name)
#define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \
UFS_DESC_PARAM(_name, _uname, DEVICE, _size)
UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1);
UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1);
UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1);
UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1);
UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1);
UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1);
UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1);
UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1);
UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1);
UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1);
UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1);
UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1);
UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1);
UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1);
UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2);
UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2);
UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2);
UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1);
UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2);
UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1);
UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1);
UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1);
UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2);
UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1);
UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4);
UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1);
UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4);
UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1);
UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1);
UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4);
static struct attribute *ufs_sysfs_device_descriptor[] = {
&dev_attr_device_type.attr,
&dev_attr_device_class.attr,
&dev_attr_device_sub_class.attr,
&dev_attr_protocol.attr,
&dev_attr_number_of_luns.attr,
&dev_attr_number_of_wluns.attr,
&dev_attr_boot_enable.attr,
&dev_attr_descriptor_access_enable.attr,
&dev_attr_initial_power_mode.attr,
&dev_attr_high_priority_lun.attr,
&dev_attr_secure_removal_type.attr,
&dev_attr_support_security_lun.attr,
&dev_attr_bkops_termination_latency.attr,
&dev_attr_initial_active_icc_level.attr,
&dev_attr_specification_version.attr,
&dev_attr_manufacturing_date.attr,
&dev_attr_manufacturer_id.attr,
&dev_attr_rtt_capability.attr,
&dev_attr_rtc_update.attr,
&dev_attr_ufs_features.attr,
&dev_attr_ffu_timeout.attr,
&dev_attr_queue_depth.attr,
&dev_attr_device_version.attr,
&dev_attr_number_of_secure_wpa.attr,
&dev_attr_psa_max_data_size.attr,
&dev_attr_psa_state_timeout.attr,
&dev_attr_ext_feature_sup.attr,
&dev_attr_wb_presv_us_en.attr,
&dev_attr_wb_type.attr,
&dev_attr_wb_shared_alloc_units.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_device_descriptor_group = {
.name = "device_descriptor",
.attrs = ufs_sysfs_device_descriptor,
};
#define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \
UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size)
UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2);
UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2);
static struct attribute *ufs_sysfs_interconnect_descriptor[] = {
&dev_attr_unipro_version.attr,
&dev_attr_mphy_version.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = {
.name = "interconnect_descriptor",
.attrs = ufs_sysfs_interconnect_descriptor,
};
#define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \
UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size)
UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8);
UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1);
UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4);
UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1);
UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1);
UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1);
UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1);
UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1);
UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2);
UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units,
_SCM_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor,
_SCM_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units,
_NPM_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor,
_NPM_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units,
_ENM1_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor,
_ENM1_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units,
_ENM2_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor,
_ENM2_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units,
_ENM3_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor,
_ENM3_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units,
_ENM4_MAX_NUM_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor,
_ENM4_CAP_ADJ_FCTR, 2);
UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4);
UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1);
UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1);
UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1);
UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1);
static struct attribute *ufs_sysfs_geometry_descriptor[] = {
&dev_attr_raw_device_capacity.attr,
&dev_attr_max_number_of_luns.attr,
&dev_attr_segment_size.attr,
&dev_attr_allocation_unit_size.attr,
&dev_attr_min_addressable_block_size.attr,
&dev_attr_optimal_read_block_size.attr,
&dev_attr_optimal_write_block_size.attr,
&dev_attr_max_in_buffer_size.attr,
&dev_attr_max_out_buffer_size.attr,
&dev_attr_rpmb_rw_size.attr,
&dev_attr_dyn_capacity_resource_policy.attr,
&dev_attr_data_ordering.attr,
&dev_attr_max_number_of_contexts.attr,
&dev_attr_sys_data_tag_unit_size.attr,
&dev_attr_sys_data_tag_resource_size.attr,
&dev_attr_secure_removal_types.attr,
&dev_attr_memory_types.attr,
&dev_attr_sys_code_memory_max_alloc_units.attr,
&dev_attr_sys_code_memory_capacity_adjustment_factor.attr,
&dev_attr_non_persist_memory_max_alloc_units.attr,
&dev_attr_non_persist_memory_capacity_adjustment_factor.attr,
&dev_attr_enh1_memory_max_alloc_units.attr,
&dev_attr_enh1_memory_capacity_adjustment_factor.attr,
&dev_attr_enh2_memory_max_alloc_units.attr,
&dev_attr_enh2_memory_capacity_adjustment_factor.attr,
&dev_attr_enh3_memory_max_alloc_units.attr,
&dev_attr_enh3_memory_capacity_adjustment_factor.attr,
&dev_attr_enh4_memory_max_alloc_units.attr,
&dev_attr_enh4_memory_capacity_adjustment_factor.attr,
&dev_attr_wb_max_alloc_units.attr,
&dev_attr_wb_max_wb_luns.attr,
&dev_attr_wb_buff_cap_adj.attr,
&dev_attr_wb_sup_red_type.attr,
&dev_attr_wb_sup_wb_type.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_geometry_descriptor_group = {
.name = "geometry_descriptor",
.attrs = ufs_sysfs_geometry_descriptor,
};
#define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \
UFS_DESC_PARAM(_name, _uname, HEALTH, _size)
UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1);
UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1);
UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1);
static struct attribute *ufs_sysfs_health_descriptor[] = {
&dev_attr_eol_info.attr,
&dev_attr_life_time_estimation_a.attr,
&dev_attr_life_time_estimation_b.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_health_descriptor_group = {
.name = "health_descriptor",
.attrs = ufs_sysfs_health_descriptor,
};
#define UFS_POWER_DESC_PARAM(_name, _uname, _index) \
static ssize_t _name##_index##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct ufs_hba *hba = dev_get_drvdata(dev); \
return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \
PWR_DESC##_uname##_0 + _index * 2, buf, 2); \
} \
static DEVICE_ATTR_RO(_name##_index)
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14);
UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14);
UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15);
static struct attribute *ufs_sysfs_power_descriptor[] = {
&dev_attr_active_icc_levels_vcc0.attr,
&dev_attr_active_icc_levels_vcc1.attr,
&dev_attr_active_icc_levels_vcc2.attr,
&dev_attr_active_icc_levels_vcc3.attr,
&dev_attr_active_icc_levels_vcc4.attr,
&dev_attr_active_icc_levels_vcc5.attr,
&dev_attr_active_icc_levels_vcc6.attr,
&dev_attr_active_icc_levels_vcc7.attr,
&dev_attr_active_icc_levels_vcc8.attr,
&dev_attr_active_icc_levels_vcc9.attr,
&dev_attr_active_icc_levels_vcc10.attr,
&dev_attr_active_icc_levels_vcc11.attr,
&dev_attr_active_icc_levels_vcc12.attr,
&dev_attr_active_icc_levels_vcc13.attr,
&dev_attr_active_icc_levels_vcc14.attr,
&dev_attr_active_icc_levels_vcc15.attr,
&dev_attr_active_icc_levels_vccq0.attr,
&dev_attr_active_icc_levels_vccq1.attr,
&dev_attr_active_icc_levels_vccq2.attr,
&dev_attr_active_icc_levels_vccq3.attr,
&dev_attr_active_icc_levels_vccq4.attr,
&dev_attr_active_icc_levels_vccq5.attr,
&dev_attr_active_icc_levels_vccq6.attr,
&dev_attr_active_icc_levels_vccq7.attr,
&dev_attr_active_icc_levels_vccq8.attr,
&dev_attr_active_icc_levels_vccq9.attr,
&dev_attr_active_icc_levels_vccq10.attr,
&dev_attr_active_icc_levels_vccq11.attr,
&dev_attr_active_icc_levels_vccq12.attr,
&dev_attr_active_icc_levels_vccq13.attr,
&dev_attr_active_icc_levels_vccq14.attr,
&dev_attr_active_icc_levels_vccq15.attr,
&dev_attr_active_icc_levels_vccq20.attr,
&dev_attr_active_icc_levels_vccq21.attr,
&dev_attr_active_icc_levels_vccq22.attr,
&dev_attr_active_icc_levels_vccq23.attr,
&dev_attr_active_icc_levels_vccq24.attr,
&dev_attr_active_icc_levels_vccq25.attr,
&dev_attr_active_icc_levels_vccq26.attr,
&dev_attr_active_icc_levels_vccq27.attr,
&dev_attr_active_icc_levels_vccq28.attr,
&dev_attr_active_icc_levels_vccq29.attr,
&dev_attr_active_icc_levels_vccq210.attr,
&dev_attr_active_icc_levels_vccq211.attr,
&dev_attr_active_icc_levels_vccq212.attr,
&dev_attr_active_icc_levels_vccq213.attr,
&dev_attr_active_icc_levels_vccq214.attr,
&dev_attr_active_icc_levels_vccq215.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_power_descriptor_group = {
.name = "power_descriptor",
.attrs = ufs_sysfs_power_descriptor,
};
#define UFS_STRING_DESCRIPTOR(_name, _pname) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
u8 index; \
struct ufs_hba *hba = dev_get_drvdata(dev); \
int ret; \
int desc_len = QUERY_DESC_MAX_SIZE; \
u8 *desc_buf; \
\
down(&hba->host_sem); \
if (!ufshcd_is_user_access_allowed(hba)) { \
up(&hba->host_sem); \
return -EBUSY; \
} \
desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \
if (!desc_buf) { \
up(&hba->host_sem); \
return -ENOMEM; \
} \
ufshcd_rpm_get_sync(hba); \
ret = ufshcd_query_descriptor_retry(hba, \
UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \
0, 0, desc_buf, &desc_len); \
if (ret) { \
ret = -EINVAL; \
goto out; \
} \
index = desc_buf[DEVICE_DESC_PARAM##_pname]; \
kfree(desc_buf); \
desc_buf = NULL; \
ret = ufshcd_read_string_desc(hba, index, &desc_buf, \
SD_ASCII_STD); \
if (ret < 0) \
goto out; \
ret = sysfs_emit(buf, "%s\n", desc_buf); \
out: \
ufshcd_rpm_put_sync(hba); \
kfree(desc_buf); \
up(&hba->host_sem); \
return ret; \
} \
static DEVICE_ATTR_RO(_name)
UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME);
UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME);
UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID);
UFS_STRING_DESCRIPTOR(serial_number, _SN);
UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV);
static struct attribute *ufs_sysfs_string_descriptors[] = {
&dev_attr_manufacturer_name.attr,
&dev_attr_product_name.attr,
&dev_attr_oem_id.attr,
&dev_attr_serial_number.attr,
&dev_attr_product_revision.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_string_descriptors_group = {
.name = "string_descriptors",
.attrs = ufs_sysfs_string_descriptors,
};
static inline bool ufshcd_is_wb_flags(enum flag_idn idn)
{
return idn >= QUERY_FLAG_IDN_WB_EN &&
idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8;
}
#define UFS_FLAG(_name, _uname) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
bool flag; \
u8 index = 0; \
int ret; \
struct ufs_hba *hba = dev_get_drvdata(dev); \
\
down(&hba->host_sem); \
if (!ufshcd_is_user_access_allowed(hba)) { \
up(&hba->host_sem); \
return -EBUSY; \
} \
if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \
index = ufshcd_wb_get_query_index(hba); \
ufshcd_rpm_get_sync(hba); \
ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \
QUERY_FLAG_IDN##_uname, index, &flag); \
ufshcd_rpm_put_sync(hba); \
if (ret) { \
ret = -EINVAL; \
goto out; \
} \
ret = sysfs_emit(buf, "%s\n", flag ? "true" : "false"); \
out: \
up(&hba->host_sem); \
return ret; \
} \
static DEVICE_ATTR_RO(_name)
UFS_FLAG(device_init, _FDEVICEINIT);
UFS_FLAG(permanent_wpe, _PERMANENT_WPE);
UFS_FLAG(power_on_wpe, _PWR_ON_WPE);
UFS_FLAG(bkops_enable, _BKOPS_EN);
UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE);
UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL);
UFS_FLAG(busy_rtc, _BUSY_RTC);
UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE);
UFS_FLAG(wb_enable, _WB_EN);
UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN);
UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8);
static struct attribute *ufs_sysfs_device_flags[] = {
&dev_attr_device_init.attr,
&dev_attr_permanent_wpe.attr,
&dev_attr_power_on_wpe.attr,
&dev_attr_bkops_enable.attr,
&dev_attr_life_span_mode_enable.attr,
&dev_attr_phy_resource_removal.attr,
&dev_attr_busy_rtc.attr,
&dev_attr_disable_fw_update.attr,
&dev_attr_wb_enable.attr,
&dev_attr_wb_flush_en.attr,
&dev_attr_wb_flush_during_h8.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_flags_group = {
.name = "flags",
.attrs = ufs_sysfs_device_flags,
};
static ssize_t max_number_of_rtt_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 rtt;
int ret;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
up(&hba->host_sem);
return -EBUSY;
}
ufshcd_rpm_get_sync(hba);
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt);
ufshcd_rpm_put_sync(hba);
if (ret)
goto out;
ret = sysfs_emit(buf, "0x%08X\n", rtt);
out:
up(&hba->host_sem);
return ret;
}
static ssize_t max_number_of_rtt_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_dev_info *dev_info = &hba->dev_info;
struct scsi_device *sdev;
unsigned int rtt;
int ret;
if (kstrtouint(buf, 0, &rtt))
return -EINVAL;
if (rtt > dev_info->rtt_cap) {
dev_err(dev, "rtt can be at most bDeviceRTTCap\n");
return -EINVAL;
}
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
ret = -EBUSY;
goto out;
}
ufshcd_rpm_get_sync(hba);
shost_for_each_device(sdev, hba->host)
blk_mq_freeze_queue(sdev->request_queue);
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt);
shost_for_each_device(sdev, hba->host)
blk_mq_unfreeze_queue(sdev->request_queue);
ufshcd_rpm_put_sync(hba);
out:
up(&hba->host_sem);
return ret < 0 ? ret : count;
}
static DEVICE_ATTR_RW(max_number_of_rtt);
static inline bool ufshcd_is_wb_attrs(enum attr_idn idn)
{
return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS &&
idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE;
}
#define UFS_ATTRIBUTE(_name, _uname) \
static ssize_t _name##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct ufs_hba *hba = dev_get_drvdata(dev); \
u32 value; \
int ret; \
u8 index = 0; \
\
down(&hba->host_sem); \
if (!ufshcd_is_user_access_allowed(hba)) { \
up(&hba->host_sem); \
return -EBUSY; \
} \
if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \
index = ufshcd_wb_get_query_index(hba); \
ufshcd_rpm_get_sync(hba); \
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \
QUERY_ATTR_IDN##_uname, index, 0, &value); \
ufshcd_rpm_put_sync(hba); \
if (ret) { \
ret = -EINVAL; \
goto out; \
} \
ret = sysfs_emit(buf, "0x%08X\n", value); \
out: \
up(&hba->host_sem); \
return ret; \
} \
static DEVICE_ATTR_RO(_name)
UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN);
UFS_ATTRIBUTE(current_power_mode, _POWER_MODE);
UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL);
UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN);
UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS);
UFS_ATTRIBUTE(purge_status, _PURGE_STATUS);
UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN);
UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT);
UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ);
UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK);
UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL);
UFS_ATTRIBUTE(exception_event_status, _EE_STATUS);
UFS_ATTRIBUTE(ffu_status, _FFU_STATUS);
UFS_ATTRIBUTE(psa_state, _PSA_STATE);
UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE);
UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS);
UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE);
UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST);
UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE);
static struct attribute *ufs_sysfs_attributes[] = {
&dev_attr_boot_lun_enabled.attr,
&dev_attr_current_power_mode.attr,
&dev_attr_active_icc_level.attr,
&dev_attr_ooo_data_enabled.attr,
&dev_attr_bkops_status.attr,
&dev_attr_purge_status.attr,
&dev_attr_max_data_in_size.attr,
&dev_attr_max_data_out_size.attr,
&dev_attr_reference_clock_frequency.attr,
&dev_attr_configuration_descriptor_lock.attr,
&dev_attr_max_number_of_rtt.attr,
&dev_attr_exception_event_control.attr,
&dev_attr_exception_event_status.attr,
&dev_attr_ffu_status.attr,
&dev_attr_psa_state.attr,
&dev_attr_psa_data_size.attr,
&dev_attr_wb_flush_status.attr,
&dev_attr_wb_avail_buf.attr,
&dev_attr_wb_life_time_est.attr,
&dev_attr_wb_cur_buf.attr,
NULL,
};
static const struct attribute_group ufs_sysfs_attributes_group = {
.name = "attributes",
.attrs = ufs_sysfs_attributes,
};
static const struct attribute_group *ufs_sysfs_groups[] = {
&ufs_sysfs_default_group,
&ufs_sysfs_capabilities_group,
&ufs_sysfs_ufshci_group,
&ufs_sysfs_monitor_group,
&ufs_sysfs_power_info_group,
&ufs_sysfs_device_descriptor_group,
&ufs_sysfs_interconnect_descriptor_group,
&ufs_sysfs_geometry_descriptor_group,
&ufs_sysfs_health_descriptor_group,
&ufs_sysfs_power_descriptor_group,
&ufs_sysfs_string_descriptors_group,
&ufs_sysfs_flags_group,
&ufs_sysfs_attributes_group,
NULL,
};
#define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \
static ssize_t _pname##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct scsi_device *sdev = to_scsi_device(dev); \
struct ufs_hba *hba = shost_priv(sdev->host); \
u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \
if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \
return -EINVAL; \
return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \
lun, _duname##_DESC_PARAM##_puname, buf, _size); \
} \
static DEVICE_ATTR_RO(_pname)
#define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \
UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size)
UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1);
UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1);
UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1);
UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1);
UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1);
UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1);
UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1);
UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1);
UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8);
UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4);
UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1);
UFS_UNIT_DESC_PARAM(physical_memory_resourse_count, _PHY_MEM_RSRC_CNT, 8);
UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2);
UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1);
UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4);
static struct attribute *ufs_sysfs_unit_descriptor[] = {
&dev_attr_lu_enable.attr,
&dev_attr_boot_lun_id.attr,
&dev_attr_lun_write_protect.attr,
&dev_attr_lun_queue_depth.attr,
&dev_attr_psa_sensitive.attr,
&dev_attr_lun_memory_type.attr,
&dev_attr_data_reliability.attr,
&dev_attr_logical_block_size.attr,
&dev_attr_logical_block_count.attr,
&dev_attr_erase_block_size.attr,
&dev_attr_provisioning_type.attr,
&dev_attr_physical_memory_resourse_count.attr,
&dev_attr_context_capabilities.attr,
&dev_attr_large_unit_granularity.attr,
&dev_attr_wb_buf_alloc_units.attr,
NULL,
};
static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct scsi_device *sdev = to_scsi_device(dev);
u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
umode_t mode = attr->mode;
if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN)
/* Boot and device WLUN have no unit descriptors */
mode = 0;
if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr)
mode = 0;
return mode;
}
const struct attribute_group ufs_sysfs_unit_descriptor_group = {
.name = "unit_descriptor",
.attrs = ufs_sysfs_unit_descriptor,
.is_visible = ufs_unit_descriptor_is_visible,
};
static ssize_t dyn_cap_needed_attribute_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 value;
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba = shost_priv(sdev->host);
u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
int ret;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
ret = -EBUSY;
goto out;
}
ufshcd_rpm_get_sync(hba);
ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value);
ufshcd_rpm_put_sync(hba);
if (ret) {
ret = -EINVAL;
goto out;
}
ret = sysfs_emit(buf, "0x%08X\n", value);
out:
up(&hba->host_sem);
return ret;
}
static DEVICE_ATTR_RO(dyn_cap_needed_attribute);
static struct attribute *ufs_sysfs_lun_attributes[] = {
&dev_attr_dyn_cap_needed_attribute.attr,
NULL,
};
const struct attribute_group ufs_sysfs_lun_attributes_group = {
.attrs = ufs_sysfs_lun_attributes,
};
void ufs_sysfs_add_nodes(struct device *dev)
{
int ret;
ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups);
if (ret)
dev_err(dev,
"%s: sysfs groups creation failed (err = %d)\n",
__func__, ret);
}
void ufs_sysfs_remove_nodes(struct device *dev)
{
sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups);
}