mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-04 04:04:19 +00:00
292a089d78
Due to several bugs caused by timers being re-armed after they are shutdown and just before they are freed, a new state of timers was added called "shutdown". After a timer is set to this state, then it can no longer be re-armed. The following script was run to find all the trivial locations where del_timer() or del_timer_sync() is called in the same function that the object holding the timer is freed. It also ignores any locations where the timer->function is modified between the del_timer*() and the free(), as that is not considered a "trivial" case. This was created by using a coccinelle script and the following commands: $ cat timer.cocci @@ expression ptr, slab; identifier timer, rfield; @@ ( - del_timer(&ptr->timer); + timer_shutdown(&ptr->timer); | - del_timer_sync(&ptr->timer); + timer_shutdown_sync(&ptr->timer); ) ... when strict when != ptr->timer ( kfree_rcu(ptr, rfield); | kmem_cache_free(slab, ptr); | kfree(ptr); ) $ spatch timer.cocci . > /tmp/t.patch $ patch -p1 < /tmp/t.patch Link: https://lore.kernel.org/lkml/20221123201306.823305113@linutronix.de/ Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Pavel Machek <pavel@ucw.cz> [ LED ] Acked-by: Kalle Valo <kvalo@kernel.org> [ wireless ] Acked-by: Paolo Abeni <pabeni@redhat.com> [ networking ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1063 lines
29 KiB
C
1063 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Block rq-qos base io controller
|
|
*
|
|
* This works similar to wbt with a few exceptions
|
|
*
|
|
* - It's bio based, so the latency covers the whole block layer in addition to
|
|
* the actual io.
|
|
* - We will throttle all IO that comes in here if we need to.
|
|
* - We use the mean latency over the 100ms window. This is because writes can
|
|
* be particularly fast, which could give us a false sense of the impact of
|
|
* other workloads on our protected workload.
|
|
* - By default there's no throttling, we set the queue_depth to UINT_MAX so
|
|
* that we can have as many outstanding bio's as we're allowed to. Only at
|
|
* throttle time do we pay attention to the actual queue depth.
|
|
*
|
|
* The hierarchy works like the cpu controller does, we track the latency at
|
|
* every configured node, and each configured node has it's own independent
|
|
* queue depth. This means that we only care about our latency targets at the
|
|
* peer level. Some group at the bottom of the hierarchy isn't going to affect
|
|
* a group at the end of some other path if we're only configred at leaf level.
|
|
*
|
|
* Consider the following
|
|
*
|
|
* root blkg
|
|
* / \
|
|
* fast (target=5ms) slow (target=10ms)
|
|
* / \ / \
|
|
* a b normal(15ms) unloved
|
|
*
|
|
* "a" and "b" have no target, but their combined io under "fast" cannot exceed
|
|
* an average latency of 5ms. If it does then we will throttle the "slow"
|
|
* group. In the case of "normal", if it exceeds its 15ms target, we will
|
|
* throttle "unloved", but nobody else.
|
|
*
|
|
* In this example "fast", "slow", and "normal" will be the only groups actually
|
|
* accounting their io latencies. We have to walk up the heirarchy to the root
|
|
* on every submit and complete so we can do the appropriate stat recording and
|
|
* adjust the queue depth of ourselves if needed.
|
|
*
|
|
* There are 2 ways we throttle IO.
|
|
*
|
|
* 1) Queue depth throttling. As we throttle down we will adjust the maximum
|
|
* number of IO's we're allowed to have in flight. This starts at (u64)-1 down
|
|
* to 1. If the group is only ever submitting IO for itself then this is the
|
|
* only way we throttle.
|
|
*
|
|
* 2) Induced delay throttling. This is for the case that a group is generating
|
|
* IO that has to be issued by the root cg to avoid priority inversion. So think
|
|
* REQ_META or REQ_SWAP. If we are already at qd == 1 and we're getting a lot
|
|
* of work done for us on behalf of the root cg and are being asked to scale
|
|
* down more then we induce a latency at userspace return. We accumulate the
|
|
* total amount of time we need to be punished by doing
|
|
*
|
|
* total_time += min_lat_nsec - actual_io_completion
|
|
*
|
|
* and then at throttle time will do
|
|
*
|
|
* throttle_time = min(total_time, NSEC_PER_SEC)
|
|
*
|
|
* This induced delay will throttle back the activity that is generating the
|
|
* root cg issued io's, wethere that's some metadata intensive operation or the
|
|
* group is using so much memory that it is pushing us into swap.
|
|
*
|
|
* Copyright (C) 2018 Josef Bacik
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/blk_types.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/sched/loadavg.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <trace/events/block.h>
|
|
#include <linux/blk-mq.h>
|
|
#include "blk-rq-qos.h"
|
|
#include "blk-stat.h"
|
|
#include "blk-cgroup.h"
|
|
#include "blk.h"
|
|
|
|
#define DEFAULT_SCALE_COOKIE 1000000U
|
|
|
|
static struct blkcg_policy blkcg_policy_iolatency;
|
|
struct iolatency_grp;
|
|
|
|
struct blk_iolatency {
|
|
struct rq_qos rqos;
|
|
struct timer_list timer;
|
|
|
|
/*
|
|
* ->enabled is the master enable switch gating the throttling logic and
|
|
* inflight tracking. The number of cgroups which have iolat enabled is
|
|
* tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
|
|
* from ->enable_work with the request_queue frozen. For details, See
|
|
* blkiolatency_enable_work_fn().
|
|
*/
|
|
bool enabled;
|
|
atomic_t enable_cnt;
|
|
struct work_struct enable_work;
|
|
};
|
|
|
|
static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
|
|
{
|
|
return container_of(rqos, struct blk_iolatency, rqos);
|
|
}
|
|
|
|
struct child_latency_info {
|
|
spinlock_t lock;
|
|
|
|
/* Last time we adjusted the scale of everybody. */
|
|
u64 last_scale_event;
|
|
|
|
/* The latency that we missed. */
|
|
u64 scale_lat;
|
|
|
|
/* Total io's from all of our children for the last summation. */
|
|
u64 nr_samples;
|
|
|
|
/* The guy who actually changed the latency numbers. */
|
|
struct iolatency_grp *scale_grp;
|
|
|
|
/* Cookie to tell if we need to scale up or down. */
|
|
atomic_t scale_cookie;
|
|
};
|
|
|
|
struct percentile_stats {
|
|
u64 total;
|
|
u64 missed;
|
|
};
|
|
|
|
struct latency_stat {
|
|
union {
|
|
struct percentile_stats ps;
|
|
struct blk_rq_stat rqs;
|
|
};
|
|
};
|
|
|
|
struct iolatency_grp {
|
|
struct blkg_policy_data pd;
|
|
struct latency_stat __percpu *stats;
|
|
struct latency_stat cur_stat;
|
|
struct blk_iolatency *blkiolat;
|
|
unsigned int max_depth;
|
|
struct rq_wait rq_wait;
|
|
atomic64_t window_start;
|
|
atomic_t scale_cookie;
|
|
u64 min_lat_nsec;
|
|
u64 cur_win_nsec;
|
|
|
|
/* total running average of our io latency. */
|
|
u64 lat_avg;
|
|
|
|
/* Our current number of IO's for the last summation. */
|
|
u64 nr_samples;
|
|
|
|
bool ssd;
|
|
struct child_latency_info child_lat;
|
|
};
|
|
|
|
#define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
|
|
#define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
|
|
/*
|
|
* These are the constants used to fake the fixed-point moving average
|
|
* calculation just like load average. The call to calc_load() folds
|
|
* (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg. The sampling
|
|
* window size is bucketed to try to approximately calculate average
|
|
* latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
|
|
* elapse immediately. Note, windows only elapse with IO activity. Idle
|
|
* periods extend the most recent window.
|
|
*/
|
|
#define BLKIOLATENCY_NR_EXP_FACTORS 5
|
|
#define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
|
|
(BLKIOLATENCY_NR_EXP_FACTORS - 1))
|
|
static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
|
|
2045, // exp(1/600) - 600 samples
|
|
2039, // exp(1/240) - 240 samples
|
|
2031, // exp(1/120) - 120 samples
|
|
2023, // exp(1/80) - 80 samples
|
|
2014, // exp(1/60) - 60 samples
|
|
};
|
|
|
|
static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
|
|
{
|
|
return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
|
|
}
|
|
|
|
static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
|
|
{
|
|
return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
|
|
}
|
|
|
|
static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
|
|
{
|
|
return pd_to_blkg(&iolat->pd);
|
|
}
|
|
|
|
static inline void latency_stat_init(struct iolatency_grp *iolat,
|
|
struct latency_stat *stat)
|
|
{
|
|
if (iolat->ssd) {
|
|
stat->ps.total = 0;
|
|
stat->ps.missed = 0;
|
|
} else
|
|
blk_rq_stat_init(&stat->rqs);
|
|
}
|
|
|
|
static inline void latency_stat_sum(struct iolatency_grp *iolat,
|
|
struct latency_stat *sum,
|
|
struct latency_stat *stat)
|
|
{
|
|
if (iolat->ssd) {
|
|
sum->ps.total += stat->ps.total;
|
|
sum->ps.missed += stat->ps.missed;
|
|
} else
|
|
blk_rq_stat_sum(&sum->rqs, &stat->rqs);
|
|
}
|
|
|
|
static inline void latency_stat_record_time(struct iolatency_grp *iolat,
|
|
u64 req_time)
|
|
{
|
|
struct latency_stat *stat = get_cpu_ptr(iolat->stats);
|
|
if (iolat->ssd) {
|
|
if (req_time >= iolat->min_lat_nsec)
|
|
stat->ps.missed++;
|
|
stat->ps.total++;
|
|
} else
|
|
blk_rq_stat_add(&stat->rqs, req_time);
|
|
put_cpu_ptr(stat);
|
|
}
|
|
|
|
static inline bool latency_sum_ok(struct iolatency_grp *iolat,
|
|
struct latency_stat *stat)
|
|
{
|
|
if (iolat->ssd) {
|
|
u64 thresh = div64_u64(stat->ps.total, 10);
|
|
thresh = max(thresh, 1ULL);
|
|
return stat->ps.missed < thresh;
|
|
}
|
|
return stat->rqs.mean <= iolat->min_lat_nsec;
|
|
}
|
|
|
|
static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
|
|
struct latency_stat *stat)
|
|
{
|
|
if (iolat->ssd)
|
|
return stat->ps.total;
|
|
return stat->rqs.nr_samples;
|
|
}
|
|
|
|
static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
|
|
struct latency_stat *stat)
|
|
{
|
|
int exp_idx;
|
|
|
|
if (iolat->ssd)
|
|
return;
|
|
|
|
/*
|
|
* calc_load() takes in a number stored in fixed point representation.
|
|
* Because we are using this for IO time in ns, the values stored
|
|
* are significantly larger than the FIXED_1 denominator (2048).
|
|
* Therefore, rounding errors in the calculation are negligible and
|
|
* can be ignored.
|
|
*/
|
|
exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
|
|
div64_u64(iolat->cur_win_nsec,
|
|
BLKIOLATENCY_EXP_BUCKET_SIZE));
|
|
iolat->lat_avg = calc_load(iolat->lat_avg,
|
|
iolatency_exp_factors[exp_idx],
|
|
stat->rqs.mean);
|
|
}
|
|
|
|
static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
|
|
{
|
|
atomic_dec(&rqw->inflight);
|
|
wake_up(&rqw->wait);
|
|
}
|
|
|
|
static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
|
|
{
|
|
struct iolatency_grp *iolat = private_data;
|
|
return rq_wait_inc_below(rqw, iolat->max_depth);
|
|
}
|
|
|
|
static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
|
|
struct iolatency_grp *iolat,
|
|
bool issue_as_root,
|
|
bool use_memdelay)
|
|
{
|
|
struct rq_wait *rqw = &iolat->rq_wait;
|
|
unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
|
|
|
|
if (use_delay)
|
|
blkcg_schedule_throttle(rqos->q->disk, use_memdelay);
|
|
|
|
/*
|
|
* To avoid priority inversions we want to just take a slot if we are
|
|
* issuing as root. If we're being killed off there's no point in
|
|
* delaying things, we may have been killed by OOM so throttling may
|
|
* make recovery take even longer, so just let the IO's through so the
|
|
* task can go away.
|
|
*/
|
|
if (issue_as_root || fatal_signal_pending(current)) {
|
|
atomic_inc(&rqw->inflight);
|
|
return;
|
|
}
|
|
|
|
rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
|
|
}
|
|
|
|
#define SCALE_DOWN_FACTOR 2
|
|
#define SCALE_UP_FACTOR 4
|
|
|
|
static inline unsigned long scale_amount(unsigned long qd, bool up)
|
|
{
|
|
return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
|
|
}
|
|
|
|
/*
|
|
* We scale the qd down faster than we scale up, so we need to use this helper
|
|
* to adjust the scale_cookie accordingly so we don't prematurely get
|
|
* scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
|
|
*
|
|
* Each group has their own local copy of the last scale cookie they saw, so if
|
|
* the global scale cookie goes up or down they know which way they need to go
|
|
* based on their last knowledge of it.
|
|
*/
|
|
static void scale_cookie_change(struct blk_iolatency *blkiolat,
|
|
struct child_latency_info *lat_info,
|
|
bool up)
|
|
{
|
|
unsigned long qd = blkiolat->rqos.q->nr_requests;
|
|
unsigned long scale = scale_amount(qd, up);
|
|
unsigned long old = atomic_read(&lat_info->scale_cookie);
|
|
unsigned long max_scale = qd << 1;
|
|
unsigned long diff = 0;
|
|
|
|
if (old < DEFAULT_SCALE_COOKIE)
|
|
diff = DEFAULT_SCALE_COOKIE - old;
|
|
|
|
if (up) {
|
|
if (scale + old > DEFAULT_SCALE_COOKIE)
|
|
atomic_set(&lat_info->scale_cookie,
|
|
DEFAULT_SCALE_COOKIE);
|
|
else if (diff > qd)
|
|
atomic_inc(&lat_info->scale_cookie);
|
|
else
|
|
atomic_add(scale, &lat_info->scale_cookie);
|
|
} else {
|
|
/*
|
|
* We don't want to dig a hole so deep that it takes us hours to
|
|
* dig out of it. Just enough that we don't throttle/unthrottle
|
|
* with jagged workloads but can still unthrottle once pressure
|
|
* has sufficiently dissipated.
|
|
*/
|
|
if (diff > qd) {
|
|
if (diff < max_scale)
|
|
atomic_dec(&lat_info->scale_cookie);
|
|
} else {
|
|
atomic_sub(scale, &lat_info->scale_cookie);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Change the queue depth of the iolatency_grp. We add 1/16th of the
|
|
* queue depth at a time so we don't get wild swings and hopefully dial in to
|
|
* fairer distribution of the overall queue depth. We halve the queue depth
|
|
* at a time so we can scale down queue depth quickly from default unlimited
|
|
* to target.
|
|
*/
|
|
static void scale_change(struct iolatency_grp *iolat, bool up)
|
|
{
|
|
unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
|
|
unsigned long scale = scale_amount(qd, up);
|
|
unsigned long old = iolat->max_depth;
|
|
|
|
if (old > qd)
|
|
old = qd;
|
|
|
|
if (up) {
|
|
if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
|
|
return;
|
|
|
|
if (old < qd) {
|
|
old += scale;
|
|
old = min(old, qd);
|
|
iolat->max_depth = old;
|
|
wake_up_all(&iolat->rq_wait.wait);
|
|
}
|
|
} else {
|
|
old >>= 1;
|
|
iolat->max_depth = max(old, 1UL);
|
|
}
|
|
}
|
|
|
|
/* Check our parent and see if the scale cookie has changed. */
|
|
static void check_scale_change(struct iolatency_grp *iolat)
|
|
{
|
|
struct iolatency_grp *parent;
|
|
struct child_latency_info *lat_info;
|
|
unsigned int cur_cookie;
|
|
unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
|
|
u64 scale_lat;
|
|
int direction = 0;
|
|
|
|
parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
|
|
if (!parent)
|
|
return;
|
|
|
|
lat_info = &parent->child_lat;
|
|
cur_cookie = atomic_read(&lat_info->scale_cookie);
|
|
scale_lat = READ_ONCE(lat_info->scale_lat);
|
|
|
|
if (cur_cookie < our_cookie)
|
|
direction = -1;
|
|
else if (cur_cookie > our_cookie)
|
|
direction = 1;
|
|
else
|
|
return;
|
|
|
|
if (!atomic_try_cmpxchg(&iolat->scale_cookie, &our_cookie, cur_cookie)) {
|
|
/* Somebody beat us to the punch, just bail. */
|
|
return;
|
|
}
|
|
|
|
if (direction < 0 && iolat->min_lat_nsec) {
|
|
u64 samples_thresh;
|
|
|
|
if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
|
|
return;
|
|
|
|
/*
|
|
* Sometimes high priority groups are their own worst enemy, so
|
|
* instead of taking it out on some poor other group that did 5%
|
|
* or less of the IO's for the last summation just skip this
|
|
* scale down event.
|
|
*/
|
|
samples_thresh = lat_info->nr_samples * 5;
|
|
samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
|
|
if (iolat->nr_samples <= samples_thresh)
|
|
return;
|
|
}
|
|
|
|
/* We're as low as we can go. */
|
|
if (iolat->max_depth == 1 && direction < 0) {
|
|
blkcg_use_delay(lat_to_blkg(iolat));
|
|
return;
|
|
}
|
|
|
|
/* We're back to the default cookie, unthrottle all the things. */
|
|
if (cur_cookie == DEFAULT_SCALE_COOKIE) {
|
|
blkcg_clear_delay(lat_to_blkg(iolat));
|
|
iolat->max_depth = UINT_MAX;
|
|
wake_up_all(&iolat->rq_wait.wait);
|
|
return;
|
|
}
|
|
|
|
scale_change(iolat, direction > 0);
|
|
}
|
|
|
|
static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
|
|
{
|
|
struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
|
|
struct blkcg_gq *blkg = bio->bi_blkg;
|
|
bool issue_as_root = bio_issue_as_root_blkg(bio);
|
|
|
|
if (!blkiolat->enabled)
|
|
return;
|
|
|
|
while (blkg && blkg->parent) {
|
|
struct iolatency_grp *iolat = blkg_to_lat(blkg);
|
|
if (!iolat) {
|
|
blkg = blkg->parent;
|
|
continue;
|
|
}
|
|
|
|
check_scale_change(iolat);
|
|
__blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
|
|
(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
|
|
blkg = blkg->parent;
|
|
}
|
|
if (!timer_pending(&blkiolat->timer))
|
|
mod_timer(&blkiolat->timer, jiffies + HZ);
|
|
}
|
|
|
|
static void iolatency_record_time(struct iolatency_grp *iolat,
|
|
struct bio_issue *issue, u64 now,
|
|
bool issue_as_root)
|
|
{
|
|
u64 start = bio_issue_time(issue);
|
|
u64 req_time;
|
|
|
|
/*
|
|
* Have to do this so we are truncated to the correct time that our
|
|
* issue is truncated to.
|
|
*/
|
|
now = __bio_issue_time(now);
|
|
|
|
if (now <= start)
|
|
return;
|
|
|
|
req_time = now - start;
|
|
|
|
/*
|
|
* We don't want to count issue_as_root bio's in the cgroups latency
|
|
* statistics as it could skew the numbers downwards.
|
|
*/
|
|
if (unlikely(issue_as_root && iolat->max_depth != UINT_MAX)) {
|
|
u64 sub = iolat->min_lat_nsec;
|
|
if (req_time < sub)
|
|
blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
|
|
return;
|
|
}
|
|
|
|
latency_stat_record_time(iolat, req_time);
|
|
}
|
|
|
|
#define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
|
|
#define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
|
|
|
|
static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
|
|
{
|
|
struct blkcg_gq *blkg = lat_to_blkg(iolat);
|
|
struct iolatency_grp *parent;
|
|
struct child_latency_info *lat_info;
|
|
struct latency_stat stat;
|
|
unsigned long flags;
|
|
int cpu;
|
|
|
|
latency_stat_init(iolat, &stat);
|
|
preempt_disable();
|
|
for_each_online_cpu(cpu) {
|
|
struct latency_stat *s;
|
|
s = per_cpu_ptr(iolat->stats, cpu);
|
|
latency_stat_sum(iolat, &stat, s);
|
|
latency_stat_init(iolat, s);
|
|
}
|
|
preempt_enable();
|
|
|
|
parent = blkg_to_lat(blkg->parent);
|
|
if (!parent)
|
|
return;
|
|
|
|
lat_info = &parent->child_lat;
|
|
|
|
iolat_update_total_lat_avg(iolat, &stat);
|
|
|
|
/* Everything is ok and we don't need to adjust the scale. */
|
|
if (latency_sum_ok(iolat, &stat) &&
|
|
atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
|
|
return;
|
|
|
|
/* Somebody beat us to the punch, just bail. */
|
|
spin_lock_irqsave(&lat_info->lock, flags);
|
|
|
|
latency_stat_sum(iolat, &iolat->cur_stat, &stat);
|
|
lat_info->nr_samples -= iolat->nr_samples;
|
|
lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
|
|
iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
|
|
|
|
if ((lat_info->last_scale_event >= now ||
|
|
now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
|
|
goto out;
|
|
|
|
if (latency_sum_ok(iolat, &iolat->cur_stat) &&
|
|
latency_sum_ok(iolat, &stat)) {
|
|
if (latency_stat_samples(iolat, &iolat->cur_stat) <
|
|
BLKIOLATENCY_MIN_GOOD_SAMPLES)
|
|
goto out;
|
|
if (lat_info->scale_grp == iolat) {
|
|
lat_info->last_scale_event = now;
|
|
scale_cookie_change(iolat->blkiolat, lat_info, true);
|
|
}
|
|
} else if (lat_info->scale_lat == 0 ||
|
|
lat_info->scale_lat >= iolat->min_lat_nsec) {
|
|
lat_info->last_scale_event = now;
|
|
if (!lat_info->scale_grp ||
|
|
lat_info->scale_lat > iolat->min_lat_nsec) {
|
|
WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
|
|
lat_info->scale_grp = iolat;
|
|
}
|
|
scale_cookie_change(iolat->blkiolat, lat_info, false);
|
|
}
|
|
latency_stat_init(iolat, &iolat->cur_stat);
|
|
out:
|
|
spin_unlock_irqrestore(&lat_info->lock, flags);
|
|
}
|
|
|
|
static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
|
|
{
|
|
struct blkcg_gq *blkg;
|
|
struct rq_wait *rqw;
|
|
struct iolatency_grp *iolat;
|
|
u64 window_start;
|
|
u64 now;
|
|
bool issue_as_root = bio_issue_as_root_blkg(bio);
|
|
int inflight = 0;
|
|
|
|
blkg = bio->bi_blkg;
|
|
if (!blkg || !bio_flagged(bio, BIO_QOS_THROTTLED))
|
|
return;
|
|
|
|
iolat = blkg_to_lat(bio->bi_blkg);
|
|
if (!iolat)
|
|
return;
|
|
|
|
if (!iolat->blkiolat->enabled)
|
|
return;
|
|
|
|
now = ktime_to_ns(ktime_get());
|
|
while (blkg && blkg->parent) {
|
|
iolat = blkg_to_lat(blkg);
|
|
if (!iolat) {
|
|
blkg = blkg->parent;
|
|
continue;
|
|
}
|
|
rqw = &iolat->rq_wait;
|
|
|
|
inflight = atomic_dec_return(&rqw->inflight);
|
|
WARN_ON_ONCE(inflight < 0);
|
|
/*
|
|
* If bi_status is BLK_STS_AGAIN, the bio wasn't actually
|
|
* submitted, so do not account for it.
|
|
*/
|
|
if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
|
|
iolatency_record_time(iolat, &bio->bi_issue, now,
|
|
issue_as_root);
|
|
window_start = atomic64_read(&iolat->window_start);
|
|
if (now > window_start &&
|
|
(now - window_start) >= iolat->cur_win_nsec) {
|
|
if (atomic64_try_cmpxchg(&iolat->window_start,
|
|
&window_start, now))
|
|
iolatency_check_latencies(iolat, now);
|
|
}
|
|
}
|
|
wake_up(&rqw->wait);
|
|
blkg = blkg->parent;
|
|
}
|
|
}
|
|
|
|
static void blkcg_iolatency_exit(struct rq_qos *rqos)
|
|
{
|
|
struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
|
|
|
|
timer_shutdown_sync(&blkiolat->timer);
|
|
flush_work(&blkiolat->enable_work);
|
|
blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
|
|
kfree(blkiolat);
|
|
}
|
|
|
|
static struct rq_qos_ops blkcg_iolatency_ops = {
|
|
.throttle = blkcg_iolatency_throttle,
|
|
.done_bio = blkcg_iolatency_done_bio,
|
|
.exit = blkcg_iolatency_exit,
|
|
};
|
|
|
|
static void blkiolatency_timer_fn(struct timer_list *t)
|
|
{
|
|
struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
|
|
struct blkcg_gq *blkg;
|
|
struct cgroup_subsys_state *pos_css;
|
|
u64 now = ktime_to_ns(ktime_get());
|
|
|
|
rcu_read_lock();
|
|
blkg_for_each_descendant_pre(blkg, pos_css,
|
|
blkiolat->rqos.q->root_blkg) {
|
|
struct iolatency_grp *iolat;
|
|
struct child_latency_info *lat_info;
|
|
unsigned long flags;
|
|
u64 cookie;
|
|
|
|
/*
|
|
* We could be exiting, don't access the pd unless we have a
|
|
* ref on the blkg.
|
|
*/
|
|
if (!blkg_tryget(blkg))
|
|
continue;
|
|
|
|
iolat = blkg_to_lat(blkg);
|
|
if (!iolat)
|
|
goto next;
|
|
|
|
lat_info = &iolat->child_lat;
|
|
cookie = atomic_read(&lat_info->scale_cookie);
|
|
|
|
if (cookie >= DEFAULT_SCALE_COOKIE)
|
|
goto next;
|
|
|
|
spin_lock_irqsave(&lat_info->lock, flags);
|
|
if (lat_info->last_scale_event >= now)
|
|
goto next_lock;
|
|
|
|
/*
|
|
* We scaled down but don't have a scale_grp, scale up and carry
|
|
* on.
|
|
*/
|
|
if (lat_info->scale_grp == NULL) {
|
|
scale_cookie_change(iolat->blkiolat, lat_info, true);
|
|
goto next_lock;
|
|
}
|
|
|
|
/*
|
|
* It's been 5 seconds since our last scale event, clear the
|
|
* scale grp in case the group that needed the scale down isn't
|
|
* doing any IO currently.
|
|
*/
|
|
if (now - lat_info->last_scale_event >=
|
|
((u64)NSEC_PER_SEC * 5))
|
|
lat_info->scale_grp = NULL;
|
|
next_lock:
|
|
spin_unlock_irqrestore(&lat_info->lock, flags);
|
|
next:
|
|
blkg_put(blkg);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* blkiolatency_enable_work_fn - Enable or disable iolatency on the device
|
|
* @work: enable_work of the blk_iolatency of interest
|
|
*
|
|
* iolatency needs to keep track of the number of in-flight IOs per cgroup. This
|
|
* is relatively expensive as it involves walking up the hierarchy twice for
|
|
* every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
|
|
* want to disable the in-flight tracking.
|
|
*
|
|
* We have to make sure that the counting is balanced - we don't want to leak
|
|
* the in-flight counts by disabling accounting in the completion path while IOs
|
|
* are in flight. This is achieved by ensuring that no IO is in flight by
|
|
* freezing the queue while flipping ->enabled. As this requires a sleepable
|
|
* context, ->enabled flipping is punted to this work function.
|
|
*/
|
|
static void blkiolatency_enable_work_fn(struct work_struct *work)
|
|
{
|
|
struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
|
|
enable_work);
|
|
bool enabled;
|
|
|
|
/*
|
|
* There can only be one instance of this function running for @blkiolat
|
|
* and it's guaranteed to be executed at least once after the latest
|
|
* ->enabled_cnt modification. Acting on the latest ->enable_cnt is
|
|
* sufficient.
|
|
*
|
|
* Also, we know @blkiolat is safe to access as ->enable_work is flushed
|
|
* in blkcg_iolatency_exit().
|
|
*/
|
|
enabled = atomic_read(&blkiolat->enable_cnt);
|
|
if (enabled != blkiolat->enabled) {
|
|
blk_mq_freeze_queue(blkiolat->rqos.q);
|
|
blkiolat->enabled = enabled;
|
|
blk_mq_unfreeze_queue(blkiolat->rqos.q);
|
|
}
|
|
}
|
|
|
|
int blk_iolatency_init(struct gendisk *disk)
|
|
{
|
|
struct request_queue *q = disk->queue;
|
|
struct blk_iolatency *blkiolat;
|
|
struct rq_qos *rqos;
|
|
int ret;
|
|
|
|
blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
|
|
if (!blkiolat)
|
|
return -ENOMEM;
|
|
|
|
rqos = &blkiolat->rqos;
|
|
rqos->id = RQ_QOS_LATENCY;
|
|
rqos->ops = &blkcg_iolatency_ops;
|
|
rqos->q = q;
|
|
|
|
ret = rq_qos_add(q, rqos);
|
|
if (ret)
|
|
goto err_free;
|
|
ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
|
|
if (ret)
|
|
goto err_qos_del;
|
|
|
|
timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
|
|
INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
|
|
|
|
return 0;
|
|
|
|
err_qos_del:
|
|
rq_qos_del(q, rqos);
|
|
err_free:
|
|
kfree(blkiolat);
|
|
return ret;
|
|
}
|
|
|
|
static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
|
|
{
|
|
struct iolatency_grp *iolat = blkg_to_lat(blkg);
|
|
struct blk_iolatency *blkiolat = iolat->blkiolat;
|
|
u64 oldval = iolat->min_lat_nsec;
|
|
|
|
iolat->min_lat_nsec = val;
|
|
iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
|
|
iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
|
|
BLKIOLATENCY_MAX_WIN_SIZE);
|
|
|
|
if (!oldval && val) {
|
|
if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
|
|
schedule_work(&blkiolat->enable_work);
|
|
}
|
|
if (oldval && !val) {
|
|
blkcg_clear_delay(blkg);
|
|
if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
|
|
schedule_work(&blkiolat->enable_work);
|
|
}
|
|
}
|
|
|
|
static void iolatency_clear_scaling(struct blkcg_gq *blkg)
|
|
{
|
|
if (blkg->parent) {
|
|
struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
|
|
struct child_latency_info *lat_info;
|
|
if (!iolat)
|
|
return;
|
|
|
|
lat_info = &iolat->child_lat;
|
|
spin_lock(&lat_info->lock);
|
|
atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
|
|
lat_info->last_scale_event = 0;
|
|
lat_info->scale_grp = NULL;
|
|
lat_info->scale_lat = 0;
|
|
spin_unlock(&lat_info->lock);
|
|
}
|
|
}
|
|
|
|
static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
|
|
size_t nbytes, loff_t off)
|
|
{
|
|
struct blkcg *blkcg = css_to_blkcg(of_css(of));
|
|
struct blkcg_gq *blkg;
|
|
struct blkg_conf_ctx ctx;
|
|
struct iolatency_grp *iolat;
|
|
char *p, *tok;
|
|
u64 lat_val = 0;
|
|
u64 oldval;
|
|
int ret;
|
|
|
|
ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
iolat = blkg_to_lat(ctx.blkg);
|
|
p = ctx.body;
|
|
|
|
ret = -EINVAL;
|
|
while ((tok = strsep(&p, " "))) {
|
|
char key[16];
|
|
char val[21]; /* 18446744073709551616 */
|
|
|
|
if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
|
|
goto out;
|
|
|
|
if (!strcmp(key, "target")) {
|
|
u64 v;
|
|
|
|
if (!strcmp(val, "max"))
|
|
lat_val = 0;
|
|
else if (sscanf(val, "%llu", &v) == 1)
|
|
lat_val = v * NSEC_PER_USEC;
|
|
else
|
|
goto out;
|
|
} else {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Walk up the tree to see if our new val is lower than it should be. */
|
|
blkg = ctx.blkg;
|
|
oldval = iolat->min_lat_nsec;
|
|
|
|
iolatency_set_min_lat_nsec(blkg, lat_val);
|
|
if (oldval != iolat->min_lat_nsec)
|
|
iolatency_clear_scaling(blkg);
|
|
ret = 0;
|
|
out:
|
|
blkg_conf_finish(&ctx);
|
|
return ret ?: nbytes;
|
|
}
|
|
|
|
static u64 iolatency_prfill_limit(struct seq_file *sf,
|
|
struct blkg_policy_data *pd, int off)
|
|
{
|
|
struct iolatency_grp *iolat = pd_to_lat(pd);
|
|
const char *dname = blkg_dev_name(pd->blkg);
|
|
|
|
if (!dname || !iolat->min_lat_nsec)
|
|
return 0;
|
|
seq_printf(sf, "%s target=%llu\n",
|
|
dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
|
|
return 0;
|
|
}
|
|
|
|
static int iolatency_print_limit(struct seq_file *sf, void *v)
|
|
{
|
|
blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
|
|
iolatency_prfill_limit,
|
|
&blkcg_policy_iolatency, seq_cft(sf)->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static void iolatency_ssd_stat(struct iolatency_grp *iolat, struct seq_file *s)
|
|
{
|
|
struct latency_stat stat;
|
|
int cpu;
|
|
|
|
latency_stat_init(iolat, &stat);
|
|
preempt_disable();
|
|
for_each_online_cpu(cpu) {
|
|
struct latency_stat *s;
|
|
s = per_cpu_ptr(iolat->stats, cpu);
|
|
latency_stat_sum(iolat, &stat, s);
|
|
}
|
|
preempt_enable();
|
|
|
|
if (iolat->max_depth == UINT_MAX)
|
|
seq_printf(s, " missed=%llu total=%llu depth=max",
|
|
(unsigned long long)stat.ps.missed,
|
|
(unsigned long long)stat.ps.total);
|
|
else
|
|
seq_printf(s, " missed=%llu total=%llu depth=%u",
|
|
(unsigned long long)stat.ps.missed,
|
|
(unsigned long long)stat.ps.total,
|
|
iolat->max_depth);
|
|
}
|
|
|
|
static void iolatency_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
|
|
{
|
|
struct iolatency_grp *iolat = pd_to_lat(pd);
|
|
unsigned long long avg_lat;
|
|
unsigned long long cur_win;
|
|
|
|
if (!blkcg_debug_stats)
|
|
return;
|
|
|
|
if (iolat->ssd)
|
|
return iolatency_ssd_stat(iolat, s);
|
|
|
|
avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
|
|
cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
|
|
if (iolat->max_depth == UINT_MAX)
|
|
seq_printf(s, " depth=max avg_lat=%llu win=%llu",
|
|
avg_lat, cur_win);
|
|
else
|
|
seq_printf(s, " depth=%u avg_lat=%llu win=%llu",
|
|
iolat->max_depth, avg_lat, cur_win);
|
|
}
|
|
|
|
static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
|
|
struct request_queue *q,
|
|
struct blkcg *blkcg)
|
|
{
|
|
struct iolatency_grp *iolat;
|
|
|
|
iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
|
|
if (!iolat)
|
|
return NULL;
|
|
iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
|
|
__alignof__(struct latency_stat), gfp);
|
|
if (!iolat->stats) {
|
|
kfree(iolat);
|
|
return NULL;
|
|
}
|
|
return &iolat->pd;
|
|
}
|
|
|
|
static void iolatency_pd_init(struct blkg_policy_data *pd)
|
|
{
|
|
struct iolatency_grp *iolat = pd_to_lat(pd);
|
|
struct blkcg_gq *blkg = lat_to_blkg(iolat);
|
|
struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
|
|
struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
|
|
u64 now = ktime_to_ns(ktime_get());
|
|
int cpu;
|
|
|
|
if (blk_queue_nonrot(blkg->q))
|
|
iolat->ssd = true;
|
|
else
|
|
iolat->ssd = false;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct latency_stat *stat;
|
|
stat = per_cpu_ptr(iolat->stats, cpu);
|
|
latency_stat_init(iolat, stat);
|
|
}
|
|
|
|
latency_stat_init(iolat, &iolat->cur_stat);
|
|
rq_wait_init(&iolat->rq_wait);
|
|
spin_lock_init(&iolat->child_lat.lock);
|
|
iolat->max_depth = UINT_MAX;
|
|
iolat->blkiolat = blkiolat;
|
|
iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
|
|
atomic64_set(&iolat->window_start, now);
|
|
|
|
/*
|
|
* We init things in list order, so the pd for the parent may not be
|
|
* init'ed yet for whatever reason.
|
|
*/
|
|
if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
|
|
struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
|
|
atomic_set(&iolat->scale_cookie,
|
|
atomic_read(&parent->child_lat.scale_cookie));
|
|
} else {
|
|
atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
|
|
}
|
|
|
|
atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
|
|
}
|
|
|
|
static void iolatency_pd_offline(struct blkg_policy_data *pd)
|
|
{
|
|
struct iolatency_grp *iolat = pd_to_lat(pd);
|
|
struct blkcg_gq *blkg = lat_to_blkg(iolat);
|
|
|
|
iolatency_set_min_lat_nsec(blkg, 0);
|
|
iolatency_clear_scaling(blkg);
|
|
}
|
|
|
|
static void iolatency_pd_free(struct blkg_policy_data *pd)
|
|
{
|
|
struct iolatency_grp *iolat = pd_to_lat(pd);
|
|
free_percpu(iolat->stats);
|
|
kfree(iolat);
|
|
}
|
|
|
|
static struct cftype iolatency_files[] = {
|
|
{
|
|
.name = "latency",
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
.seq_show = iolatency_print_limit,
|
|
.write = iolatency_set_limit,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static struct blkcg_policy blkcg_policy_iolatency = {
|
|
.dfl_cftypes = iolatency_files,
|
|
.pd_alloc_fn = iolatency_pd_alloc,
|
|
.pd_init_fn = iolatency_pd_init,
|
|
.pd_offline_fn = iolatency_pd_offline,
|
|
.pd_free_fn = iolatency_pd_free,
|
|
.pd_stat_fn = iolatency_pd_stat,
|
|
};
|
|
|
|
static int __init iolatency_init(void)
|
|
{
|
|
return blkcg_policy_register(&blkcg_policy_iolatency);
|
|
}
|
|
|
|
static void __exit iolatency_exit(void)
|
|
{
|
|
blkcg_policy_unregister(&blkcg_policy_iolatency);
|
|
}
|
|
|
|
module_init(iolatency_init);
|
|
module_exit(iolatency_exit);
|