mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2024-12-29 01:03:32 +00:00
Linux kernel source tree
b1f202060a
Patch series "mm: split underused THPs", v5. The current upstream default policy for THP is always. However, Meta uses madvise in production as the current THP=always policy vastly overprovisions THPs in sparsely accessed memory areas, resulting in excessive memory pressure and premature OOM killing. Using madvise + relying on khugepaged has certain drawbacks over THP=always. Using madvise hints mean THPs aren't "transparent" and require userspace changes. Waiting for khugepaged to scan memory and collapse pages into THP can be slow and unpredictable in terms of performance (i.e. you dont know when the collapse will happen), while production environments require predictable performance. If there is enough memory available, its better for both performance and predictability to have a THP from fault time, i.e. THP=always rather than wait for khugepaged to collapse it, and deal with sparsely populated THPs when the system is running out of memory. This patch series is an attempt to mitigate the issue of running out of memory when THP is always enabled. During runtime whenever a THP is being faulted in or collapsed by khugepaged, the THP is added to a list. Whenever memory reclaim happens, the kernel runs the deferred_split shrinker which goes through the list and checks if the THP was underused, i.e. how many of the base 4K pages of the entire THP were zero-filled. If this number goes above a certain threshold, the shrinker will attempt to split that THP. Then at remap time, the pages that were zero-filled are mapped to the shared zeropage, hence saving memory. This method avoids the downside of wasting memory in areas where THP is sparsely filled when THP is always enabled, while still providing the upside THPs like reduced TLB misses without having to use madvise. Meta production workloads that were CPU bound (>99% CPU utilzation) were tested with THP shrinker. The results after 2 hours are as follows: | THP=madvise | THP=always | THP=always | | | + shrinker series | | | + max_ptes_none=409 ----------------------------------------------------------------------------- Performance improvement | - | +1.8% | +1.7% (over THP=madvise) | | | ----------------------------------------------------------------------------- Memory usage | 54.6G | 58.8G (+7.7%) | 55.9G (+2.4%) ----------------------------------------------------------------------------- max_ptes_none=409 means that any THP that has more than 409 out of 512 (80%) zero filled filled pages will be split. To test out the patches, the below commands without the shrinker will invoke OOM killer immediately and kill stress, but will not fail with the shrinker: echo 450 > /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none mkdir /sys/fs/cgroup/test echo $$ > /sys/fs/cgroup/test/cgroup.procs echo 20M > /sys/fs/cgroup/test/memory.max echo 0 > /sys/fs/cgroup/test/memory.swap.max # allocate twice memory.max for each stress worker and touch 40/512 of # each THP, i.e. vm-stride 50K. # With the shrinker, max_ptes_none of 470 and below won't invoke OOM # killer. # Without the shrinker, OOM killer is invoked immediately irrespective # of max_ptes_none value and kills stress. stress --vm 1 --vm-bytes 40M --vm-stride 50K This patch (of 5): Here being unused means containing only zeros and inaccessible to userspace. When splitting an isolated thp under reclaim or migration, the unused subpages can be mapped to the shared zeropage, hence saving memory. This is particularly helpful when the internal fragmentation of a thp is high, i.e. it has many untouched subpages. This is also a prerequisite for THP low utilization shrinker which will be introduced in later patches, where underutilized THPs are split, and the zero-filled pages are freed saving memory. Link: https://lkml.kernel.org/r/20240830100438.3623486-1-usamaarif642@gmail.com Link: https://lkml.kernel.org/r/20240830100438.3623486-3-usamaarif642@gmail.com Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Usama Arif <usamaarif642@gmail.com> Tested-by: Shuang Zhai <zhais@google.com> Cc: Alexander Zhu <alexlzhu@fb.com> Cc: Barry Song <baohua@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kairui Song <ryncsn@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Nico Pache <npache@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Shuang Zhai <szhai2@cs.rochester.edu> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.editorconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.