mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-10 15:19:51 +00:00
6f9a35e2da
At the block level bidi request uses req->next_rq pointer for a second bidi_read request. At Scsi-midlayer a second scsi_data_buffer structure is used for the bidi_read part. This bidi scsi_data_buffer is put on request->next_rq->special. Struct scsi_cmnd is not changed. - Define scsi_bidi_cmnd() to return true if it is a bidi request and a second sgtable was allocated. - Define scsi_in()/scsi_out() to return the in or out scsi_data_buffer from this command This API is to isolate users from the mechanics of bidi. - Define scsi_end_bidi_request() to do what scsi_end_request() does but for a bidi request. This is necessary because bidi commands are a bit tricky here. (See comments in body) - scsi_release_buffers() will also release the bidi_read scsi_data_buffer - scsi_io_completion() on bidi commands will now call scsi_end_bidi_request() and return. - The previous work done in scsi_init_io() is now done in a new scsi_init_sgtable() (which is 99% identical to old scsi_init_io()) The new scsi_init_io() will call the above twice if needed also for the bidi_read command. Only at this point is a command bidi. - In scsi_error.c at scsi_eh_prep/restore_cmnd() make sure bidi-lld is not confused by a get-sense command that looks like bidi. This is done by puting NULL at request->next_rq, and restoring. [jejb: update to sg_table and resolve conflicts also update to blk-end-request and resolve conflicts] Signed-off-by: Boaz Harrosh <bharrosh@panasas.com> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
179 lines
5.0 KiB
C
179 lines
5.0 KiB
C
#ifndef _SCSI_SCSI_CMND_H
|
|
#define _SCSI_SCSI_CMND_H
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/list.h>
|
|
#include <linux/types.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
struct Scsi_Host;
|
|
struct scsi_device;
|
|
|
|
struct scsi_data_buffer {
|
|
struct sg_table table;
|
|
unsigned length;
|
|
int resid;
|
|
};
|
|
|
|
/* embedded in scsi_cmnd */
|
|
struct scsi_pointer {
|
|
char *ptr; /* data pointer */
|
|
int this_residual; /* left in this buffer */
|
|
struct scatterlist *buffer; /* which buffer */
|
|
int buffers_residual; /* how many buffers left */
|
|
|
|
dma_addr_t dma_handle;
|
|
|
|
volatile int Status;
|
|
volatile int Message;
|
|
volatile int have_data_in;
|
|
volatile int sent_command;
|
|
volatile int phase;
|
|
};
|
|
|
|
struct scsi_cmnd {
|
|
struct scsi_device *device;
|
|
struct list_head list; /* scsi_cmnd participates in queue lists */
|
|
struct list_head eh_entry; /* entry for the host eh_cmd_q */
|
|
int eh_eflags; /* Used by error handlr */
|
|
|
|
/*
|
|
* A SCSI Command is assigned a nonzero serial_number before passed
|
|
* to the driver's queue command function. The serial_number is
|
|
* cleared when scsi_done is entered indicating that the command
|
|
* has been completed. It is a bug for LLDDs to use this number
|
|
* for purposes other than printk (and even that is only useful
|
|
* for debugging).
|
|
*/
|
|
unsigned long serial_number;
|
|
|
|
/*
|
|
* This is set to jiffies as it was when the command was first
|
|
* allocated. It is used to time how long the command has
|
|
* been outstanding
|
|
*/
|
|
unsigned long jiffies_at_alloc;
|
|
|
|
int retries;
|
|
int allowed;
|
|
int timeout_per_command;
|
|
|
|
unsigned char cmd_len;
|
|
enum dma_data_direction sc_data_direction;
|
|
|
|
/* These elements define the operation we are about to perform */
|
|
#define MAX_COMMAND_SIZE 16
|
|
unsigned char cmnd[MAX_COMMAND_SIZE];
|
|
|
|
struct timer_list eh_timeout; /* Used to time out the command. */
|
|
|
|
/* These elements define the operation we ultimately want to perform */
|
|
struct scsi_data_buffer sdb;
|
|
unsigned underflow; /* Return error if less than
|
|
this amount is transferred */
|
|
|
|
unsigned transfersize; /* How much we are guaranteed to
|
|
transfer with each SCSI transfer
|
|
(ie, between disconnect /
|
|
reconnects. Probably == sector
|
|
size */
|
|
|
|
struct request *request; /* The command we are
|
|
working on */
|
|
|
|
#define SCSI_SENSE_BUFFERSIZE 96
|
|
unsigned char *sense_buffer;
|
|
/* obtained by REQUEST SENSE when
|
|
* CHECK CONDITION is received on original
|
|
* command (auto-sense) */
|
|
|
|
/* Low-level done function - can be used by low-level driver to point
|
|
* to completion function. Not used by mid/upper level code. */
|
|
void (*scsi_done) (struct scsi_cmnd *);
|
|
|
|
/*
|
|
* The following fields can be written to by the host specific code.
|
|
* Everything else should be left alone.
|
|
*/
|
|
struct scsi_pointer SCp; /* Scratchpad used by some host adapters */
|
|
|
|
unsigned char *host_scribble; /* The host adapter is allowed to
|
|
* call scsi_malloc and get some memory
|
|
* and hang it here. The host adapter
|
|
* is also expected to call scsi_free
|
|
* to release this memory. (The memory
|
|
* obtained by scsi_malloc is guaranteed
|
|
* to be at an address < 16Mb). */
|
|
|
|
int result; /* Status code from lower level driver */
|
|
|
|
unsigned char tag; /* SCSI-II queued command tag */
|
|
};
|
|
|
|
extern struct scsi_cmnd *scsi_get_command(struct scsi_device *, gfp_t);
|
|
extern struct scsi_cmnd *__scsi_get_command(struct Scsi_Host *, gfp_t);
|
|
extern void scsi_put_command(struct scsi_cmnd *);
|
|
extern void __scsi_put_command(struct Scsi_Host *, struct scsi_cmnd *,
|
|
struct device *);
|
|
extern void scsi_finish_command(struct scsi_cmnd *cmd);
|
|
extern void scsi_req_abort_cmd(struct scsi_cmnd *cmd);
|
|
|
|
extern void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
|
|
size_t *offset, size_t *len);
|
|
extern void scsi_kunmap_atomic_sg(void *virt);
|
|
|
|
extern int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask);
|
|
extern void scsi_release_buffers(struct scsi_cmnd *cmd);
|
|
|
|
extern int scsi_dma_map(struct scsi_cmnd *cmd);
|
|
extern void scsi_dma_unmap(struct scsi_cmnd *cmd);
|
|
|
|
static inline unsigned scsi_sg_count(struct scsi_cmnd *cmd)
|
|
{
|
|
return cmd->sdb.table.nents;
|
|
}
|
|
|
|
static inline struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd)
|
|
{
|
|
return cmd->sdb.table.sgl;
|
|
}
|
|
|
|
static inline unsigned scsi_bufflen(struct scsi_cmnd *cmd)
|
|
{
|
|
return cmd->sdb.length;
|
|
}
|
|
|
|
static inline void scsi_set_resid(struct scsi_cmnd *cmd, int resid)
|
|
{
|
|
cmd->sdb.resid = resid;
|
|
}
|
|
|
|
static inline int scsi_get_resid(struct scsi_cmnd *cmd)
|
|
{
|
|
return cmd->sdb.resid;
|
|
}
|
|
|
|
#define scsi_for_each_sg(cmd, sg, nseg, __i) \
|
|
for_each_sg(scsi_sglist(cmd), sg, nseg, __i)
|
|
|
|
static inline int scsi_bidi_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
return blk_bidi_rq(cmd->request) &&
|
|
(cmd->request->next_rq->special != NULL);
|
|
}
|
|
|
|
static inline struct scsi_data_buffer *scsi_in(struct scsi_cmnd *cmd)
|
|
{
|
|
return scsi_bidi_cmnd(cmd) ?
|
|
cmd->request->next_rq->special : &cmd->sdb;
|
|
}
|
|
|
|
static inline struct scsi_data_buffer *scsi_out(struct scsi_cmnd *cmd)
|
|
{
|
|
return &cmd->sdb;
|
|
}
|
|
|
|
#endif /* _SCSI_SCSI_CMND_H */
|