Brendan King b04ce1e718
drm/imagination: Break an object reference loop
When remaining resources are being cleaned up on driver close,
outstanding VM mappings may result in resources being leaked, due
to an object reference loop, as shown below, with each object (or
set of objects) referencing the object below it:

    PVR GEM Object
    GPU scheduler "finished" fence
    GPU scheduler “scheduled” fence
    PVR driver “done” fence
    PVR Context
    PVR VM Context
    PVR VM Mappings
    PVR GEM Object

The reference that the PVR VM Context has on the VM mappings is a
soft one, in the sense that the freeing of outstanding VM mappings
is done as part of VM context destruction; no reference counts are
involved, as is the case for all the other references in the loop.

To break the reference loop during cleanup, free the outstanding
VM mappings before destroying the PVR Context associated with the
VM context.

Signed-off-by: Brendan King <brendan.king@imgtec.com>
Signed-off-by: Matt Coster <matt.coster@imgtec.com>
Reviewed-by: Frank Binns <frank.binns@imgtec.com>
Cc: stable@vger.kernel.org
Link: https://patchwork.freedesktop.org/patch/msgid/8a25924f-1bb7-4d9a-a346-58e871dfb1d1@imgtec.com
2024-11-04 09:41:38 +00:00

1109 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_vm.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_gem.h"
#include "pvr_mmu.h"
#include "pvr_rogue_fwif.h"
#include "pvr_rogue_heap_config.h"
#include <drm/drm_exec.h>
#include <drm/drm_gem.h>
#include <drm/drm_gpuvm.h>
#include <linux/bug.h>
#include <linux/container_of.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gfp_types.h>
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/stddef.h>
/**
* DOC: Memory context
*
* This is the "top level" datatype in the VM code. It's exposed in the public
* API as an opaque handle.
*/
/**
* struct pvr_vm_context - Context type used to represent a single VM.
*/
struct pvr_vm_context {
/**
* @pvr_dev: The PowerVR device to which this context is bound.
* This binding is immutable for the life of the context.
*/
struct pvr_device *pvr_dev;
/** @mmu_ctx: The context for binding to physical memory. */
struct pvr_mmu_context *mmu_ctx;
/** @gpuvm_mgr: GPUVM object associated with this context. */
struct drm_gpuvm gpuvm_mgr;
/** @lock: Global lock on this VM. */
struct mutex lock;
/**
* @fw_mem_ctx_obj: Firmware object representing firmware memory
* context.
*/
struct pvr_fw_object *fw_mem_ctx_obj;
/** @ref_count: Reference count of object. */
struct kref ref_count;
/**
* @dummy_gem: GEM object to enable VM reservation. All private BOs
* should use the @dummy_gem.resv and not their own _resv field.
*/
struct drm_gem_object dummy_gem;
};
static inline
struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
{
return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
}
struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
{
if (vm_ctx)
kref_get(&vm_ctx->ref_count);
return vm_ctx;
}
/**
* pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
* page table structure behind a VM context.
* @vm_ctx: Target VM context.
*/
dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
{
return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
}
/**
* pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
* @vm_ctx: Target VM context.
*
* This is used to allow private BOs to share a dma_resv for faster fence
* updates.
*
* Returns: The dma_resv pointer.
*/
struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
{
return vm_ctx->dummy_gem.resv;
}
/**
* DOC: Memory mappings
*/
/**
* struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
*/
struct pvr_vm_gpuva {
/** @base: The wrapped drm_gpuva object. */
struct drm_gpuva base;
};
#define to_pvr_vm_gpuva(va) container_of_const(va, struct pvr_vm_gpuva, base)
enum pvr_vm_bind_type {
PVR_VM_BIND_TYPE_MAP,
PVR_VM_BIND_TYPE_UNMAP,
};
/**
* struct pvr_vm_bind_op - Context of a map/unmap operation.
*/
struct pvr_vm_bind_op {
/** @type: Map or unmap. */
enum pvr_vm_bind_type type;
/** @pvr_obj: Object associated with mapping (map only). */
struct pvr_gem_object *pvr_obj;
/**
* @vm_ctx: VM context where the mapping will be created or destroyed.
*/
struct pvr_vm_context *vm_ctx;
/** @mmu_op_ctx: MMU op context. */
struct pvr_mmu_op_context *mmu_op_ctx;
/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
struct drm_gpuvm_bo *gpuvm_bo;
/**
* @new_va: Prealloced VA mapping object (init in callback).
* Used when creating a mapping.
*/
struct pvr_vm_gpuva *new_va;
/**
* @prev_va: Prealloced VA mapping object (init in callback).
* Used when a mapping or unmapping operation overlaps an existing
* mapping and splits away the beginning into a new mapping.
*/
struct pvr_vm_gpuva *prev_va;
/**
* @next_va: Prealloced VA mapping object (init in callback).
* Used when a mapping or unmapping operation overlaps an existing
* mapping and splits away the end into a new mapping.
*/
struct pvr_vm_gpuva *next_va;
/** @offset: Offset into @pvr_obj to begin mapping from. */
u64 offset;
/** @device_addr: Device-virtual address at the start of the mapping. */
u64 device_addr;
/** @size: Size of the desired mapping. */
u64 size;
};
/**
* pvr_vm_bind_op_exec() - Execute a single bind op.
* @bind_op: Bind op context.
*
* Returns:
* * 0 on success,
* * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
* a callback function.
*/
static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
{
switch (bind_op->type) {
case PVR_VM_BIND_TYPE_MAP:
return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
bind_op, bind_op->device_addr,
bind_op->size,
gem_from_pvr_gem(bind_op->pvr_obj),
bind_op->offset);
case PVR_VM_BIND_TYPE_UNMAP:
return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
bind_op, bind_op->device_addr,
bind_op->size);
}
/*
* This shouldn't happen unless something went wrong
* in drm_sched.
*/
WARN_ON(1);
return -EINVAL;
}
static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
{
drm_gpuvm_bo_put(bind_op->gpuvm_bo);
kfree(bind_op->new_va);
kfree(bind_op->prev_va);
kfree(bind_op->next_va);
if (bind_op->pvr_obj)
pvr_gem_object_put(bind_op->pvr_obj);
if (bind_op->mmu_op_ctx)
pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
}
static int
pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
struct pvr_vm_context *vm_ctx,
struct pvr_gem_object *pvr_obj, u64 offset,
u64 device_addr, u64 size)
{
struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
struct sg_table *sgt;
u64 offset_plus_size;
int err;
if (check_add_overflow(offset, size, &offset_plus_size))
return -EINVAL;
if (is_user &&
!pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
return -EINVAL;
}
if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
offset & ~PAGE_MASK || size & ~PAGE_MASK ||
offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
return -EINVAL;
bind_op->type = PVR_VM_BIND_TYPE_MAP;
dma_resv_lock(obj->resv, NULL);
bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
dma_resv_unlock(obj->resv);
if (IS_ERR(bind_op->gpuvm_bo))
return PTR_ERR(bind_op->gpuvm_bo);
bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
err = -ENOMEM;
goto err_bind_op_fini;
}
/* Pin pages so they're ready for use. */
sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
err = PTR_ERR_OR_ZERO(sgt);
if (err)
goto err_bind_op_fini;
bind_op->mmu_op_ctx =
pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
if (err) {
bind_op->mmu_op_ctx = NULL;
goto err_bind_op_fini;
}
bind_op->pvr_obj = pvr_obj;
bind_op->vm_ctx = vm_ctx;
bind_op->device_addr = device_addr;
bind_op->size = size;
bind_op->offset = offset;
return 0;
err_bind_op_fini:
pvr_vm_bind_op_fini(bind_op);
return err;
}
static int
pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
struct pvr_vm_context *vm_ctx, u64 device_addr,
u64 size)
{
int err;
if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
return -EINVAL;
bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
if (!bind_op->prev_va || !bind_op->next_va) {
err = -ENOMEM;
goto err_bind_op_fini;
}
bind_op->mmu_op_ctx =
pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
if (err) {
bind_op->mmu_op_ctx = NULL;
goto err_bind_op_fini;
}
bind_op->vm_ctx = vm_ctx;
bind_op->device_addr = device_addr;
bind_op->size = size;
return 0;
err_bind_op_fini:
pvr_vm_bind_op_fini(bind_op);
return err;
}
/**
* pvr_vm_gpuva_map() - Insert a mapping into a memory context.
* @op: gpuva op containing the remap details.
* @op_ctx: Operation context.
*
* Context: Called by drm_gpuvm_sm_map following a successful mapping while
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_mmu_map().
*/
static int
pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
struct pvr_vm_bind_op *ctx = op_ctx;
int err;
if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
return -EINVAL;
err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
op->map.va.addr);
if (err)
return err;
drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
ctx->new_va = NULL;
return 0;
}
/**
* pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
* @op: gpuva op containing the unmap details.
* @op_ctx: Operation context.
*
* Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_mmu_unmap().
*/
static int
pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_vm_bind_op *ctx = op_ctx;
int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
op->unmap.va->va.range);
if (err)
return err;
drm_gpuva_unmap(&op->unmap);
drm_gpuva_unlink(op->unmap.va);
kfree(to_pvr_vm_gpuva(op->unmap.va));
return 0;
}
/**
* pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
* @op: gpuva op containing the remap details.
* @op_ctx: Operation context.
*
* Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
* mapping or unmapping operation causes a region to be split. The
* @op_ctx.vm_ctx mutex is held.
*
* Return:
* * 0 on success, or
* * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
*/
static int
pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
{
struct pvr_vm_bind_op *ctx = op_ctx;
u64 va_start = 0, va_range = 0;
int err;
drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
if (err)
return err;
/* No actual remap required: the page table tree depth is fixed to 3,
* and we use 4k page table entries only for now.
*/
drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
if (op->remap.prev) {
pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
ctx->prev_va = NULL;
}
if (op->remap.next) {
pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
ctx->next_va = NULL;
}
drm_gpuva_unlink(op->remap.unmap->va);
kfree(to_pvr_vm_gpuva(op->remap.unmap->va));
return 0;
}
/*
* Public API
*
* For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
*/
/**
* pvr_device_addr_is_valid() - Tests whether a device-virtual address
* is valid.
* @device_addr: Virtual device address to test.
*
* Return:
* * %true if @device_addr is within the valid range for a device page
* table and is aligned to the device page size, or
* * %false otherwise.
*/
bool
pvr_device_addr_is_valid(u64 device_addr)
{
return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
(device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
}
/**
* pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
* address and associated size are both valid.
* @vm_ctx: Target VM context.
* @device_addr: Virtual device address to test.
* @size: Size of the range based at @device_addr to test.
*
* Calling pvr_device_addr_is_valid() twice (once on @size, and again on
* @device_addr + @size) to verify a device-virtual address range initially
* seems intuitive, but it produces a false-negative when the address range
* is right at the end of device-virtual address space.
*
* This function catches that corner case, as well as checking that
* @size is non-zero.
*
* Return:
* * %true if @device_addr is device page aligned; @size is device page
* aligned; the range specified by @device_addr and @size is within the
* bounds of the device-virtual address space, and @size is non-zero, or
* * %false otherwise.
*/
bool
pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
u64 device_addr, u64 size)
{
return pvr_device_addr_is_valid(device_addr) &&
drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
(device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
}
static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
{
kfree(to_pvr_vm_context(gpuvm));
}
static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
.vm_free = pvr_gpuvm_free,
.sm_step_map = pvr_vm_gpuva_map,
.sm_step_remap = pvr_vm_gpuva_remap,
.sm_step_unmap = pvr_vm_gpuva_unmap,
};
static void
fw_mem_context_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
struct pvr_vm_context *vm_ctx = priv;
fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
}
/**
* pvr_vm_create_context() - Create a new VM context.
* @pvr_dev: Target PowerVR device.
* @is_userspace_context: %true if this context is for userspace. This will
* create a firmware memory context for the VM context
* and disable warnings when tearing down mappings.
*
* Return:
* * A handle to the newly-minted VM context on success,
* * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
* missing or has an unsupported value,
* * -%ENOMEM if allocation of the structure behind the opaque handle fails,
* or
* * Any error encountered while setting up internal structures.
*/
struct pvr_vm_context *
pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
{
struct drm_device *drm_dev = from_pvr_device(pvr_dev);
struct pvr_vm_context *vm_ctx;
u16 device_addr_bits;
int err;
err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
&device_addr_bits);
if (err) {
drm_err(drm_dev,
"Failed to get device virtual address space bits\n");
return ERR_PTR(err);
}
if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
drm_err(drm_dev,
"Device has unsupported virtual address space size\n");
return ERR_PTR(-EINVAL);
}
vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
if (!vm_ctx)
return ERR_PTR(-ENOMEM);
vm_ctx->pvr_dev = pvr_dev;
vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
if (err)
goto err_free;
if (is_userspace_context) {
err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
if (err)
goto err_page_table_destroy;
}
drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
0, &pvr_dev->base, &vm_ctx->dummy_gem,
0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
mutex_init(&vm_ctx->lock);
kref_init(&vm_ctx->ref_count);
return vm_ctx;
err_page_table_destroy:
pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
err_free:
kfree(vm_ctx);
return ERR_PTR(err);
}
/**
* pvr_vm_unmap_all() - Unmap all mappings associated with a VM context.
* @vm_ctx: Target VM context.
*
* This function ensures that no mappings are left dangling by unmapping them
* all in order of ascending device-virtual address.
*/
void
pvr_vm_unmap_all(struct pvr_vm_context *vm_ctx)
{
WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start,
vm_ctx->gpuvm_mgr.mm_range));
}
/**
* pvr_vm_context_release() - Teardown a VM context.
* @ref_count: Pointer to reference counter of the VM context.
*
* This function also ensures that no mappings are left dangling by calling
* pvr_vm_unmap_all.
*/
static void
pvr_vm_context_release(struct kref *ref_count)
{
struct pvr_vm_context *vm_ctx =
container_of(ref_count, struct pvr_vm_context, ref_count);
if (vm_ctx->fw_mem_ctx_obj)
pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
pvr_vm_unmap_all(vm_ctx);
pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
drm_gem_private_object_fini(&vm_ctx->dummy_gem);
mutex_destroy(&vm_ctx->lock);
drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
}
/**
* pvr_vm_context_lookup() - Look up VM context from handle
* @pvr_file: Pointer to pvr_file structure.
* @handle: Object handle.
*
* Takes reference on VM context object. Call pvr_vm_context_put() to release.
*
* Returns:
* * The requested object on success, or
* * %NULL on failure (object does not exist in list, or is not a VM context)
*/
struct pvr_vm_context *
pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
{
struct pvr_vm_context *vm_ctx;
xa_lock(&pvr_file->vm_ctx_handles);
vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
if (vm_ctx)
kref_get(&vm_ctx->ref_count);
xa_unlock(&pvr_file->vm_ctx_handles);
return vm_ctx;
}
/**
* pvr_vm_context_put() - Release a reference on a VM context
* @vm_ctx: Target VM context.
*
* Returns:
* * %true if the VM context was destroyed, or
* * %false if there are any references still remaining.
*/
bool
pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
{
if (vm_ctx)
return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
return true;
}
/**
* pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
* given file.
* @pvr_file: Pointer to pvr_file structure.
*
* Removes all vm_contexts associated with @pvr_file from the device VM context
* list and drops initial references. vm_contexts will then be destroyed once
* all outstanding references are dropped.
*/
void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
{
struct pvr_vm_context *vm_ctx;
unsigned long handle;
xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
/* vm_ctx is not used here because that would create a race with xa_erase */
pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
}
}
static int
pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
{
struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
/* Unmap operations don't have an object to lock. */
if (!pvr_obj)
return 0;
/* Acquire lock on the GEM being mapped. */
return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
}
/**
* pvr_vm_map() - Map a section of physical memory into a section of
* device-virtual memory.
* @vm_ctx: Target VM context.
* @pvr_obj: Target PowerVR memory object.
* @pvr_obj_offset: Offset into @pvr_obj to map from.
* @device_addr: Virtual device address at the start of the requested mapping.
* @size: Size of the requested mapping.
*
* No handle is returned to represent the mapping. Instead, callers should
* remember @device_addr and use that as a handle.
*
* Return:
* * 0 on success,
* * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
* address; the region specified by @pvr_obj_offset and @size does not fall
* entirely within @pvr_obj, or any part of the specified region of @pvr_obj
* is not device-virtual page-aligned,
* * Any error encountered while performing internal operations required to
* destroy the mapping (returned from pvr_vm_gpuva_map or
* pvr_vm_gpuva_remap).
*/
int
pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
u64 pvr_obj_offset, u64 device_addr, u64 size)
{
struct pvr_vm_bind_op bind_op = {0};
struct drm_gpuvm_exec vm_exec = {
.vm = &vm_ctx->gpuvm_mgr,
.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
DRM_EXEC_IGNORE_DUPLICATES,
.extra = {
.fn = pvr_vm_lock_extra,
.priv = &bind_op,
},
};
int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
pvr_obj_offset, device_addr,
size);
if (err)
return err;
pvr_gem_object_get(pvr_obj);
err = drm_gpuvm_exec_lock(&vm_exec);
if (err)
goto err_cleanup;
err = pvr_vm_bind_op_exec(&bind_op);
drm_gpuvm_exec_unlock(&vm_exec);
err_cleanup:
pvr_vm_bind_op_fini(&bind_op);
return err;
}
/**
* pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
* @vm_ctx: Target VM context.
* @device_addr: Virtual device address at the start of the target mapping.
* @size: Size of the target mapping.
*
* Return:
* * 0 on success,
* * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
* address,
* * Any error encountered while performing internal operations required to
* destroy the mapping (returned from pvr_vm_gpuva_unmap or
* pvr_vm_gpuva_remap).
*/
int
pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
{
struct pvr_vm_bind_op bind_op = {0};
struct drm_gpuvm_exec vm_exec = {
.vm = &vm_ctx->gpuvm_mgr,
.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
DRM_EXEC_IGNORE_DUPLICATES,
.extra = {
.fn = pvr_vm_lock_extra,
.priv = &bind_op,
},
};
int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr,
size);
if (err)
return err;
err = drm_gpuvm_exec_lock(&vm_exec);
if (err)
goto err_cleanup;
err = pvr_vm_bind_op_exec(&bind_op);
drm_gpuvm_exec_unlock(&vm_exec);
err_cleanup:
pvr_vm_bind_op_fini(&bind_op);
return err;
}
/* Static data areas are determined by firmware. */
static const struct drm_pvr_static_data_area static_data_areas[] = {
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
.location_heap_id = DRM_PVR_HEAP_GENERAL,
.offset = 0,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
.location_heap_id = DRM_PVR_HEAP_GENERAL,
.offset = 128,
.size = 1024,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
.offset = 0,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
.offset = 128,
.size = 128,
},
{
.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
.location_heap_id = DRM_PVR_HEAP_USC_CODE,
.offset = 0,
.size = 128,
},
};
#define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
/*
* The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
* static data area for each heap.
*/
static const struct drm_pvr_heap pvr_heaps[] = {
[DRM_PVR_HEAP_GENERAL] = {
.base = ROGUE_GENERAL_HEAP_BASE,
.size = ROGUE_GENERAL_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_PDS_CODE_DATA] = {
.base = ROGUE_PDSCODEDATA_HEAP_BASE,
.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_USC_CODE] = {
.base = ROGUE_USCCODE_HEAP_BASE,
.size = ROGUE_USCCODE_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_RGNHDR] = {
.base = ROGUE_RGNHDR_HEAP_BASE,
.size = ROGUE_RGNHDR_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_VIS_TEST] = {
.base = ROGUE_VISTEST_HEAP_BASE,
.size = ROGUE_VISTEST_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
[DRM_PVR_HEAP_TRANSFER_FRAG] = {
.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
.flags = 0,
.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
},
};
int
pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
struct drm_pvr_ioctl_dev_query_args *args)
{
struct drm_pvr_dev_query_static_data_areas query = {0};
int err;
if (!args->pointer) {
args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
return 0;
}
err = PVR_UOBJ_GET(query, args->size, args->pointer);
if (err < 0)
return err;
if (!query.static_data_areas.array) {
query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
goto copy_out;
}
if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
if (err < 0)
return err;
copy_out:
err = PVR_UOBJ_SET(args->pointer, args->size, query);
if (err < 0)
return err;
args->size = sizeof(query);
return 0;
}
int
pvr_heap_info_get(const struct pvr_device *pvr_dev,
struct drm_pvr_ioctl_dev_query_args *args)
{
struct drm_pvr_dev_query_heap_info query = {0};
u64 dest;
int err;
if (!args->pointer) {
args->size = sizeof(struct drm_pvr_dev_query_heap_info);
return 0;
}
err = PVR_UOBJ_GET(query, args->size, args->pointer);
if (err < 0)
return err;
if (!query.heaps.array) {
query.heaps.count = ARRAY_SIZE(pvr_heaps);
query.heaps.stride = sizeof(struct drm_pvr_heap);
goto copy_out;
}
if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
query.heaps.count = ARRAY_SIZE(pvr_heaps);
/* Region header heap is only present if BRN63142 is present. */
dest = query.heaps.array;
for (size_t i = 0; i < query.heaps.count; i++) {
struct drm_pvr_heap heap = pvr_heaps[i];
if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
heap.size = 0;
err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
if (err < 0)
return err;
dest += query.heaps.stride;
}
copy_out:
err = PVR_UOBJ_SET(args->pointer, args->size, query);
if (err < 0)
return err;
args->size = sizeof(query);
return 0;
}
/**
* pvr_heap_contains_range() - Determine if a given heap contains the specified
* device-virtual address range.
* @pvr_heap: Target heap.
* @start: Inclusive start of the target range.
* @end: Inclusive end of the target range.
*
* It is an error to call this function with values of @start and @end that do
* not satisfy the condition @start <= @end.
*/
static __always_inline bool
pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
{
return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
}
/**
* pvr_find_heap_containing() - Find a heap which contains the specified
* device-virtual address range.
* @pvr_dev: Target PowerVR device.
* @start: Start of the target range.
* @size: Size of the target range.
*
* Return:
* * A pointer to a constant instance of struct drm_pvr_heap representing the
* heap containing the entire range specified by @start and @size on
* success, or
* * %NULL if no such heap exists.
*/
const struct drm_pvr_heap *
pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
{
u64 end;
if (check_add_overflow(start, size - 1, &end))
return NULL;
/*
* There are no guarantees about the order of address ranges in
* &pvr_heaps, so iterate over the entire array for a heap whose
* range completely encompasses the given range.
*/
for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
/* Filter heaps that present only with an associated quirk */
if (heap_id == DRM_PVR_HEAP_RGNHDR &&
!PVR_HAS_QUIRK(pvr_dev, 63142)) {
continue;
}
if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
return &pvr_heaps[heap_id];
}
return NULL;
}
/**
* pvr_vm_find_gem_object() - Look up a buffer object from a given
* device-virtual address.
* @vm_ctx: [IN] Target VM context.
* @device_addr: [IN] Virtual device address at the start of the required
* object.
* @mapped_offset_out: [OUT] Pointer to location to write offset of the start
* of the mapped region within the buffer object. May be
* %NULL if this information is not required.
* @mapped_size_out: [OUT] Pointer to location to write size of the mapped
* region. May be %NULL if this information is not required.
*
* If successful, a reference will be taken on the buffer object. The caller
* must drop the reference with pvr_gem_object_put().
*
* Return:
* * The PowerVR buffer object mapped at @device_addr if one exists, or
* * %NULL otherwise.
*/
struct pvr_gem_object *
pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
u64 *mapped_offset_out, u64 *mapped_size_out)
{
struct pvr_gem_object *pvr_obj;
struct drm_gpuva *va;
mutex_lock(&vm_ctx->lock);
va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
if (!va)
goto err_unlock;
pvr_obj = gem_to_pvr_gem(va->gem.obj);
pvr_gem_object_get(pvr_obj);
if (mapped_offset_out)
*mapped_offset_out = va->gem.offset;
if (mapped_size_out)
*mapped_size_out = va->va.range;
mutex_unlock(&vm_ctx->lock);
return pvr_obj;
err_unlock:
mutex_unlock(&vm_ctx->lock);
return NULL;
}
/**
* pvr_vm_get_fw_mem_context: Get object representing firmware memory context
* @vm_ctx: Target VM context.
*
* Returns:
* * FW object representing firmware memory context, or
* * %NULL if this VM context does not have a firmware memory context.
*/
struct pvr_fw_object *
pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
{
return vm_ctx->fw_mem_ctx_obj;
}